165. Some metrical problems (5) in a circle (II).

by Virgil Nicula, Oct 22, 2010, 10:07 AM

PP1. Let $\triangle ABC$ with semiperimeter $s$ and incircle $w=C(I,r)$ . For $P\in (BC)$ denote the incircles $w_1=C\left(I_1,r_1\right)$ , $w_2=C\left(I_2, r_2\right)$ of the triangles $ABP$ ,

$ACP$ respectively. Define $M\in BC\cap w$ , $R\in AM$ so that $IR\perp AM$ and the midpoints $D$ , $S$ of the side $[BC]$ and the segment $[AM]$ respectively. Prove that :

$\blacktriangleright$ The circles $w_1$ , $w_2$ are tangent $\iff P\equiv M$ and in this case $\left(r-r_1\right)(s-b)+\left(r-r_2\right)(s-c)=2r\sqrt {r_1r_2}$ .

$\blacktriangleright$ $ I\in (SD)\ ,\ \frac {IS}{ID}=\frac {s-a}{a}$ and the ray $[RM$ is the bisector of $\widehat {BRC}$ .


Proof. Denote the tangent point $T_k$ of $w_k$ with $AP$ , where $k\in\overline {1,2}$ . Since $\left\|\begin{array}{c}
AT_1=\frac 12\cdot(c+AP-BP)\\\\
AT_2=\frac 12\cdot (b+AP-CP\end{array}\right\|$ obtain that the circles $w_1$ , $w_2$ are tangent in the same

point $T\in AP$ $\iff$ $T_1\equiv T_2\equiv T$ $\iff$ $AT_1=AT_2$ $\iff$ $c-BP=b-CP$ $\iff$ $\left\|\begin{array}{c}
BP-CP=c-b\\\\
BP+CP=a\end{array}\right\|$ $\iff$ $\left\|\begin{array}{c}
BP=s-b\\\\
CP=s-c\end{array}\right\|$ $\iff$ $P\equiv M$ .

Otherwise, is well-known or prove easily that a convex quadrilateral $XYZT$ is tangential $\iff$ $XY+ZT=XT+YZ$ $\iff$ the incircles of triangles $XYT$ , $ZYT$

are tangent $\iff$ the incircles of triangles $YXZ$ , $TXZ$ are tangent. Thus, $w_1$ and $w_2$ are tangent $\iff$ the quadrilateral $ABPC$ is tangential $\iff$

$BP+AC=PC+AB$ $\iff\ \ldots\ \iff P\equiv M$ . In this case $P\equiv M$ exists the relation $4r_1r_2=\left(a-r_1\cot\frac B2-r_2\cot\frac C2\right)^2$ $\iff$ $4r_1r_2=\left[a-\frac {r_1(s-b)}{r}-\frac {r_2(s-c)}{r}\right]^2$ $\iff$ $4r^2r_1r_2\left[ar-r_1(s-b)-r_2(s-c)\right]^2$ $\iff$ $4r^2r_1r_2=\left[(s-b)(r-r_1)+(s-c)(r-r_2)\right]^2$ $\iff$

$\boxed{(s-b)(r-r_1)+(s-c)(r-r_2)=2r\sqrt {r_1r_2}}$ . Denote $N\in DI$ for which $AN\perp BC$ . From the well-known property (prove easily) obtain $AN=r$ ,

i.e. $AN=IM$ $\iff$ the midpoint $S$ of $[AM]$ belongs to $[DI]$ $\iff$ $\boxed{I\in SD}$ . Denote $L\in BC$ for which $SL\perp BC$ . Thus, $\frac {DI}{DS}=\frac {IM}{SL}=$ $\frac {2r}{h_a}=\frac as$ ,

i.e. $\frac {DI}{a}=\frac {DS}{s}=\frac {IS}{s-a}$ $\implies$ $\boxed{\frac {IS}{ID}=\frac {s-a}{a}}$ . Denote $E\in AC\cap w$ , $F\in AB\cap w$ , $K\in EF\cap BC$ . From well-known property obtain that the points $K$ , $M$

are harmonical conjugate w.r.t. $B$ , $C$ and $IK\perp AM$ , i.e. $R\in KI$ . Therefore, the point $R$ belongs to the Appolonius' circle with diameter $[KM]$ which is the geometrical

locus of the points $X$ for which $\frac {XB}{XC}=\frac {MB}{MC}=$ $\frac {s-b}{s-c}$ $\implies$ $\frac {RB}{RC}=\frac {MB}{MC}$ $\implies$ the ray $[RM$ is the bisector of $\widehat {BRC}$ .



PP2. Let $ABC$ be a triangle with the incircle $w=C(I,r)$ and the $A$-exincircle $w_a=C(I_a,r_a)$ . Denote $2s=a+b+c$

and $\left\|\begin{array}{ccc}
M\in (AB)\ ,\ IM\perp IA\ ; & I_1\in AI\ ,\ I_1M\perp AB\ ;\ & MI_1=r_1\\\
N\in (AB)\ ,\ I_aN\perp IA\ \ ; & I_2\in AI\ ,\ I_2N\perp AB\ \ ;\ & NI_2=r_2\end{array}\right\|$ . Prove that :

$\blacktriangleright\ s\cdot AM=(s-a)\cdot AN=bc$ and the circles $w_1=C\left(I_1,r_1\right)$ , $w_2=C\left(I_2,r_2\right)$ are tangent to to the circumcircle $C(O,R)$ of $\triangle ABC$ .

$\blacktriangleright$ Denote the tangent points $T_1$ , $T_2$ with $AC$ of the circles $w$ and $w_a$ respectively. Then $MC\parallel BT_2$ and $NC\parallel BT_1$ . This properties offer the construct of $M$ , $N$.


Proof. Denote $T\in AB\cap w$ , $S\in AB\cap w_a$ , i.e. $IT=r\ ,\ I_aS=r_a$ . Therefore, Observe that $\frac {AI_1}{r_1}=\frac{AI_2}{r_2}=\sin\frac A2\ \ ,\ \ sr_1=(s-a)r_2=bc\cdot\tan\frac A2$

and $\left\|\begin{array}{ccc}
AT=s-a=AI\cos\frac A2=AM\cos^2\frac A2=AM\cdot\frac {s(s-a)}{bc} & \implies & AM=\frac {bc}{s}\\\\
AS=s=AI_a\cos\frac A2=AN\cos^2\frac A2=AN\cdot\frac {s(s-a)}{bc} & \implies & AN=\frac {bc}{s-a}\end{array}\right\|$ $\implies$ $\boxed{s\cdot AM=(s-a)\cdot AN=bc}$ .

$\blacktriangleright$ The circle $w_1$ is interior tangent to the circumcircle $C(O,R)$ $\iff$ $OI_1=R-r_1$ $\iff$ $OI_1^2=(R-r_1)^2$ $\iff$

$AI_1^2+R^2-2R\cdot AI_1\cdot\cos\frac {B-C}{2}=R^2-2Rr_1+r_1^2$ $\iff$ $r_1^2-2Rr_1\sin\frac A2\cos\frac {B-C}{2}=\left(r_1^2-2Rr_1\right)$ $\iff$

$r_1-R(\cos B+\cos C)=r_1^2\sin ^2\frac A2-R(1-\cos A)$ $\iff$ $r_1^2\cos^2\frac A2=R(\cos A+\cos B+\cos C-1)$ $\iff$ $r_1^2\cos^2\frac A2=r$ $\iff$

$\frac {bc}{s}\cdot\sin\frac A2\cos\frac C2=r$ $\iff$ $bc\cdot\sin A=2sr$ , what is truly. I used the relation $\cos A+\cos B+\cos C=1+\frac rR$ .

$\blacktriangleright$ The circle $w_2$ is exterior tangent to the circumcircle $C(O,R)$ $\iff$ $OI_2=R+r_2$ $\iff$ $OI_2^2=(R+r_2)^2$ $\iff$

$AI_2^2+R^2-2R\cdot AI_2\cdot\cos\frac {B-C}{2}=R^2+2Rr_2+r_2^2$ $\iff$ $r_2^2-2Rr_2\sin\frac A2\cos\frac {B-C}{2}=\left(r_2^2+2Rr_2\right)\sin^2\frac A2$ $\iff$

$r_2-R(\cos B+\cos C)=r_2\sin ^2\frac A2+R(1-\cos A)$ $\iff$ $r_2\cos^2\frac A2=R(\cos A+\cos B-\cos C+1)$ $\iff$

$\frac {bc}{s-a}\cdot\sin\frac A2\cos\frac A2=4R\sin\frac A2\cos\frac B2\cos\frac C2$ $\iff$ $\frac {bc}{2(s-a)}\cdot\sin A=4R\cdot\frac {s(s-b)(s-c)}{abc}$ $\iff$ $S\cdot abc=4RS^2$ $\iff$ $4RS=abc$ , what is truly.

$\blacktriangleright\ NC\parallel BT_1$ $\iff$ $\frac {AB}{AN}=\frac {AT_1}{AC}$ $\iff$ $(s-a)\cdot AN=bc$ , what is truly. $MC\parallel BT_2$ $\iff$ $\frac {AM}{AB}=\frac {AC}{AT_2}$ $\iff$ $s\cdot AM=bc$ , what is truly.

Remark. $MN=\frac {4Rr}{s-a}$ and $\frac {AM}{AN}=\frac {s-a}{s}=$ $\frac {r}{r_a}=\frac {r_1}{r_2}$ .



PP3. In nonisosceles $\triangle ABC$ denote $\left\|\begin{array}{c}
D\in BC\\\
AD\perp BC\end{array}\right\|$ and inradii $r_1$ , $r_2$ of $\triangle ABD\ ,\ \triangle ACD$ respectively. Prove that

$\boxed{AD^2=DB\cdot DC\ \iff\ \frac {r_1}{r_2}=\frac cb\ \iff\ A=90^{\circ}\ \ \vee\ \ |B-C|=90^{\circ}\ \iff\ \cos 2B+\cos 2C=0}$ .


Proof. $AD^2=DB\cdot DC\iff $ $\frac {DA}{DC}=\frac {DB}{DA}\iff $ $\triangle ADB\sim\triangle CDA\iff \frac {DA}{DC}=$ $\frac {DB}{DA}=\frac cb=\frac {r_1}{r_2}$ .

First case. $D\in (BC)$ . Since $DB=c\cdot \cos B$ , $DC=b\cdot\cos C$ obtain $\frac {[ADB]}{[ADC]}=\frac {DB}{DC}$ $\iff$ $\frac {r_1(c+AD+DB)}{r_2(b+AD+DC)}=\frac {DB}{DC}$ $\iff$

$\frac {r_1c(1+\sin B+\cos B)}{r_2b(1+\sin C+\cos C)}=\frac {c\cdot\cos B}{b\cdot\cos C}$ $\iff$ $\frac {r_1}{r_2}=\frac {\cos B(1+\sin C+\cos C)}{\cos C(1+\sin B+\cos B)}$ . Therefore, $\frac {r_1}{r_2}=\frac cb$ $\iff$ $\frac cb\cdot\frac {\cos C}{\cos B}=\frac {1+\sin C+\cos C}{1+\sin B+\cos B}$ $\iff$

$\frac {\sin 2C}{\sin 2B}=\frac {1+\sin C+\cos C}{1+\sin B+\cos B}$ $\iff$ $\frac {(\sin C+\cos C)^2-1}{(\sin B+\cos B)^2-1}=\frac {1+\sin C+\cos C}{1+\sin B+\cos B}$ $\iff$ $\sin C+\cos C=\sin B+\cos B$ $\iff$

$\cos (45-B)=\cos (45-C)$ $\iff$ $B+C=90^{\circ}$ $\iff$ $A=90^{\circ}$ $\iff$ $AD^2=DB\cdot DC$ .

Second case. $D\not\in [BC]$ . Suppose w.l.o.g. $B\in (DC)$ . Since $DB=-c\cdot\cos B$ , $DC=b\cdot \cos C$ obtain that $\frac {r_1}{r_2}=\frac cb\iff$

$\sin C+\cos C=\sin B-\cos B$ $\iff$ $\sin (C+45^{\circ})=\sin (B-45^{\circ})$ $\iff$ $B-C=90^{\circ}$ $\iff$ $\widehat{BAD}\equiv\widehat{ACD}$ $\iff$ $AD^2=DB\cdot DC$ .



PP4. For any $\triangle ABC$ exists three concentric circles $w_1=C(O,a)$ , $w_1=C(O,b)$ , $w_1=C(O,c)$ , where $BC=a$ , $CA=b$ , $AB=c$ . Prove that exists

an equilateral triangle $M_1M_2M_3$ so that $M_k\in w_k$ , $k\in \overline{1,3}$ and the length $l$ of its side verifies the relation $2\cdot l^2=a^2+b^2+c^2-4S\sqrt 3$ , where $S=[ABC]$ .

Remark. For any triangle $ABC$ exists the inequality $a^2+b^2+c^2\ge 4S\sqrt 3$ .


Proof.

Quote:
Fermat's problem. Letr $ABCD$ be a rectangle with $AB=BC\sqrt 2$ . Consider a point $M$ which belongs to the circle $w$ with diameter $[AB]$

so that $AB$ doesn't separate the points $M$ , $C$ . Denote $F\in DM\cap AB$ , $G\in CM\cap AB$ . Prove that $AG^2+BF^2=AB^2$ .
Proof. Suppose w.l.o.g. $AB=\sqrt 2$ , $BC=1$ . Denote $N\in (AB)$ for which $MN\perp AB$ and $NA=x$ , $NB=y$ . Thus, $x+y=\sqrt 2$ ,

$MN=\sqrt {xy}\le \frac {x+y}{2}=\frac {\sqrt 2}{2}<1$ . Therefore, $\left\|\begin{array}{ccc}
\frac {FA}{FN}=\frac {DA}{MN}=\frac {1}{\sqrt {xy}} & \implies & \frac {FA}{1}=\frac {FN}{\sqrt {xy}}=\frac {x}{1-\sqrt {xy}}\\\\
\frac {GB}{GN}=\frac {CB}{MN}=\frac {1}{\sqrt {xy}} & \implies & \frac {GB}{1}=\frac {GN}{\sqrt {xy}}=\frac {y}{1-\sqrt {xy}}\end{array}\right\|$ $\implies$ $\frac {FA}{x}=\frac {GB}{y}=\frac {1}{1-\sqrt {xy}}=k$ .

$AG^2+BF^2=(GB-AB)^2+(FA-AB)^2=$ $(ky-\sqrt 2)^2+(kx-\sqrt 2)^2=$ $k^2(x^2+y^2)+4-2k\sqrt 2(x+y)=$ $2k^2(1-xy)+4(1-k)$ .

In conclusion, $AG^2+BF^2=2k^2(1-xy)+4(1-k)=$ $\frac {2(1-xy)}{(1-\sqrt {xy})^2}-\frac {4\sqrt {xy}}{1-\sqrt {xy}}=$ $\frac {2(1+\sqrt {xy})-4\sqrt {xy}}{1-\sqrt {xy}}=$ $\frac {2(1-\sqrt {xy})}{1-\sqrt {xy}}=2$ .



PP5. Let $w=C(O,r)$ be a circle with the diameter $[AB]$ and $ABCD$ be a rectangle with $AD> r$ . The tangent

line from $C$ to $w$ touch it in $M$ and meet $AB$ in $E$ . Denote the points $F\in DM\cap AB$ , $G\in CE\cap AD$ . Prove that :

$\blacktriangleright \ AE=AF\ ;\ |AF-BE|=AB\ ;\ O\equiv F\ \iff\ AD=r\sqrt 3$ .

$\blacktriangleright\ B\equiv F\ \iff\ AD=r\sqrt 2\ \iff\ GA=GD$ (extension of Fermat's problem).


Proof (analytic). Suppose w.l.o.g. that $r=1$ , $AD=a>1$ . Choose the origin $O$ in the midpoint of $[AB]$ and $A(1,0)$ , $B(-1,0)$ , $C(-1,a)$ , $D(1,a)$ .

$M(x_0,y_0)$ $\iff$ $\left\|\begin {array}{c}
x_0^2+y_0^2=1\\\
-x_0+ay_0=1\end{array}\right\|\implies$ $a^2(1-x_0^2)=(1+x_0)^2\implies$ $a^2(1-x_0)=1+x_0$ $\implies$ $x_0=\frac {a^2-1}{a^2+1}$ and $y_0=\frac {1+x_0}{a}=\frac {2a}{a^2+1}$ ,

i.e. $M\left(\frac {a^2-1}{a^2+1},\frac {2a}{a^2+1}\right)$ .From here obtain easily that $x_E=\frac {a^2+1}{a^2-1}$ , $x_F=\frac {a^2-3}{a^2-1}$ and $G\left(1,\frac 1a\right)$ . In conclusion :

$AE=AF\iff$ $\left|\frac {a^2+1}{a^2-1}-1\right|=\left|\frac {a^2-3}{a^2-1}-1\right|$ , what is truly and $|AF-BE|=AB\iff$ $\left|\left|\frac {a^2-3}{a^2-1}-1\right|-\left|\frac {a^2+1}{a^2-1}+1\right|\right|=2$ , what is truly.

$O\equiv F\iff a=\sqrt 3\iff AD=r\sqrt 3$ and $B\equiv F\iff$ $\frac {a^2-3}{a^2-1}=-1\iff$ $a=\sqrt 2\iff$ $AD=r\sqrt 2\iff GA=GD$ .
This post has been edited 100 times. Last edited by Virgil Nicula, Nov 22, 2015, 8:30 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a