197. Triangles outside of a triangle and concurrence.

by Virgil Nicula, Dec 25, 2010, 5:28 PM

PP1. Outside of the triangle $ABC$ construct the isosceles triangles $BCD\ ,\ CAE\ ,\ ABF$ in the vertices $D\ ,\ E\ ,\ F$ respectively. Prove that the perpendicular

lines from $A\ ,\ B\ ,\ C$ on $EF\ ,\ FD\ ,\ DE$ respectively are concurrently and for any point $P$ exists the relation $\overrightarrow{PA}\cdot\overrightarrow{EF}+\overrightarrow{PB}\cdot\overrightarrow{FD}+\overrightarrow{PC}\cdot\overrightarrow{DE}=\overrightarrow 0$ .


Proof. I"ll use the Carnot's lemma. Denote the projections $X\ ,\ Y\ ,\ Z$ of $A\ ,\ B\ ,\ C$ on $EF\ ,\ FD\ ,\ DE$ respectively. Observe that $\left\|\begin{array}{c}
DB=DC\\\
EC=EA\\\
FA=FB\end{array}\right\|$ and $\left\|\begin{array}{ccc}
XA\perp EF & \iff & XF^2-XE^2=AF^2-AE^2\\\\
YB\perp FD & \iff & YD^2-YF^2=BD^2-BF^2\\\\
ZC\perp DE & \iff & ZE^2-ZD^2=CE^2-CD^2\end{array}\right\|\ \bigoplus\ \implies\ XF^2+$ $YD^2+ZE^2=XE^2+YF^2+ZD^2$ $\stackrel{\mathrm {(Carnot)}}{\iff}$

$AX\cap BY\cap CZ\ne\emptyset$ . The triangles $ABC$ and $DEF$ are orthologically ! Denote $S\in AX\cap BY\cap CZ$ and for a point $P$ obtain that

$\overrightarrow {PA}\cdot\overrightarrow{EF}=\left(\overrightarrow{PS}+\overrightarrow {SA}\right)\cdot\overrightarrow {EF}$ $\implies$ $\overrightarrow {PA}\cdot\overrightarrow{EF}=\overrightarrow {PS}\cdot\overrightarrow {EF}$ because $\overrightarrow {SA}\cdot\overrightarrow{EF}=\overrightarrow 0\iff AS\perp EF$ .

Obtain analogously that $\overrightarrow {PB}\cdot\overrightarrow{FD}=\overrightarrow {PS}\cdot\overrightarrow {EFD}$ and $\overrightarrow {PC}\cdot\overrightarrow{DE}=\overrightarrow {PS}\cdot\overrightarrow {DE}$ . In conclusion,

$\overrightarrow{PA}\cdot\overrightarrow{EF}+\overrightarrow{PB}\cdot\overrightarrow{FD}+\overrightarrow{PC}\cdot\overrightarrow{DE}=\overrightarrow {PS}\cdot \left(\overrightarrow {EF}+\overrightarrow {FD}+\overrightarrow {DE}\right)=\overrightarrow{PS}\cdot \overrightarrow 0=\overrightarrow 0$ .



PP2 (H. Gulicher, Germany). Outside of $\triangle ABC$ construct the right triangles $ACQ$ and $ABP$ , where $CA\perp CQ$ and

$BA\perp BP$ . Denote $D\in BC$ so that $DA\perp BC$ . Prove that $BQ\cap CP\cap AD\ne\emptyset\iff \widehat{BAP}\equiv\widehat{CAQ}$ .


Proof. Denote $m\left(\widehat{BAP}\right)=x\ ,\ m\left(\widehat{CAF}\right)=y$ and $M\in CP\cap AB\ ,\ N\in BQ\cap AC$ . Observe that

$\frac {DB}{DC}=\frac {c\cdot\cos B}{b\cdot\cos C}$ and $\left\{\begin{array}{cccc}
\blacktriangleright & \frac {MA}{MB}=\frac {[PAC]}{[PBC]}=\frac {AP}{BP}\cdot\frac {AC}{BC}\cdot\frac {\sin\widehat{PAC}}{\sin \widehat{PBC}} & \implies & \frac {MA}{MB}=\frac {1}{\sin x}\cdot\frac ba\cdot\frac {\sin (A+x)}{\cos B}\\\\
\blacktriangleright & \frac {NA}{NC}=\frac {[QAB]}{[QCB]}=\frac {AQ}{CQ}\cdot\frac {AB}{CB}\cdot\frac {\sin\widehat{QAB}}{\sin \widehat{QCB}} & \implies & \frac {NA}{NC}=\frac {1}{\sin y }\cdot\frac ca\cdot\frac {\sin (A+y)}{\cos C}\end{array}\right\|$ $\implies$

$\frac {DB}{DC}\cdot \frac {NC}{NA}\cdot\frac {MA}{MB}=$ $\left(\frac cb\cdot\frac {\cos B}{\cos C}\right)\cdot \left[\sin y\cdot \frac ac\cdot\frac {\cos C}{\sin (A+y)}\right]\cdot$ $\left[\frac {1}{\sin x}\cdot\frac ba\cdot\frac {\sin (A+x)}{\cos B}\right]=$ $\frac {\sin y\cdot\sin (A+x)}{\sin x\cdot\sin (A+y)}$ . Therefore, $AH\cap BF\cap CE\ne\emptyset$

$\stackrel{\mathrm{(Ceva)}}{\iff}$ $\frac {\sin y\cdot\sin (A+x)}{\sin x\cdot\sin (A+y)}=1$ $\iff$ $\sin y\cdot\sin (A+x)=\sin x\cdot\sin (A+y)$ $\iff$ $\cos (A+x-y)-\cos (A+x+y)=$

$\cos (A+y-x)-\cos (A+x+y)$ $\iff$ $\cos (A+x-y)=\cos (A+y-x)$ $\iff$ $x-y=y-x$ $\iff$ $x=y$ $\iff$ $\widehat{BAP}\equiv\widehat{CAQ}$ .

See and the previous message.
This post has been edited 15 times. Last edited by Virgil Nicula, Nov 22, 2015, 5:29 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a