8. The first problem Shortlist ONM 2010 Romania.

by Virgil Nicula, Apr 19, 2010, 6:00 PM

Quote:
Daca $x$ , $y$ , $z\in\mathbb C$ au acelasi modul $1$, aratati ca

$|x-y|^2\ +\ |x-z|^2\ +\ 1\ \ge\  |y-z|^2\ \ (1)$ .

Met 1. Vom folosi o identitate peste multimea numerelor complexe care se demonstreaza usor si pe care va rog sa o retineti :

$\boxed {\ |a+b+c|^2+|a|^2+|b|^2+|c|^2=|a+b|^2+|b+c|^2+|c+a|^2\ }$ care in interpretare geometrica este echivalenta

cu relatia $HA^2+HB^2+HC^2=HO^2+3R^2$ . Folosind substitutia $a=y-x$ , $b=x-z$ , $c=z$ se obtine identitatea

$|y|^2+|z|^2+|x-y|^2+|x-z|^2=|x|^2+|y-z|^2+|y+z-x|^2$ din care rezulta (evident !) inegalitatea

$\boxed {\ |y|^2+|z|^2+|x-y|^2+|x-z|^2\ge |x|^2+|y-z|^2\ }$ cu egalitate iff $\boxed {\ y+z=x\ }$ . In concluzie, $|x|=|y|=|z|=1\ \Longrightarrow\ (1)$ .

Met 2. Vom folosi aceeasi identitate insa cu o substitutie mai simpla $a:=-x$ si $b:=y$ , $c:=z$ . Se obtine astfel identitatea

$|y+z-x|^2+\sum |x|^2=|y+z|^2+|x-y|^2+|x-z|^2$ . Din relatia paralelogramului $|y+z|^2+|y-z|^2=2\left(|y|^2+|z|^2\right)$ scoatem

$|y+z|^2$ si dupa introducerea in relatia precedenta se obtine identitatea $|y+z-x|^2+|x|^2= |y|^2+|z|^2-|y-z|^2+|x-y|^2+|x-z|^2$ .

Deci $|y|^2+|z|^2-|y-z|^2+|x-y|^2+|x-z|^2\ge |x|^2$ cu egalitate iff $y+z=x$ . In concluzie $|x|=|y|=|z|=1\ \implies\ (1)$ .

Observatie. Aceasta problema este exprimarea prin numere complexe a unei inegalitati cunoscute din geometria

triunghiului: $\boxed {\ b^2+c^2+R^2\ \ge\  a^2\ } (*)$ cu egalitate daca si numai daca $A=120^{\circ}$ si $B=C$ .

Met 1. Notam cercul circumscris $C(O,R)$ al $\triangle ABC$ , mijlocul $M$ al laturii $[BC]$ si simetricul $N$ al lui $O$ fata de $M$ . Exprimam mediana $[AM]$ in triunghiurile

$ABC$ si $AON\ :\ 2\left(b^2+c^2\right)-a^2=4m_a^2=$ $2\cdot\left(AN^2+AO^2\right)-ON^2=$ $2\cdot AN^2+2R^2-4\cdot OM^2=$ $2\cdot AN^2+2R^2-4R^2+a^2$ $\Longrightarrow$

$AN^2=b^2+c^2 -a^2+R^2\ge 0$ $\Longrightarrow$ $b^2+c^2+R^2\ge a^2$ .

Met 2. Ineg. $(*)$ $\Longleftrightarrow$ $2bc\cdot\cos A+R^2\ge 0\ \Longleftrightarrow\ $ $1+8\cos A\sin B\sin C\ge 0$ $\Longleftrightarrow$

$1+4\cdot\cos A\left[\cos (B-C)+\cos A\right]\ge 0$ $\Longleftrightarrow$ $\left[2\cos A+\cos (B-C)\right]^2+\sin^2(B-C)\ge 0$ .

Quote:
Extindere. $\left(\forall\right) X$ din planul $(ABC)$ exista relatia $\boxed {\ b^2+c^2-a^2\ge XA^2-XB^2-XC^2\ }\ \ (**)$

cu egalitate daca si numai daca punctul $X$ este simetricul varfului $A$ fata de mijlocul laturii $[BC]$ .

Observatie. Daca punctul $X$ este centrul cercului circumscris triunghiului $ABC$ , atunci se obtine inegalitatea $(*)$ .

Met 1 (V.N). Notam mijlocul $M$ pt. $[BC]$ si simetricul $L$ al lui $A$ in raport cu $M$ . Aplicam teorema medianei in triunghiurile

$\left\|\begin{array}{ccc}
 \triangle ABC & \iff & 4m_a^2=2(b^2+c^2)-a^2\\\\
 \triangle BXC & \iff & 4\cdot XM^2=2\cdot\left(XB^2+XC^2\right)-a^2\\\\
 \triangle AXL & \iff & 4\cdot XM^2=2\cdot\left(XA^2+XL^2\right)-4m_a^2\end{array}\right\|$ $\Longrightarrow$ $\boxed {XA^2-XB^2-XC^2+XL^2=b^2+c^2-a^2}$ $\Longrightarrow\ (**)$ .

Met 2 (V.N). Notam mijlocul $M$ pt. $[BC]$ si simetricul $Y$ al lui $X$ in raport cu $M$ . Aplicam teorema medianei in triunghiurile

$\left\|\begin{array}{ccc}
 \triangle ABC & \Longrightarrow & 4m_a^2=2(b^2+c^2)-a^2\\\\
 \triangle BXC & \Longrightarrow & 4\cdot XM^2=2\cdot\left(XB^2+XC^2\right)-a^2\\\\
 \triangle XAY & \Longrightarrow & 2m_a^2=XA^2+YA^2-2\cdot XM^2\end{array}\right\|\Longrightarrow$ $\boxed {\ \left(XA^2-XB^2-XC^2\right)+YA^2=b^2+c^2-a^2\ }\ \Longrightarrow\ (**)$ .

Met 3 (Moldovan). Notam mijloacele $M$ , $N$ pt. $[BC]$ si $[AX]$ respectiv . Deci $b^2+c^2-a^2 \ge XA^2-XB^2-XC^2 \Longleftrightarrow$

$\frac{2(b^2+c^2)-a^2}{4}-\frac{a^2}{4} \ge \frac{XA^2}{2}-\frac{2(XB^2+XC^2)}{4} \Longleftrightarrow$ $\frac{2(b^2+c^2)-a^2}{4}+\frac{2(XB^2+XC^2)-a^2}{4} \ge \frac{XA^2}{2}\ \Longleftrightarrow$

$AM^2+MX^2 \ge \frac{XA^2}{2} \ \Longleftrightarrow$ $\frac{2(AM^2+MX^2)-XA^2}{4}\ \ge 0\ \Longleftrightarrow\ MN^2\ \ge\ 0$ care este adevarata.

Quote:
Generalizare. $\left(\forall\right) X$ din planul $(ABC)$ si $\left(\forall\right)$ numerele reale $m\ne -1$ , $p\ne -1$ exista inegalitatea

$\boxed {p\left(c^2+mb^2\right)-\frac {m(1+p)}{1+m}\cdot a^2\ge\frac {p(1+m)}{1+p}\cdot XA^2-XB^2-m\cdot XC^2}\ \left(***\right)$ .

Demonstratie. Consideram punctele $M\in BC$ si $Y\in MX$ pentru care $\overline  {BM}=m\cdot\overline {MC}$ si $\overline {XM}=p\cdot\overline {MY}$ . Aplicam relatia lui Stewart

pentru cevienele si triunghiurile mentionate : $\begin{array}{ccc}
\overline{AM}/BAC & \implies & (1+m)^2AM^2=(1+m)\left(c^2+mb^2\right)-ma^2\ .\\\\
\overline{AM}/XAY & \implies & (1+p)^2AM^2=(1+p)\left(AX^2+p\cdot AY^2\right)-p\cdot XY^2\ .\\\\
\overline{XM}/BXC & \implies & (1+m)^2\cdot XM^2=(1+m)\cdot\left(XB^2+m\cdot XC^2\right)-ma^2\ .\end{array}$ .

Insa $\overline {XY}=\frac {1+p}{p}\cdot \overline {XM}$ . Eliminand $AM^2$ si $XM^2$ intre cele trei relatii de sus obtinem $-p(1+p)(1+m)\left(c^2+mb^2\right)+mp(1+p)a^2=$

$-p(1+m)^2\left(AX^2+pAY^2\right)+(1+p)(1+m)\left(XB^2+m\cdot XC^2\right)-m(1+p)a^2$ , adica $p(1+p)(1+m)\left(c^2+mb^2\right)-m(1+p)^2a^2=$

$p(1+m)^2\cdot AX^2-(1+p)(1+m)\cdot XB^2-m(1+m)(1+p)\cdot XC^2+p^2(1+m)^2\cdot AY^2$ . Din $AY^2\ge 0$ se obtine

inegalitatea $(***)$ . Avem egalitate daca si numai daca $Y\equiv A$ , adica $M\in AX$ si $\overline{XM}=p\cdot \overline {MA}$ .

Quote:
Problema propusa 1. Sa se arate ca intr-un triunghi $ABC$ exista inegalitatea $\boxed {\ \frac {b+c}{a}\ +\ \frac {a^2-bc}{b^2+c^2-bc}\ \ge\ 2\ }$ .

Indicatie. Se aplica inegalitatea $(**)$ pentru $X:=I_a$ - centrul cercului $A$ - exinscris triunghiului $ABC$ .

Observatie. Aceasta inegalitate este echivalenta cu $\boxed {\ a^3+b^3+c^3+abc\ \ge\ 2a(b^2+c^2)\ }\ \ge\ 4abc$ .
Quote:
Problema propusa 2. Sa se arate urmatoarea identitate (peste $C$ ), care in interpretare geometrica este echivalenta cu relatia $HO^2+\sum OM^2=12R^2$ ,

unde $NP\parallel BC$ , $PM\parallel CA$ si $MN\parallel AB$ : $|x+y+z|^2+|y+z-x|^2+|z+x-y|^2+|x+y-z|^2=4\cdot\left(|x|^2+|y|^2+|z|^2\right)$ .
Quote:
Problema propusa 3. Sa se arate ca daca este dat un triunghi $\Delta\equiv ABC$ , atunci exista un punct $X$ astfel incat

$XB^2+XC^2=XA^2\iff$ $\Delta$ este ascutit sau dreptunghic si $X$ este unic daca si numai daca $\Delta$ este dreptunghic.

http://www.artofproblemsolving.com/Forum/viewtopic.php?t=5722

http://artofproblemsolving.com/Forum/viewtopic.php?f=47&t=345744

http://artofproblemsolving.com/Forum/viewtopic.php?f=47&t=345742

http://www.artofproblemsolving.com/viewtopic.php?t=55455&search_id=655031139

http://www.artofproblemsolving.com/viewtopic.php?p=296657&search_id=655031139#296657

http://www.artofproblemsolving.com/viewtopic.php?p=277553&search_id=1382933615#277553

See and here
This post has been edited 37 times. Last edited by Virgil Nicula, Oct 1, 2017, 7:55 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a