388. Some interesting "slicing" problems.

by Virgil Nicula, Oct 23, 2013, 12:16 PM

PP1. Let $\triangle ABC$ and an interior point $P$ so that $BP\perp AC\ ,\ PB=PC$ and $\left\{\begin{array}{c}
m\left(\widehat{PAC}\right)=24\\\\
m\left(\widehat{PCA}\right)=6\end{array}\right\|$ . Denote $D\in BP\cap AC$ and suppose that $D\in (AC)$ . Find $x=m\left(\widehat{PAB}\right)$

Proof 1 (trigonometric). Apply the theorem of Sines in the triangles: $\left\{\begin{array}{cccc}
ABC\ : & \frac {AB}{AC}=\frac {\sin C}{\sin B}=\frac {\sin 48^{\circ} }{\sin (108^{\circ}-x)} & \implies & \frac {AB}{AC}=\frac {\sin 48^{\circ}}{\sin (72^{\circ}+x)}\\\\
APB\ : & \frac {BA}{BP}=\frac {\sin \widehat{APB}}{\sin \widehat{PAB}}=\frac {\sin 114^{\circ} }{\sin x} & \implies & \frac {BA}{BP}=\frac {\cos 24^{\circ}}{\sin x}\\\\
APC\ : & \frac {CP}{CA}=\frac {\sin \widehat{PAC}}{\sin \widehat{APC}}=\frac {\sin 24^{\circ} }{\sin 150^{\circ}} & \implies & \frac {CP}{CA}=\frac {\sin 24^{\circ}}{\sin 30^{\circ}}\end{array}\right\|\ (*)$ . Observe that $PB=PC\iff$

$\frac {AB}{AC}=\frac {BA}{BP}\cdot\frac {CP}{CA}\stackrel{(*)}{\iff}$ $\frac {\sin 48^{\circ}}{\sin (72^{\circ}+x)}=\frac {\cos 24^{\circ}}{\sin x}\cdot \frac {\sin 24^{\circ}}{\sin 30^{\circ}}\iff$ $\sin \left(72^{\circ}+x\right)=\sin x\iff$ $\left(72^{\circ}+x\right)+x=180^{\circ}\iff$ $2x=108^{\circ}\iff$ $x=54^{\circ}$ .



PP2 (billiards). Let an $A$-right-angled $\triangle ABC$ and two points $P\in (AC)\ ,\ Q\in (BC)$ so that $\left\{\begin{array}{c}
\widehat {APB}\equiv\widehat{CPQ}\\\\
\widehat{BQA}\equiv\widehat{CQP}\end{array}\right\|$ . Prove that $\tan\widehat{BQA}=3\cot C$ .

Proof. Let $\left\{\begin{array}{c}
m\left(\widehat {APB}\right)=m\left(\widehat{CPQ}\right)=y\\\\
m\left(\widehat{BQA}\right)=m\left(\widehat{CQP}\right)=x\\\\
(\ x+y+C=\pi\ )\end{array}\right\|$ and $\boxed{\frac {QP}{QC}=\frac {\sin C}{\sin y}=\frac {BP}{BC}}\ (*)$ . Apply an well-known relation:

$\left\{\begin{array}{ccc}
\frac {AP}{AC}=\frac {BP}{BC}\cdot\frac {\sin\widehat{ABP}}{\sin\widehat{ABC}} & \implies & \frac {AP}{AC}=\frac {BP}{BC}\cdot\frac {\cos y}{\cos C}\\\\
\frac {AP}{AC}=\frac {QP}{QC}\cdot\frac {\sin\widehat{AQP}}{\sin\widehat{AQC}} & \implies & \frac {AP}{AC}=\frac {QP}{QC}\cdot\frac {\sin(C+y-x)}{\sin x}\end{array}\right\|\stackrel{(*)}{\implies}$ $\frac {\cos y}{\cos C}=\frac {\sin(C+y-x)}{\sin x}\iff$ $\cos y\sin x=\cos C\sin(C+y-x)\iff$

$\cos (x+C)\sin x+\cos C\sin 2x=0\iff$ $\cos (x+C)+2\cos x\cos C=0\iff$ $\boxed{\ \tan x\tan C=3\ }$ .



PP3. Let $ABC$ be an acute triangle with the circumcircle $w=C(O,R)$ and the orthocenter $H$ . Prove that $\boxed{A=60^{\circ}\ \implies\ OH=|b-c|\ }$ .

Proof 1. Suppose w.l.o.g. $c<b$ . Denote the second intersection $S$ of the $A$-bisector with $w$ and $M\in OH\cap AB\ ,\ N\in OH\cap AC$ . . Observe that

$\left\{\begin{array}{ccccc}
AH=2R\cos A & \implies & AH=R & \implies & AH=AO\\\\
\widehat{HAB}\equiv\widehat{OAC} & \implies & AS\perp OH & \implies & AM=AN\end{array}\right\|\implies$ $\triangle MAN$ is equilateral. Let $OH=x$ . Since $\left\{\begin{array}{ccccc}
m\left(\widehat{BHC}\right) & = & 180^{\circ}-A & = & 120^{\circ}\\\\
m\left(\widehat{BOC}\right) & = & 2A & = & 120^{\circ}\end{array}\right\|$

obtain that the quadrilateral $BHOC$ is cyclically. Prove easily that $HM=MB=ON=m$ and $HN=NC=m+x$ . In conclusion,

$AM=MN=NA\iff$ $c-m=2m+x=b-(m+x)\iff$ $\left\{\begin{array}{c}
x=b-c\\\\
3m=2c-b\end{array}\right\|\implies$ $x=b-c\implies OH=|b-c|$ .

Proof 2. If $A=60^{\circ}$ , then $a^2=b^2+c^2-bc=3R^2$ and $OH^2=9OG^2 = 9R^2-\left(a^2+b^2+c^2\right) = $ $3a^2-\left(a^2+b^2+c^2\right) = $

$2a^2-\left(b^2+c^2\right) = 2\left(b^2+c^2-bc\right) - \left(b^2+c^2\right) =$ $ b^2+c^2-2bc = (b-c)^2\implies $ $OH = |b-c|$ .

Proof 3. Suppose w.l.o.g. $c<b$ . Prove easily that the quadrilateral $BHOC$ is cyclically. Let $L\in w$ for which $OL\parallel HC$ . Observe that $LC=OH\ ,\ HB=OL$ and

$HL=OB=OC$ . Apply the Ptolemy's theorem to $HOLC\ :$ $HO\cdot LC+OL\cdot HC=OC\cdot HL\iff$ $\boxed{HO^2+HB\cdot HC=R^2}$ .Therefore, $a^2=b^2+c^2-bc=3R^2$

and $\left\{\begin{array}{ccccc}
2b\cos A=b & \implies & 2(c-a\cos B)=b & \implies & \cos B=\frac {2c-b}{2a}\\\\
2c\cos A=c & \implies & 2(b-a\cos C)=c & \implies & \cos C=\frac {2b-c}{2a}\end{array}\right\|\ (*)$ . Thus, $HO^2+HB\cdot HC=R^2\iff$ $HO^2+4R^2\cos B\cos C=R^2\stackrel{(*)}{\implies} $

$3HO^2+4a^2\cdot\frac {2c-b}{2a}\cdot\frac {2b-c}{2a}=a^2\iff$ $3HO^2=\left(b^2+c^2-bc\right)-(2c-b)(2b-c)\iff$ $HO=|b-c|$ .



PP4. Three chords $AA_1$ , $BB_1$ , $CC_1$ of the circle $ w=C(O)$ (with the order on the circle $A$ , $B_1$ , $C$ , $A_1$ , $B$ , $C_1$) pass

through a common point $K$ and form six angles of $60^{\circ}$ . Prove that $KA + KB + KC = KA_1 + KB_1 + KC_1$ .


Proof (Yetty). Common internal bisector $AKA_1$ of $\angle CKB, \angle C_1KB_1$ meets circumcircles of $BKC$ , $B_1KC_1$ again at $Z$ , $Z_1$ respectively. Observe that $ZB = ZC$

and $m(\angle BZC) =60^\circ$ $\Longrightarrow$ $\triangle BZC$ is equilateral and similarly $\triangle B_1Z_1C_1$ is equilateral. Apply the Ptolemy's theorem $\left\{\begin{array}{ccc}
KBZC & : & KZ =  KB + KC\\\\
KB_1Z_1C_1 & : & KZ_1 = KB_1+KC_1\end{array}\right\|$ .

Perpendicular bisectors of $BC$ , $B_1C_1$ through $Z$ , $Z_1$ respectively meet at $O$ . Since $KBCZ \sim KB_1Z_1C_1$ are similar $\widehat{OZK}\equiv \widehat{OZ_1K}$ $\Longrightarrow$ $\triangle OZZ_1$ is $O$-isosceles,

just like $\triangle OAA_1$ $\Longrightarrow$ $\boxed{KA + KB + KC = ZK  + KA = ZA = Z_1A_1 = Z_1K + KA_1 = KA_1 + KB_1 + KC_1}$ .



PP5. Let a convex $ABCD$ so that $AB=BD=DC$ and $\left\{\begin{array}{c}
m\left(\widehat{ABD}\right)=36^{\circ}\\\\
m\left(\widehat{BDC}\right)=24^{\circ}\end{array}\right\|$ and $X\in AC\cap BD$ . Prove that $m\left(\widehat{AXD}\right)=54^{\circ}$ .

Proof. Suppose w.l.o.g. $AB=1$ and denote $\left\{\begin{array}{c}
m\left(\widehat{AXD}\right)=x\\\\
m\left(\widehat{BAC}\right)=u\\\\
m\left(\widehat{ACD}\right)=v\end{array}\right\|$ . Observe that $x=u+36^{\circ}=v+24^{\circ}$ . Apply theorem of Sines in $\triangle AXB$ and $\triangle CXD\ :$

$\frac {XB}{\sin u}=$ $\frac 1{\sin x}=\frac {XD}{\sin v}=$ $\frac {XB+XD}{\sin u+\sin v}=\frac 1{\sin u+\sin v}$ . In conclusion, $\left\{\begin{array}{c}
u+36^{\circ}=v+24^{\circ}=x\\\\
\sin u+\sin v=\sin x\end{array}\right\|\implies$ $\sin (v-12^{\circ})+\sin v=\sin(v+24^{\circ})\implies$

$\sin (24^{\circ}+v)-\sin (v-12^{\circ})=\sin v\implies$ $2\sin 18^{\circ}\cos(v+6^{\circ})=\sin v\implies$ $\cos (v+6^{\circ})=2\cos 36^{\circ}\sin v\implies$ $\cos (v+6^{\circ})=\sin (v+36^{\circ})-\sin (36^{\circ}-v)\implies$

$\sin (v+36^{\circ})-\sin (84^{\circ}-v)=\sin (36^{\circ}-v)\implies$ $2\sin (v-24^{\circ})\cos 60^{\circ}=\sin (36^{\circ}-v)\implies$ $\sin (v-24^{\circ})=\sin (36^{\circ}-v)\implies$ $v-24^{\circ}=36^{\circ}-v\implies$

$v=30^{\circ}\implies$ $x=v+24^{\circ}=54^{\circ}\implies$ $m\left(\widehat{AXD}\right)=54^{\circ}$. I used the well-known relation $4\sin 18^{\circ}\cos 36^{\circ}=1\iff$ $\sin 72^{\circ}=\cos 18^{\circ}$ .



PP6. Let $\triangle ABC$ with $A=50^{\circ}$ and an interior $P$ , $E\in PB\cap AC$ and $F\in PC\cap AB$ . Suppose that $PB=PC$ , $m\left(\widehat{PEF}\right)=50^{\circ}$ and $m\left(\widehat{PFE}\right)=30^{\circ}$ . Find $m\left(\widehat {ACB}\right)$ .

Proof 1. Let $x=\angle{PBC}=\angle{PCB}$. Then $\left\{\begin{array}{c}
\angle{AFE}=50^\circ+B-x\\\\
\angle {AEF}=30^\circ+C-x\end{array}\right\|$ . It is given that $C>x$ and $B>x\ .$ Thus, from $\triangle{AFE}$ we get that $x=40^\circ$ and $B+C=130^\circ\ .$

Apply the law of Sines $:\ \left\{\begin{array}{cccc}
\triangle{FEC}\ : & \frac{FE}{CE} & = & 2\sin (C-40^{\circ})\\\\
\triangle{BEC}\ : & \frac {CE}{BE} & = & \frac {\sin{40^\circ}}{\sin C}\\\\
\triangle{BFC}\ : & \frac {BE}{FE} & = & \frac {\sin(C+40^\circ)}{\cos C}\end{array}\right\|\ \bigodot$ $\implies$ $\sin C\cos C=2\sin{40^\circ}\sin (C-40^\circ)\sin (C+40^\circ)$ $\implies\ C=60^\circ\ .$



PP7 (Julio Orihuela,Peru). Let a convex quadrilateral $ABCD$ with $\left\{\begin{array}{cc}
m\left(\widehat{CAB}\right)=10^{\circ}\ ; & m\left(\widehat{CAD}\right)=20^{\circ}\\\\
m\left(\widehat{ADB}\right)=100^{\circ}\ ; & m\left(\widehat{ACD}\right)=40^{\circ}\end{array}\right\|$ . Find $x=m\left(\widehat{ACB}\right)$ .

Proof 1. Law of Sines $:\ \left\{\begin{array}{cc}
\triangle ABD\ : & \frac {BA}{BD}=\frac {\sin\widehat{BDA}}{\sin\widehat{BAD}}=\frac {\sin 100^{\circ}}{\sin 30^{\circ}}\\\\
\triangle DBC\ : & \frac {BD}{BC}=\frac {\sin\widehat{BCD}}{\sin\widehat{BDC}}=\frac {\sin (x+40^{\circ})}{\sin 20^{\circ}}\\\\
\triangle CBA\ : & \frac {BC}{BA}=\frac {\sin\widehat{BAC}}{\sin\widehat{BCA}}=\frac {\sin 10^{\circ}}{\sin x}\end{array}\right\|\bigodot\iff$ $2\cos 10^{\circ}\sin (x+40^{\circ})\sin 10^{\circ}=\sin 20^{\circ}\sin x\iff$ $\sin (x+40^{\circ})=\sin x\iff$ $\boxed{x=70^{\circ}}$ .

Proof 2. Law of Sines $:\ \left\{\begin{array}{cc}
\triangle ABD\ : & \frac {AD}{BD}=\frac {\sin 50^{\circ}}{\sin 30^{\circ}}\\\\
\triangle BCD\ : & \frac {BD}{CD}=\frac {\sin (x+40^{\circ})}{\sin (x+60^{\circ})}\\\\
\triangle ACD\ : & \frac {CD}{AD}=\frac {\sin 20^{\circ}}{\sin 40^{\circ}}\end{array}\right\|\bigodot\iff$ $2\sin 50^{\circ}\sin (x+40^{\circ})\sin 20^{\circ}=\sin (x+60^{\circ})\sin 40^{\circ}\iff$ $\sin 50^{\circ}\sin (x+40^{\circ})=$

$\sin (x+60^{\circ})\cos 20^{\circ}\iff$ $\cos (x-10)-\cos(x+90)=\sin (x+80)+\sin (x+40)\iff$ $\sin x=\sin (x+40)\iff$ $x+(x+40)=180\iff$ $\boxed{x=70}$ .

Proof 3. $\left\{\begin{array}{cc}
m\left(\widehat{BDC}\right)=20^{\circ}\ ; & m\left(\widehat{ABD}\right)=50^{\circ}\\\\
m\left(\widehat{ACB}\right)=x\ ; & m\left(\widehat{CBD}\right)=120^{\circ}-x\end{array}\right\|$ . Apply the trigonometric form of the Ceva's theorem :

$\sin\widehat{DBA}\sin\widehat{CAD}\sin\widehat{BDC}\sin\widehat{ACB}=\sin\widehat{BAC}\sin\widehat{ADB}\sin\widehat{DCA} \sin\widehat{CBD}\iff$ $\sin 50\sin 20\sin 20\sin x=\sin 10 \sin 100\sin 40\sin (120-x)\iff$

$\cos 40\sin^220\sin x=\sin 10\cos 10\sin 40\cos (30-x)\iff$ $2\cos 40\sin 20\sin x=\sin 40\cos (x-30)\iff$ $\cos 40\sin x=\cos 20\cos(x-30)\iff$

$\sin (x+40)+\sin (x-40)=\cos (50-x)+\cos (x-10)\iff$ $\sin (x-40)=\cos (x-10)\iff$ $\cos (130-x)=\cos (x-10)\iff$ $130-x=x-10\iff$ $\boxed{x=70}$ .

Proof 4 (synthetic).



PP8. Let a $B$-right $\triangle ABC$ let $\{D,E\}\subset (BC)$ so that $D\in (BE)$ and $\widehat{BAD}\equiv\widehat{DAE}\equiv\widehat{EAC}$ . Let $H\in AC$ so that $EH\perp AC$ . Prove that $AD=2\cdot HC\iff$ $C=36^{\circ}$ .

Proof 1. Suppose w.l.o.g. $HC=1$ and let $m\left(\widehat{BAD}\right)=x$ . Thus, $\left\{\begin{array}{cccc}
\triangle ABD\ : & AB=AD\cdot \cos\widehat{BAD} & \implies & AB=2\cos x\\\\\
\triangle ABE\ : & AB=AE\cdot \cos\widehat{BAE} & \implies & AE=\frac {2\cos x}{\cos 2x}\\\\
\triangle ABC\ : & AB=AC\cdot \cos\widehat{BAC} & \implies & AC=\frac {2\cos x}{\cos 3x}\\\\
\triangle AEH\ : & AH=AE\cdot \cos\widehat{EAH} & \implies & AH=\frac {2\cos^2x}{\cos 2x}\end{array}\right\|$ . So $AC=HC+HA\iff$

$\frac {2\cos x}{\cos 3x}=1+\frac {2\cos^2x}{\cos 2x}\iff$ $2\cos x\cos 2x=2\cos 2x\cos 3x+\cos 3x\iff$ $\cos x=2\cos 2x\cos 3x\iff$ $\cos x=\cos 5x+\cos x\iff$ $5x=90^{\circ}\iff$ $\boxed{x=18^{\circ}}$ .

Proof 2. Suppose w.l.o.g. $HC=1$ and let $m\left(\widehat{BAD}\right)=x$ $\implies$ $\left\{\begin{array}{c}
BE=c\cdot\tan 2x\\\\
BC=c\cdot\tan 3x\end{array}\right\|$ and $CE=BC-BE\implies$ $CE=c(\tan 3x-\tan 2x)$ . Thus, $\boxed{c=2\cos x}\ (*)$ and

$HC=CE\cdot \sin 3x\implies$ $1=c(\tan 3x-\tan 2x)\sin 3x\stackrel{(*)}{\implies}$ $2\cos x\cdot \sin 3x\cdot\frac {\sin x}{\cos 2x\cos 3x}=1\implies$ $\sin 2x\sin 3x=\cos 2x\cos 3x\implies$ $\cos 5x=0\implies$ $\boxed{x=18^{\circ}}$ .

Proof 3 (synthetic).



PP9 (Ruben Huillca). Let $A$-right $\triangle ABC$ . Suppose exist $\{a,b\}\subset\mathbb R^*_+\ ,\ \left\{\begin{array}{cccc}
E\in (AC)\ : & EA=b & , & EC=a+b\\\\
F\in (AB)\ : &  FA=a & , & FB=b\end{array}\right\|$ and $P\in BE\cap CF$ . Find $\alpha =m\left(\widehat {CPE}\right)$ .

Proof 1. Let $\left\{\begin{array}{c}
m\left(\widehat{ACF}\right)=x\\\\
m\left(\widehat{AEB}\right)=y\end{array}\right\|$ . So $\left\{\begin{array}{ccc}
\alpha  & = & y-x\\\\
\tan x & = & \frac a{a+2b}\\\\
\tan y & = & \frac {a+b}b\end{array}\right\|$ $\implies\tan \alpha=\tan (y-x)=$ $\frac {\tan y-\tan x}{1+\tan x\tan y}=$ $\frac {\frac {a+b}b-\frac a{a+2b}}{1+\frac a{a+2b}\cdot\frac {a+b}b}=$ $\frac {a^2+3ab+2b^2-ab}{ab+2b^2+a^2+ab}=1\implies$ $\alpha=45^{\circ}$ .

Proof 2. Construct $D$ so that $CD\perp CA\ ,\ CD=b$ and $CF$ separates $D$ , $A$ . So $CDBF$ is a parallelogram $,\ ABE\equiv CED\implies EB=DE$ and $EB\perp ED\implies\alpha =45^{\circ}$ .



PP10 (Ruben Auqui). Show that $\tan\frac {\pi}{24}=\left(\sqrt 2-1\right)\left(\sqrt 3-\sqrt 2\right)$ .

Proof 1. Let $\triangle ABC$ with $A=45^{\circ}$ and $AB=1+\sqrt 3\ ,\ AC=2+\sqrt 2$ . Let $\left\{\begin{array}{ccccc}
D\in (AC) & : & DA=\sqrt 2 & ; & DC=2\\\\
E\in (AB) & : & EA=1 & ; & EB=\sqrt 3\end{array}\right\|$ .

Prove easily that $\left\{\begin{array}{c}
DE=AE=1\\\\
DB=DC=2\end{array}\right\|$ and $\left\{\begin{array}{c}
m\left(\widehat{ABD}\right)=\frac {\pi}{6}\\\\
m\left(\widehat{CBD}\right)=C=\frac {7\pi}{24}\end{array}\right\|\implies$ $B=\frac {11\pi}{24}$ . Let the projection $P$ of $C$ on $AC$ . Thus, $PC=PA=1+\sqrt 2$ ,

$PB=\sqrt 3-\sqrt 2$ and $m\left(\widehat{BCP}\right)=\frac {\pi}{24}$ . Hence $\tan\frac {\pi}{24}=\frac {PB}{PC}=\frac {\sqrt 3-\sqrt 2}{1+\sqrt 2}\implies$ $\tan\frac {\pi}{24}=\left(\sqrt 2-1\right)\left(\sqrt 3-\sqrt 2\right)$ .

Proof 2. $\tan\frac {\pi}{24}=\frac {\sin\frac {\pi}{12}}{1+\cos\frac {\pi}{12}}=$ $\frac {\sqrt 6-\sqrt 2}{4+\sqrt 6+\sqrt 2}=$ $\frac {\sqrt 3-1}{2\sqrt 2+\sqrt 3+1}=$ $\frac {\left(\sqrt 3-1\right)\left[2\sqrt 2-\left(\sqrt 3+1\right)\right]}{8-\left(4+2\sqrt 3\right)}=$

$\frac {\left(\sqrt 3-1\right)\left[2\sqrt 2-\left(\sqrt 3+1\right)\right]}{2\left(2-\sqrt 3\right)}=$ $\frac {\left(2+\sqrt 3\right)\left(\sqrt 3-1\right)\left[2\sqrt 2-\left(\sqrt 3+1\right)\right]}{2}=$ $\sqrt2\left(\sqrt 3+2\right)\left(\sqrt 3-1\right)-\left(2+\sqrt 3\right)=$

$\sqrt 2\left(1+\sqrt 3\right)-\left(2+\sqrt 3\right)=$ $\sqrt 3\left(\sqrt 2-1\right)-\sqrt 2\left(\sqrt 2-1\right)=$ $\left(\sqrt 2-1\right)\left(\sqrt 3-\sqrt 2\right)$ .



PP11. Let $\triangle ABC$ with $C=30^{\circ}$ and there is $D\in (BC)$ so that $AD=BC$ and $\left(\widehat{ADB}\right)=40^{\circ}$ . Prove that $B=100^{\circ}$ .

Proof 1. Apply law of Sines $\odot$ $\begin{array}{ccccc}
\nearrow & \triangle ABD\ :\ \frac {AD}{\sin B}=\frac {BD}{\sin\widehat{DAB}} & \implies & DB=\frac {AD\cdot\sin \left(40^{\circ}+B\right)}{\sin B} & \searrow\\\\
 \searrow & \triangle ACD\ :\ \frac {AD}{\sin C}=\frac {CD}{\sin\widehat{CAD}} & \implies & DC=AD\cdot 2\sin 10^{\circ} & \nearrow\end{array}\ \bigoplus\implies 1=$ $\frac {\sin \left(40^{\circ}+B\right)}{\sin B}+2\sin 10^{\circ}$ $\iff$

$2\sin 10^{\circ}\sin B+\sin \left(40^{\circ}+B\right)-\sin B=0\iff$ $2\sin 10^{\circ}\sin B+2\sin 20^{\circ}\cos\left(20^{\circ}+B\right)=0\iff$ $\sin B+2\cos 10^{\circ}\cos\left(20^{\circ}+B\right)=0\iff$

$\cos\left(90^{\circ}-B\right)+\cos\left(30^{\circ}+B\right)+\cos\left(10^{\circ}+B\right)=0\iff$ $\cos\left(30^{\circ}-B\right)+\cos\left(10^{\circ}+B\right)=0\iff$ $2\cos 20^{\circ}\cos\left(10^{\circ}-B\right)=0\iff$ $B=100^{\circ}$ .

Proof 2 (slicing - Carlos Abanto). Construct equilateral $\triangle ADE$ , where $AD$ separates $B$ and $E$ . Thus $m\left(\widehat{AED}\right)=2C$ , i.e. $E$ is the circumcenter of $\triangle ADC$ .

Thus $\left\{\begin{array}{c}
m\left(\widehat{EAC}\right)=50^{\circ}\\\\
m\left(\widehat{EDC}\right)=80^{\circ}\end{array}\right\|$ and $BC=AD=EA=ED=EC\implies$ $\left\{\begin{array}{ccc}
EA=EC & \implies & m\left(\widehat{ECA}\right)=50^{\circ}\\\\
ED=EC & \implies & m\left(\widehat{DEC}\right)=20^{\circ}\\\\
CB=CE & \implies & m\left(\widehat{EBC}\right)=50^{\circ}\end{array}\right\|\implies$ $m\left(\widehat{AEC}\right)=80^{\circ}$

and $\ m\left(\widehat{EBC}\right)=m\left(\widehat{EAC}\right)=50^{\circ}\implies ABCE$ is a cyclical quadrilateral $\implies$ $B+m\left(\widehat {AEC}\right)=180^{\circ}\implies$ $B=100^{\circ}$ .



PP12 (Miguel Ochoa Sanchez). Let $\triangle ABC$ with $M\in (AC)$ so that $AM=BC$ and $\widehat{MBC}\equiv\widehat{BAC}$ . The $C$-bisector of $\triangle ABC$ cut $AB$ and $BM$ in $N$ , $P$ respectively. Find $\frac {PN}{PC}$ .

Proof. $\left\{\begin{array}{ccc}
MC=b-a\ ,\ AM=a\\\\
\frac {NA}b=\frac {NB}a=\frac {c}{a+b}\end{array}\right\|\implies$ $\triangle CBM\sim\triangle CAB\implies$ $\frac {CB}{CA}=\frac {CM}{CB}\implies$ $\frac ab=\frac {b-a}a\implies$ $\boxed{b^2-a^2=ab}\ (*)\ \ \wedge\ \ \boxed{\frac ab=\frac {-1+\sqrt 5}{2}}\ (1)$ . Apply the

Menelaus' theorem to $\overline{BPM}/\triangle ANC\ : \frac {BN}{BA}\cdot\frac {MA}{MC}\cdot\frac {PC}{PN}=1\iff$ $\frac {PN}{PC}=\frac {BN}{BA}\cdot\frac {MA}{MC}=$ $\frac a{a+b}\cdot \frac a{b-a}=\frac {a^2}{b^2-a^2}\stackrel{(*)}{=}\frac {a^2}{ab}=\frac ab\implies$ $\frac {PN}{PC}=\frac ab\ \stackrel{(1)}{=}\ \frac {-1+\sqrt 5}{2}$ .



PP13 Let $\triangle ABC$ and $M$ the midpoint $M$ of $[BC]$ so that $\left\{\begin{array}{c}
m\left(\widehat {MAB}\right)=105^{\circ}\\\\
m\left(\widehat {MAC}\right)=30^{\circ}\end{array}\right\|$ . Find the value of the angle $\widehat{ACB}$ .

Proof 1. Let $N$ for which $ACNB$ is a parallelogram, i.e. $M$ is the common midpoint for $[BC]$ , $[AN]$ and the projection $P$ of $N$ on $AC$ . Thus $MA=MN=MP=PN$ ,

i.e. $MNP$ is an equilateral triangle. Since $m\left(\widehat{CNP}\right)=45^{\circ}$ obtain that $PN=PC$ , i.e. $PC=PM$ $\iff$ $m\left(\widehat{PMC}\right)=m\left(\widehat{PCM}\right)=15^{\circ}$ . In conclusion, $m\left(\widehat{ACB}\right)=15^{\circ}$ .

Proof 2. Let $m\left(\widehat{ACB}\right)=x$ . Hence $m\left(\widehat{ABC}\right)=45^{\circ}-x$ . Apply the law of Sines $:\ MB=MC\iff$ $\frac {AM}{MB}=\frac{AM}{MC}\iff$ $\frac {\sin\widehat{ABM}}{\sin\widehat{BAM}}=\frac {\sin\widehat{ACM}}{\sin\widehat{CAM}}\iff$ $\frac {\sin \left(45^{\circ}-x\right)}{\sin 105^{\circ}}=$

$\frac {\sin x}{\sin 30^{\circ}}\iff$ $\sin \left(45^{\circ}-x\right)=2\sin x\cos 15^{\circ}\iff$ $\sin \left(45^{\circ}-x\right)=2\sin x\cos\left(45^{\circ}-30^{\circ}\right)\iff$ $\frac {\sqrt 2}{2}\cdot (\cos x-\sin x)=2\cdot \frac {\sqrt 2}{2}\cdot\left(\frac {\sqrt 3}{2}+\frac 12\right)\cdot \sin x\iff$

$\left(1+\sqrt 3\right)\sin x=\cos x -\sin x\iff$ $\tan x=\frac 1{2+\sqrt 3}=2-\sqrt 3\iff$ $\tan x=2-\sqrt 3\iff$ $x=15^{\circ}$ . Indeed, $\tan 15^{\circ}=\frac {\sin 30^{\circ}}{1+\cos 30^{\circ}}=$ $\frac {\frac 12}{1+\frac {\sqrt 3}2}=$ $\frac 1{2+\sqrt 3}=2-\sqrt 3$



PP14. Let a square $ABCD$ and $M\in (AD)$ , $N\in (BC)$ so that $AM=BN$. Let $P\in (AC)\ ,\ NP\perp AC$ so that $[APM]=[CPN]$ . Find $m\left(\widehat{APM}\right)$ .

Proof. Suppose that $AB=1$ . Let $:\ \left\{\begin{array}{ccc}
R\in (AC) & ; & MR\perp AC\\\\\
AM=BN=x & ; & m\left(\widehat{APM}\right)=\phi\end{array}\right\|$ . Thus $ABNPM$ is cyclic $\implies$ $m\left(\widehat{BAN}\right)=\phi $ and $\tan\phi =\frac {BN}{BA}\implies \boxed{\ \tan\phi =x\ }\ (*)$ .

Prove easily that $[AMP]=\frac {x(x+1)}4$ and $[CNP]=\frac {(x-1)^2}4$ . In conclusion, $[AMP]=[CNP]\iff x(x+1)=$ $(x-1)^2\iff x=$ $\frac 13\ \stackrel{(*)}{\iff}\  \tan\phi =$ $\frac 13$ .



PP15. Let $ ABCD$ be a convex quadrilateral with $ \angle{DAC}= \angle{BDC}= 36^\circ$ , $ \angle{CBD}= 18^\circ$ and $ \angle{BAC}= 72^\circ$. Determine the measure of $ \angle{APD}$, where $ P\in AC\cap BD$.

Lemma. Let $ ABCD$ be a convex quadrilateral. Prove that $ \left\{\begin{array}{ccc}
m(\widehat{CBD})=x & ; & m(\widehat{BDC})=2x\\\\
 m(\widehat{CAD})=y & ; & m(\widehat{CAB})=2y\\\\
P\in AC\cap BD & ; & m(\widehat{APD})=z\end{array}\right\|$ $ \implies$ $ \boxed{\cos (z+x-y)+\cos (z+y-x)+\cos (x+y-z)=0}\ \ (*)$.


Proof of the lemma. $ \left\{\begin{array}{ccc}
m(\widehat{ABD})=z-2y & ; & m(\widehat{ACD})=z-2x\\\\ 
m(\widehat{ACB})=180^{\circ}-x-z & ; & m(\widehat{ADB})=180^{\circ}-y-z\\\\
\sin\widehat{ABD}\sin\widehat{DAC}\sin\widehat{CDB}\sin\widehat{BCA} & = & \sin\widehat{CBD}\sin\widehat{BAC}\sin\widehat{ADB}\sin\widehat{DCA}\end{array}\right\|$ $ \Longleftrightarrow$ $ \sin (z-2y)\cdot\sin y\cdot\sin 2x\cdot\sin (z+x)=$

$\sin x\cdot\sin 2y\cdot\sin (z+y)\cdot\sin (z-2x)$ $ \Longleftrightarrow$ $ \cos x\cdot [\cos (x+2y)-\cos (2z+x-2y)]=\cos y\cdot [\cos (2x+y)-\cos (y+2z-2x)]$ $ \Longleftrightarrow$

$ \cos (2x+2y)+\cos 2y-\cos (2x+2z-2y)-\cos (2z-2y)=$ $ \cos (2x+2y)+\cos 2x-\cos (2y+2z-2x)-\cos (2z-2x)$ $ \Longleftrightarrow$

$ \sin (x+y)\cdot\sin (x-y)+\sin 2z\cdot\sin (2x-2y)+\sin (2z-x-y)\cdot\sin (x-y)=0$ $ \Longleftrightarrow$ $ \sin (x+y)+2\sin 2z\cdot\cos (x-y)+\sin (x+y-2z)=0$ $ \Longleftrightarrow$

$ \sin z\cdot\cos (x+y-z)+\sin 2z\cdot\cos (x-y)=0$ $ \Longleftrightarrow$ $ \cos (x+y-z)+2\cos z\cdot\cos (x-y)=0$ $ \Longleftrightarrow$ $ \cos (x+y-z)+\cos (z+x-y)+\cos (z+y-x)=0$.

Remark. The relation $ (*)$ is symmetrically in the variables $ x$, $ y$. Thus, I can propose the following problem :



PP. Let $ ABCD$ be a convex quadrilateral with $ \angle{DAC}=18^{\circ}$, $ \angle{BDC}= 72^\circ$ and $ \angle{CBD}=\angle{BAC}= 36^\circ$. Determine the measure of $ \angle{APD}$, where $ P\in AC\cap BD$.

Proof of the proposed problem. For $\left\{\begin{array}{c}
x=18^{\circ}\\\\
y=36^{\circ}\end{array}\right\|$ the relation $(*)$ becomes $ \cos (54-z)+\cos (z-18)+\cos (z+18)=0$, i.e. $ f(z)\equiv\sin (36+z)+2\cos z\cos 18=0$.

Observe that $ z>90^{\circ}$ and on the interval $ \left(\frac{\pi}{2},\pi \right)$ the function $ f$ is strict decreasing and $ f\left(108^{\circ}\right)=0$. In conclusion, $ m(\widehat{APD})=108^{\circ}$.



PP16. Let an $A$-isosceles $\triangle ABC$ and an interior point $P$ for which denote $R\in BP\cap AC$ . Suppose that $m\left(\widehat{PBC}\right)=m\left(\widehat{APR}\right)=30^{\circ}$ . Prove that $PC=AB$ .

Proof 1. If denote $\left\{\begin{array}{ccc}
m\left(\widehat{PBA}\right) & = & \alpha\\\\
m\left(\widehat{ACP}\right) & = & m\end{array}\right\|$, then $\left\{\begin{array}{ccc}
m\left(\widehat{PAB}\right) & = & 30^{\circ}-\alpha\\\\
m\left(\widehat{PAC}\right) & = & 90^{\circ}-\alpha\\\\
 m\left(\widehat{PCB}\right) & = & 30^{\circ}+\alpha -m\end{array}\right\|$ . Trigonometrical form of the Ceva' theorem $:\ \sin\widehat{PAB}\sin\widehat{PBC}\sin\widehat{PCA}=$

$\sin\widehat{PAC}\sin\widehat{PBA}\sin\widehat{PCB}\iff$ $\sin (30^{\circ}-\alpha )\sin 30^{\circ}\sin m=$ $\sin (90^{\circ}-\alpha )\sin \alpha\sin (30^{\circ}+\alpha -m)\iff$ $\sin (30^{\circ}-\alpha )\sin m=$

$2\cos\alpha\sin \alpha\sin (30^{\circ}+\alpha -m)\iff$ $\sin (30^{\circ}-\alpha )\sin m=$ $\sin 2\alpha\sin (30^{\circ}+\alpha -m)\iff$ $\cos (\alpha +m-30^{\circ})-\cos (m+30^{\circ}-\alpha)=$

$\cos (m+\alpha -30^{\circ})-\cos (30^{\circ}+3\alpha -m)\iff$ $\cos (m+30^{\circ}-\alpha)=\cos (30^{\circ}+3\alpha -m)\iff$ $m+30^{\circ}-\alpha =30^{\circ}+3\alpha -m\iff$ $\boxed{\ m=2\alpha\ }$ .

Proof 2. I"ll use same notations from the above proof. Denote $S\in AP\cap BC$ and prove easily that $SB=SP$ . Apply the theorem of Sines $:$

$\left\{\begin{array}{cccc}
\triangle ABC\ : & \frac {SB}{SC}=\frac {\sin\widehat{SAB}}{\sin\widehat{SAC}} & \implies & \frac {SB}{SC}=\frac {\sin (30-\alpha )}{\sin (90-\alpha )}\\\\
\triangle PSC\ : & \frac {SP}{SC}=\frac {\sin\widehat{SCP}}{\sin\widehat{SPC}} & \implies & \frac {SB}{SC}=\frac {\sin (30+\alpha -m)}{\sin (90+m-\alpha )}\end{array}\right\|$ . Therefore, $\frac {SB}{SC}=\frac {\sin (30-\alpha )}{\sin (90-\alpha )}=$ $\frac {\sin [30-(m-\alpha )]}{\sin [90+(m-\alpha )]}\iff$ $\frac {\sin (30-\alpha )}{\cos \alpha}=$

$\frac {\sin [30-(m-\alpha )]}{\cos (m-\alpha )}\iff$ $\frac 12-\frac {\sqrt 3}2\cdot \tan\alpha =\frac 12-\frac {\sqrt 3}2\cdot \tan (m-\alpha )\iff$ $\tan\alpha =\tan (m-\alpha )\iff$ $\boxed{\ m=2\alpha\ }$ .


Proof 3 (synthetic). Very nice problem! I could not restrain myself of posting something. Let the equilateral $\triangle ABD$ outside the given triangle. Easy angle chasing shows

that $D$ is the circumcenter of $\triangle ABP$ and $AP$ is the bisector of $\angle DAC$ . So $DAPC$ is a kite. $DP = AD$ makes it a rhombus, done. Best regards, sunken rock.



PP17. Let $\triangle ABC$ with $D\in (AC)$ so that $AD=BC$ and $\left\{\begin{array}{ccc}
A & = & 40^{\circ}\\\\
C & = & 20^{\circ}\end{array}\right\|$ . Prove that $x\equiv m\left(\widehat{DBC}\right)=10^{\circ}$ .

Proof 1. Observe that $\frac {DA}{DB}=\frac {BC}{BD}\iff$ $\frac {\sin\widehat{DBA}}{\sin\widehat{DAB}}=\frac {\sin\widehat{BDC}}{\sin\widehat{BCD}}\iff$ $\frac {\sin (120^{\circ}-x)}{\sin 40^{\circ}}=\frac {\sin (20^{\circ}+x)}{\sin 20^{\circ}}\iff$ $\frac {\sin (60^{\circ}+x)}{2\sin 20^{\circ}\cos 20^{\circ}}=\frac {\sin (20^{\circ}+x)}{\sin 20^{\circ}}\iff$

$\cos (30^{\circ} -x)=2\sin (20^{\circ}+x)\cos 20^{\circ}\iff$ $\cos (30^{\circ}-x)=\sin (40^{\circ}+x)+\sin x\iff$ $\cos (30^{\circ}-x)-\cos (90^{\circ}-x)=\sin (40^{\circ}+x)\iff$ $2\sin (60^{\circ}-x)\sin 30^{\circ}=$

$\sin (40^{\circ}+x)\iff$ $\sin (60^{\circ}-x)=\sin (40^{\circ}+x)\iff$ $60^{\circ}-x=40^{\circ}+x\iff$ $2x=20^{\circ}\iff x=10^{\circ}$ . Otherwise. $\frac {BC}{BA}=\frac {AD}{AB}\iff$ $\frac {\sin\widehat{BAC}}{\sin\widehat{BCA}}=\frac {\sin\widehat{ABD}}{\sin\widehat{ADB}}\iff$

$\frac {\sin 40^{\circ}}{\sin 20^{\circ}}=\frac {\sin (120^{\circ}-x)}{\sin (20^{\circ} +x)}\iff$ $2\cos 20^{\circ}\sin (20^{\circ}+x)=\sin (60^{\circ}+x)\iff$ $\sin (40^{\circ}+x)+\sin x=\sin (60^{\circ}+x)\iff$ $\sin (40^{\circ}+x)=\sin (60^{\circ}+x)-\sin x\iff$

$\sin (40^{\circ}+x)=2\sin 30^{\circ}\cos (30^{\circ}+x)\iff$ $\cos(50^{\circ}-x)=\cos (30^{\circ}+x)\iff$ $ 50^{\circ}-x=30^{\circ}+x\iff$ $2x=20^{\circ}\iff x=10^{\circ}$ .

Proof 2. Let $E\in (AD)$ so that $EA=EB$ . Thus, $\triangle CBE$ is $C$-isosceles with $C=20^{\circ}\implies$ $AD=BC=CE\implies$ $AD=CE\implies $

$BE=AE=CD\implies$ $CD=BE$ . In conclusion, $\triangle CBE$ satisfies the hypothesis of the following $(\Downarrow )$ proposed problem PP18 from where obtain that $x=10^{\circ}$



PP18. Let a $B$-isosceles $\triangle ABC$ with $B=20^{\circ}$ and $D\in (BC)$ so that $BD=AC$ . Prove that $x\equiv m\left(\widehat{BAD}\right)=10^{\circ}$ .

Proof. $\frac {AC}{AB}=\frac {BD}{BA}\iff$ $\frac {\sin 20^{\circ}}{\cos 10^{\circ}}=\frac {\sin x}{\sin (20^{\circ}+x)}\iff$ $\sin x=2\sin (20^{\circ}+x)\sin 10^{\circ}\iff$ $\sin x=\cos (10^{\circ}+x)-\cos (30^{\circ}+x)\iff$

$\cos (90^{\circ}-x)+\cos (30^{\circ}+x)=\cos (10^{\circ}+x)\iff$ $2\cos 60^{\circ}\cos (30^{\circ}-x)=\cos (10^{\circ}+x)\iff$ $30^{\circ}-x=10^{\circ}+x\iff$ $x=10^{\circ}$ . See PP1 from
here.


PP19. Let a convex $ABCD$ with $I\in AC\cap BD$ so that $AB=BC=CD$ and $IA=ID$ . Prove that $IB\ne IC\implies$ $m\left(\widehat{AIB}\right)=60^{\circ}$ .

Proof. Denote $\left\{\begin{array}{c}
AB=BC=CD=x\\\\
IA=ID=y\\\\
IB=u\ ;\ IC=v\end{array}\right\|$ . Apply the Stewart's theorem to the isosceles $:\ \left\{\begin{array}{cccc}
\triangle ABC\ : & BI^2+IA\cdot IC=BA^2 & \implies & u^2+yv=x^2\\\\
\triangle DCB\ : & CI^2+IB\cdot ID=CD^2 & \implies & v^2+yu=x^2\end{array}\right\|$ $\implies$

$u^2+yv=x^2=v^2+yu\iff$ $\left(u^2-v^2\right)=y(u-v)\ \stackrel{u\ne v}{\iff}\ y=u+v\iff$ $x^2=u^2+v(u+v)\iff$ $x^2=u^2+uv+v^2\iff$ $m\left(\widehat{AIB}\right)=60^{\circ}$ .



PP20. Let $\triangle ABC$ with $ A = 60^{\circ}$ . Let $ AP$ bisect $ \widehat { BAC}$ and let $ BQ$ bisect $ \widehat {ABC}$ , where $ P\in BC$ and $ Q\in AC$ . If $ AB + BP = AQ + QB$ . Find the angles of $\triangle ABC$ .

Proof I (metric).. Let $ l_b = BQ$ . Thus, $ l_b = \frac {2ac}{a + c}\cdot\cos\frac B2$ . Therefore, $ AB + BP = AQ + QB$ $ \Longleftrightarrow$ $ c + \frac {ac}{b + c} = \frac {bc}{a + c} + l_b$ $ \Longleftrightarrow$ $ c(c + a)(c + b) + ac(a + c) = $

$bc(b + c) + 2ac(b + c)\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ ab + (a + c)^2 - b^2 = 2a(b + c)\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ ab + 4p(p - b) = 2a(b + c)\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ ab + 4ac\cdot\cos^2\frac B2 = 2a(b + c)\cdot \cos\frac B2$ $ \Longleftrightarrow$

$ b\left(1 - 2\cdot\cos\frac B2\right) = 2c\cdot\cos\frac B2\cdot\left(1 - 2\cdot\cos\frac B2\right)$ $ \Longleftrightarrow$ $ b = 2c\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ \sin B = 2\cdot\sin C\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ 2\sin\frac B2\cos\frac B2 = 2\sin C\cos\frac B2$ $ \Longleftrightarrow$ $ \sin\frac B2 = \sin C$ $ \Longleftrightarrow$

$ B = 2C$ $ \Longleftrightarrow$ $ C = 40^{\circ}$ , $ B = 80^{\circ}$ because $ A = 60^{\circ}$ .

Proof II (trigonometric). Denote ${ x=m(\widehat ABQ})$ . I"ll apply the Sinus' theorem in the triangles $ ABP$ , $ ABQ$ :$ AB+BP=AQ+QB$ $ \Longleftrightarrow$ $ 1+\frac {BP}{BA}=\frac {AQ+QB}{AB}$ $ \Longleftrightarrow$

$ 1+\frac {\sin 30}{\sin (30+2x)}=\frac {\sin x+\sin 60}{\sin (60+x)}$ $ \Longleftrightarrow$ $ \sin (60+x)\left[\sin (30+2x)+\frac 12\right]=\sin (30+2x)(\sin x+\sin 60)$ $ \Longleftrightarrow$ $ \cos (x-30)-\cos (90+3x)+\cos (30-x)=$

$ \cos (x+30)-\cos (30+3x)+\cos (2x-30)-\cos (90+2x)$ $ \Longleftrightarrow$ $ \underline {\cos (x-30)}+\underline {\underline {\sin 3x}}+\underline {\underline {\underline {\cos (x-30)}}}=$ $ \underline {\underline {\underline {\cos (x+30)}}}-\underline {\underline {\cos (30+3x)}}+\cos (2x-30)+\underline {\sin 2x}$ $ \Longleftrightarrow$

$ [\cos (x-30)-\cos (90-2x)]+[\sin 3x+\sin (60-3x)]=$ $ [\cos (x+30)-\cos (x-30)]+\cos (2x-30)$ $  \Longleftrightarrow$ $ 2\sin \left(30-\frac x2\right)\sin\left(60-\frac {3x}{2}\right)+2\sin 30\cos (3x-30)=$

$\cos (2x-30)-2\sin 30\sin x$ $ \Longleftrightarrow$ $ \cos (3x-30)+2\sin\left(30-\frac x2\right)\sin \left(60-\frac {3x}{2}\right)=$ $\cos (2x-30)-\cos (90-x)$ $ \Longleftrightarrow$ $ \cos (3x-30)+2\sin\left(30-\frac x2\right)\sin \left(60-\frac {3x}{2}\right)$

$=2\sin \left(30+\frac x2\right)\sin\left(60-\frac {3x}{2}\right)$ $ \Longleftrightarrow$ $ \sin (120-3x)=2\sin\left(60-\frac {3x}{2}\right)\left[\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)\right]$ $ \Longleftrightarrow$ $ 2\sin\left(60-\frac {3x}{2}\right)\cos\left(60-\frac {3x}{2}\right)=$

$2\sin\left(60-\frac {3x}{2}\right)\left[\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)\right]$ $ \Longleftrightarrow$ $ \sin\left(60-\frac {3x}{2}\right)=0\ \ \vee\ \ \cos\left(60-\frac {3x}{2}\right)=\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)$ .

Thus, $ \boxed {\ x=40\ }$ or $ \sin\left(30+\frac {3x}{2}\right)+\sin\left(30-\frac x2\right)=\sin\left(30+\frac x2\right)$ $ \Longleftrightarrow$ $ 2\sin\left(30+\frac x2\right)\cos x=\sin\left(30+\frac x2\right)$ $ \Longleftrightarrow$ $ x\in\emptyset$ .



PP21 (Edson Curahua Ortega). Let an $A$-isosceles $\triangle ABC$ and its interior point $P$ so that $AP=BC$ and $\left\{\begin{array}{ccc}
m\left(\widehat{PAB}\right) & = &  24\\\\
m\left(\widehat{PAC}\right) & = & 12\end{array}\right\|$ . Prove that $m\left(\widehat{ABP}\right)=30^{\circ}$ .

Proof 1 (İxtiyar İsmayilov). Let $\left\{\begin{array}{c}
AB=AC=b\\\\
BC=AP=a\\\\
m\left(\widehat{ABP}\right)=x\end{array}\right\|$ . Apply th. of Sines in $\left\{\begin{array}{cccc}
\triangle ABC\ : & \frac {BC}{AB}=\frac {\sin\widehat{BAC}}{\sin\widehat{ACB}} & \implies & \frac ab=\frac {\sin 36^{\circ}}{\sin 72^{\circ}}\\\\
\triangle ABP\ : & \frac {AP}{AB}=\frac {\sin\widehat{ABP}}{\sin\widehat{APB}} & \implies & \frac ab=\frac {\sin x}{\sin (24^{\circ}+x)}\end{array}\right\|$ $\implies$ $\frac {\sin 36^{\circ}}{\sin 72^{\circ}}=$ $\frac {\sin x}{\sin (24^{\circ}+x)}$

$\iff$ $2\sin x\cos 36^{\circ}=\sin (24^{\circ}+x)$ $\iff$ $\sin (36^{\circ}+x)-\sin (36^{\circ}-x)=$ $\sin (24^{\circ}+x)$ $\iff$ $\sin (36^{\circ}+x)=$ $\sin (36^{\circ}-x)+$ $\sin (24^{\circ}+x)$ $\iff$

$\sin (36^{\circ}+x)=$ $2\sin 30^{\circ}\cos (6^{\circ}-x)$ $\iff$ $\cos (54^{\circ}-x)=$ $\cos (6^{\circ}-x)$ $\iff$ $(54^{\circ}-x)+(6^{\circ}-x)=0$ $\iff 60^{\circ}-2x=0\iff$ $x=30^{\circ}\ .$

Proof 2.
This post has been edited 217 times. Last edited by Virgil Nicula, Mar 19, 2016, 8:57 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a