225. An interesting problems from Kunny.

by Virgil Nicula, Feb 18, 2011, 4:30 PM

Proposed problem 1. Let $P$ , $Q$ be two points on the circle $x^2+y^2=1$ . Two points $P$ , $Q$ move in the first quadrant, the second quadrant respectively

so that $OP\perp OQ$ . Consider the triangle enclosed the tangent lines of $C$ at the points $P$ , $Q$ and the $x$-axis. Find the minimum area of this triangle.


Proof. Denote the intersections $R\in PP\cap QQ$ , $M\in PP\cap Ox$ , $N\in QQ\cap Ox$ and $PM=x$ ,

$QN=y$ . Observe that $\frac {PO}{RN}=$ $\frac {MO}{MN}$ $=\frac {MP}{MR}$ $\implies$ $\frac {1}{1+y}=\frac {x}{x+1}\implies$ $\boxed {\ xy=1\ }\ (1)$ . Therefore,

$[MRN]$ is minimum $\Longleftrightarrow$ $[OPM]+[OQN]$ is minimum $\Longleftrightarrow$ $x+y$ is minimum $\stackrel{(1)}{\Longleftrightarrow}$ $x=y$ .


Extension. Let $P$ , $Q$ be two points on the circle $x^2+y^2=1$ . Two points $P$ , $Q$ move in the first quadrant,

the second quadrant respectively so that $m\left(\widehat{PRN}\right)=2\phi$ is constant and $\phi\le 45^{\circ}$ . Consider the triangle

enclosed the tangent lines of $C$ at the points $P$ , $Q$ and the $x$-axis. Find the minimum area of this triangle.


Method 1. Denote $R\in PP\cap QQ$ , $M\in PP\cap Ox$ , $N\in QQ\cap Ox$ and $u=m(\widehat {POM})$ , $v=\widehat{QON}$ . Thus $u+v=2\phi$ ,

$PM=\tan u$ and $QN=\tan v$ . Therefore, $[MRN]$ - min. $\Longleftrightarrow$ $[OPM]+[OQN]$ - min. $\Longleftrightarrow$ $\tan u+\tan v$ - minimum.

Since $\left\{u\ ,\ v\right\}\subset \left[0\ ,\ 90^{\circ}\right)$ obtain $\tan u+\tan v\ge $ $2\cdot\tan\frac {u+v}{2}=$ $2\cdot\tan\phi$ with equality iff $u=v=\phi$ . In conclusion

the area of the triangle $MRN$ is minimum $\Longleftrightarrow$ $u=v=\phi$ $\Longleftrightarrow$ $OR\perp MN$ $\Longleftrightarrow$ the triangle $MRN$ is isosceles.

Remark. I used the well-known inequality $\boxed {\ \{\ u\ ,\ v\ \}\subset \left[0\ ,\ 90^{\circ}\right)\ \implies\ \tan u+\tan v\ge 2\cdot\tan\frac {u+v}{2}\ }\ (*)$ .

Indeed, denote $\tan \frac u2=p<1$ , $\tan \frac v2=q<1$ and the inequality $(*)$ becomes $\frac {2p}{1-p^2}+\frac {2q}{1-q^2}\ge\frac {p+q}{1-pq}$ $\Longleftrightarrow$

$(1-pq)^2(p+q)\ge (p+q)\left(1-p^2\right)\left(1-q^2\right)$ $\Longleftrightarrow$ $(1-pq)^2\ge (1-p^2)(1-q^2)$ $\Longleftrightarrow$ $p^2+q^2\ge 2pq$ .

Method 2. Denote the intersections $R\in PP\cap QQ$ , $M\in PP\cap Ox$ , $N\in QQ\cap Ox$ and $RM=x$ , $RN=y$ ,

$RP=RQ=k\ge 1$ . Observe that $xy\sin 2\phi=2\cdot [MRN]=x+y$ $\Longleftrightarrow$ $\boxed {\ \frac 1x+\frac 1y=\sin 2\phi\ }\ (2)$ . Since

$(x+y)\left(\frac 1x+\frac 1y\right)\ge 4$ obtain $x+y\ge \frac {4}{\sin 2\phi}$ . Prove easily that if $\triangle MRN$ is isosceles, then $x_0=y_0=\frac {1}{\sin\phi\cos\phi}$

and in this case $x_0+y_0=\frac {4}{\sin 2\phi}$ . In conclusion $\min\ [MRN]=\frac {2}{\sin 2\phi}$ when the triangle $MRN$ is isosceles.



Proposed problem 2. Prove that the equation of the parabola which touches the $x$-axis and $y$-axis at

$A(a,0)$ and $B(0,b)$ , where $a>0$ , $b>0$ is $\boxed{(bx-ay)^2-2ab(bx+ay)+a^2b^2=0}\ (*)$ .


Proof. Consider that the equation of the required parabola $\mathbb P$ is $p(x,y)\equiv Ax^2+2Bxy+Cy^2+2Dx+2Ey+F=0$ , where $\underline{B^2=AC}$ . Therefore,

$2Ax+2B(y+xy')+2Cyy'+2D+2Ey'=0\implies$ the slope of the tangent line to $\mathbb P$ in the point $T(u,v)\in \mathbb P$ is $y'(u,v)=-\frac {Au+Bv+D}{Bu+Cv+E}$ .

$\blacktriangleright\ p(a,0)=0$ and $y'(a,0)=0\ \implies\ \underline{Aa^2+2Da+F=0}$ and $\underline{Aa+D=0}\ \implies\ D=-Aa$ and $F=Aa^2$ .

$\blacktriangleright\ p(0,b)=0$ and $y'(0,b)=\infty\ \implies\ \underline{Cb^2+2Eb+F=0}$ and $\underline{Cb+E=0}\ \implies\ E=-Cb$ and $F=Cb^2$ .

Choose w.l.o.g. $\boxed{A=b^2}$ . Obtain that $\boxed{C=a^2}$ , $\boxed{F=a^2b^2}$ , $\boxed{D=-b^2a}$ , $\boxed{E=-ba^2}$ and $B^2=AC\implies B=\epsilon\cdot ab$ , where

$\epsilon\in\{\pm 1\}$ . If $\epsilon =1$ , then the equation of $\mathbb P$ becomes $(bx+ay)^2-2ab(bx+ay)+a^2b^2=0$ , i.e. $(bx+ay-ab)^2=0$ , what is the

line $\frac xa+\frac yb=1$ , absurd. In conclusion, $\boxed{B=-ab}$ and the equation of the required parabola is $(bx-ay)^2-2ab(bx+ay)+a^2b^2=0$ .

Remark. The equation $(*)$ of the parabola $\mathbb P$ is equivalently with the equation $(bx+ay-ab)^2=4abxy$ .



Proposed problem 3. For positive real numbers $a\ ,\ b\ ,\ c$ prove that $\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}\ge 2(a+b+c)$ .

Proof. $\left\|\begin{array}{c}
\frac {b^2}{a}\ge 2b-a\\\\
\frac {c^2}{a}\ge 2c-a\end{array}\right\|\ \bigoplus\ \implies \frac {b^2+c^2}{a}\ge 2(b+c-a)$ . In conclusion, $\sum\frac {b^2+c^2}{a}\ge 2(a+b+c)$ .


Proposed problem 4. For positive real numbers $a\ ,\ b\ ,\ c$ prove that $\frac{b^3+c^3}{a}+\frac{c^3+a^3}{b}+\frac{a^3+b^3}{c}\ge 6(ab+bc+ca)-4\left(a^2+b^2+c^2\right)$ .

Proof. $t>0\implies t^3+2=t^3+1+1\ge 3\sqrt [3]{t^3\cdot 1\cdot 1}=3t\implies t^3\ge 3t-2$ . So $\left\|\begin{array}{ccc}
t:=\frac ba & \implies & \frac {b^3}{a}\ge 3ab-2a^2\\\\
t:=\frac ca & \implies & \frac {c^3}{a}\ge 3ac-2a^2\end{array}\right\|\ \bigoplus\ \implies$

$  \frac {b^3+c^3}{a}\ge 3a(b+c)-4a^2$ a.s.o. In conclusion, $\frac{b^3+c^3}{a}+\frac{c^3+a^3}{b}+\frac{a^3+b^3}{c}\ge 6(ab+bc+ca)-4\left(a^2+b^2+c^2\right)$ .
This post has been edited 37 times. Last edited by Virgil Nicula, Nov 22, 2015, 2:53 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a