424. Some nice problems of E. E. Q. Rodriguez and others.

by Virgil Nicula, May 4, 2015, 2:40 PM

PP1. Let $ABC$ be a triangle with the incenter $I$ . Prove that $\left\{\begin{array}{ccc}
B & = & 60^{\circ}\\\\
A & = & 2C\end{array}\right\|\ \implies\ IC=AB$ .

Proof 1 (synthetic - Sunken Rock). Denote $E\in (AC)$ so that $m\left(\widehat{ABE}\right)=20^{\circ}$ and the intersection $D\in CI\cap AB$ . Prove easily that $:\ \triangle ABE$

is $B$-isosceles, i.e. $BA=BE$ $;\ \triangle BCE$ is $E$-isosceles, i.e. $BE=CE\ ;\  BCED$ is a cyclical quadrilateral $;\ \triangle ACD$ is $C$-isosceles, i.e. $CA=CD$

with the incenter $S\in DE\cap AI$ . In conclusion, $AI=DE$ and $AE=DI$ , i.e. $CI=CE\implies$ $CI=CE=BE=AB\implies$ $IC=AB$ .

Proof 2 (metric). $\left\{\begin{array}{ccccccc}
B=60^{\circ} & \iff & b^2=a^2+c^2-ac & \iff & b^2-c^2 & = & a(a-c)\\\\
A=2C & \iff & a^2=c(c+b) & \iff & b+c & = & \frac {a^2}c\end{array}\right\|$ $\implies$ $b-c=\frac {c(a-c)}a\implies$ $\boxed{b=\frac {c(2a-c)}a}\ (1)$ .

Observe that $b+c=\frac {a^2}c\iff$ $c+\frac {c(2a-c)}a=\frac {a^2}c\iff$ $\boxed{a^3=3ac^2-c^3}\ (2)$ . In conclusion, using the relations $(1)$ and $(2)$ obtain that

$IC^2=\frac {ab(a+b-c)}{a+b+c}=$ $\frac {c(2a-c)\left[a+\frac {c(a-c)}a\right]}{a+\frac {a^2}c}=$ $\frac {c^2(2a-c)\left(a^2+ac-c^2\right)}{a^2(a+c)}=$ $\frac{c^2\left(a^2c+3ac^2-c^3\right)}{3ac^2-c^3+a^2c}=c^2\implies$ $IC^2=c^2$ , i.e. $IC=AB$ .

Proof 3 (trigonometric). Apply the theorem of Sines in $\triangle AIC\ :\ \frac {IC}{\sin\frac A2}=\frac b{\sin\frac {A+C}2}=$ $\frac b{\cos\frac B2}=$ $\frac {c\sin B}{\sin C\cos\frac B2}=\frac {2c\sin \frac B2}{\sin C}$ .

Therefore, $\boxed{IC=c\ \iff\ 2\sin\frac A2\sin\frac B2=\sin C}\ (*)$ . Observe that $\left\{\begin{array}{c}
A=80^{\circ}\\\
B=60^{\circ}\\\
C=40^{\circ}\end{array}\right\|$ verify the relation $(*)$ .



PP2. Let $ABC$ be a triangle with the $C$-excenter $I_c$ . Prove that $\left\{\begin{array}{ccc}
B & = & 120^{\circ}\\\\
C & = & 2A\end{array}\right\|\ \implies\ I_cA=BC$ .

Proof 2 (metric). $\left\{\begin{array}{ccccccc}
B=120^{\circ} & \iff & b^2=a^2+c^2+ac & \iff & b^2-a^2 & = & c(a+c)\\\\
C=2A & \iff & c^2=a(a+b) & \iff & b+a & = & \frac {c^2}a\end{array}\right\|$ $\implies$ $b-a=\frac {a(a+c)}c\implies$ $\boxed{b=\frac {a(2c+a)}c}\ (1)$ .

Observe that $b+a=\frac {c^2}a\iff$ $a+\frac {a(2c+a)}c=\frac {c^2}a\iff$ $\boxed{c^3=3a^2c+a^3}\ (2)$ . In conclusion, using the relations $(1)$ and $(2)$ obtain that $I_cA^2=\frac {bc(a+c-b)}{a+b-c}=$

$\frac {a(2c+a)\left[c-\frac {a(a+c)}c\right]}{\frac {c^2}a-c}=$ $\frac {a^2(2c+a)\left(c^2-ac-a^2\right)}{c^2(c-a)}=$ $\frac{a^2\left(2c^3-ac^2-3a^2c-a^3\right)}{c^3-ac^2}=$ $\frac {a^2\left[2\left(3a^2c+a^3\right)-ac^2-3a^2c-a^3\right]}{\left(3a^2c+a^3\right)-ac^2}=$ $a^2\implies$ $I_cA^2=a^2$ , i.e. $I_cA=BC$ .

Proof 3 (trigonometric). Apply the theorem of Sines in $\triangle AI_cB\ :\ \frac {I_cA}{\sin\widehat{I_cBA}}=\frac {AB}{\sin\widehat{AI_cB}}\iff$ $\frac {I_cA}{\sin\left(90^{\circ}-\frac B2\right)}=\frac c{\sin\left(90^{\circ}-\frac C2\right)}\iff$

$\frac {I_cA}{\cos \frac B2}=\frac c{\cos\frac C2}=$ $\frac {a\sin C}{\sin A\cos\frac C2}=\frac {2a\sin\frac C2}{\sin A}$ . Therefore, $\boxed{I_cA=a\ \iff\ 2\cos\frac B2\sin\frac C2=\sin A}\ (*)$ . Observe that $\left\{\begin{array}{c}
A=20^{\circ}\\\
B=120^{\circ}\\\
C=40^{\circ}\end{array}\right\|$ verify the relation $(*)$ .



Lemma. $I_cA=BC\iff \frac {IB}{IC}=\frac ab\iff$ $\sin A=2\cos\frac B2\sin\frac C2$ .

Proof. Prove easily that $\triangle BIC\sim\triangle I_cAC$ , i.e. $\boxed{\frac {IB}{AI_c}=\frac {IC}{AC}}\ (*)$ . Thus, $AI_c=BC\ \stackrel{(*)}{\iff}\ \frac {IB}{BC}=\frac {IC}{AC}\iff$ $\frac {IB}{IC}=\frac ab$ . Apply the theorem of Sines

in $\triangle BIC$ and $\triangle ABC\ :\ \frac {\sin\frac C2}{\sin\frac B2}=\frac {\sin A}{\sin B}\iff$ $\sin A=2\cos\frac B2\sin\frac C2\iff$ $\sin A=\cos\frac A2-\sin\frac {B-C}2$ . Now can prove easily the problems PP3 and PP4.



PP3. Let $ABC$ be a triangle with the $C$-excenter $I_c$ and $\left\{\begin{array}{ccc}
B & = & 3C\\\\
I_cA & = & BC\end{array}\right\|$ . Ascertain the value of the angle $A$ .

Proof 3 (trigonometric). Apply the theorem of Sines in $\triangle AI_cC\ :\ \frac {I_cA}{\sin\widehat{I_cCA}}=\frac {AC}{\sin\widehat{AI_cC}}\iff$ $\frac {I_cA}{\sin\frac C2}=\frac b{\sin\frac B2}=$ $\frac {a\sin B}{\sin A\sin\frac B2}=$ $\frac {a\sin 3C}{\sin 4C\sin\frac {3C}2}\implies$

$\frac {I_cA}{\sin\frac C2}=\frac {a\sin 3C}{\sin 4C\sin\frac {3C}2}$ . Therefore, $I_cA=a\ \iff\ \sin\frac C2\sin 3C=\sin4C\sin\frac {3C}2\iff$ $2\sin\frac C2\cos\frac {3C}2=\sin 4C\iff$ $\sin2C-\sin C=\sin 4C\iff$

$\sin C+(\sin 4C-\sin 2C)=0\iff$ $\sin C+2\sin C\cos 3C=0\iff$ $\sin C(1+2\cos 3C)=0\iff$ $\cos 3C=-\frac 12\iff$ $3C=120^{\circ}\iff$ $\left\{\begin{array}{c}
A=20^{\circ}\\\
B=120^{\circ}\\\
C=40^{\circ}\end{array}\right\|$ .



PP4. Let $ABC$ be a triangle with the $C$-excenter $I_c$ and $\left\{\begin{array}{ccc}
C & = & 2A\\\\
I_cA & = & BC\end{array}\right\|$ . Ascertain the value of the angle $A$ .

Proof 1 (synthetic). $B=180^{\circ}-3A$ and $\triangle BIC\sim\triangle I_cAC\iff$ $\frac {IB}{AI_c}=\frac {IC}{AC}\ \stackrel{(AI_c=a)}{\iff}\ \frac {IB}{a}=\frac {IC}b\iff$

$\frac {IB}{IC}=\frac ab\iff$ $\frac {\sin\frac C2}{\sin \frac B2}=$ $\frac {\sin A}{\sin B}\ \stackrel{(C=2A)}{\iff}\ \sin\frac B2=\sin B\iff$ $\frac B2+B=180^{\circ}\iff$ $B=120^{\circ}$ , i.e. $A=20^{\circ}$ .

Proof 2 (metric). Denote $\boxed{2\cos B=m}$ , where $|m|<2$ . Thus, $\boxed{b^2=a^2+c^2-mac}\ (1)$ . Is well-known that $\boxed{C=2A\ \iff\ c^2=a(a+b)}\ (2)$ and $I_cA^2=\frac {bc(a+c-b)}{a+b-c}$ .

Therefore, $I_cA=a\iff$ $bc(a+c-b)=$ $a^2(a+b-c)\ \stackrel{(2)}{\iff}\ abc+$ $ab(a+b)-b^2c=a^3+a^2b-a^2c\iff$ $c=\frac {a\left(a^2-b^2\right)}{a^2+ab-b^2}\iff$ $c=\frac {(a-b)c^2}{a^2+ab-b^2}\iff$

$\boxed{c=\frac {a^2+ab-b^2}{a-b}}\ (3)\implies$ $a(a+b)=\left(\frac {a^2+ab-b^2}{a-b}\right)^2\iff$ $a(a+b)(a-b)^2=\left(a^2+ab-b^2\right)^2\iff$ $\boxed{3a^3-3ab^2+b^3=0}\ (4)$ .

On other hand, $b^2=a^2+c^2-mac\ \stackrel{(2\wedge 3)}{\implies}\ b^2=$ $2a^2+ab-\frac{ma\left(a^2+ab-b^2\right)}{a(a-b)}\iff$ $m=\frac {(a-b)\left(2a^2+ab-b^2\right)}{a\left(a^2+ab-b^2\right)}\iff$ $m=\frac {2a^3-a^2b-2ab^2+b^3}{a\left(a^2+ab-b^2\right)}\implies$

$m=-1$ because $\left(2a^3-a^2b-2ab^2+b^3\right)+a\left(a^2+ab-b^2\right)=3a^3-3ab^2+b^3\ \stackrel{(4)}{=}\ 0$ . In conclusion, $\cos B=-\frac 12\implies $ $\left\{\begin{array}{ccc}
A & = & 20^{\circ}\\\
 B & = & 120^{\circ}\\\
C & = & 40^{\circ}\end{array}\right\|$ .

Proof 3 (trigonometric). Apply the theorem of Sines in $\triangle AI_cC\ :\ \frac {I_cA}{\sin\widehat{I_cCA}}=\frac {AC}{\sin\widehat{AI_cC}}\iff$ $\frac {I_cA}{\sin\frac C2}=\frac b{\sin\frac B2}=$

$\frac {a\sin B}{\sin A\sin\frac B2}=$ $\frac {2a\cos\frac B2}{\sin A}$ . Thus, $I_cA=a\ \iff\ 2\cos\frac B2\sin\frac C2=\sin A\ \stackrel{(C=2A)}{\iff}\ 2\cos\frac B2=1\iff$ $\left\{\begin{array}{c}
A=20^{\circ}\\\
B=120^{\circ}\\\
C=40^{\circ}\end{array}\right\|$ .



PP5. Let $\triangle ABC$ and $D\in (BC)$ for which construct $\left\{\begin{array}{cc}
E\in (AC)\ :  & DE\parallel AB\\\\
F\in (AB)\ : & DF\parallel AC\end{array}\right|$ . Denote $P\in BE\cap CF$ and $S\in AP\cap BC$ . Prove that $:\  \left\{\begin{array}{cccc}
\frac {QE}{QF} & = & \frac {DC}{DB} & (*)\\\\
\frac {AB\cdot AC}{BC^2} & = & \frac {AE\cdot AF}{DB\cdot DC} & (1)\\\\
\frac {SB}{SC} & = & \left(\frac {DB}{DC}\right)^2 & (2)\\\\
\frac {PB\cdot PC}{PE\cdot PF} & = & \frac {PA}{PQ} & (3)\end{array}\right\|$ .

Proof. Denote $\left\{\begin{array}{ccc}
DB=m & ; & DC=n\\\\
AF=x & ; & AE=y\\\\
\frac xc=\frac na & ; & \frac yb=\frac ma\end{array}\right\|$ . Thus, $\left\{\begin{array}{ccc}
DE=x & ; & DF=y\\\\
BF=c-x & ; & CE=b-y\end{array}\right\|$ . Apply the Ceva' theorem to the point $P$ and $\triangle ABC\ :\ \frac {SB}{SC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=1\implies$

$\frac {SB}{SC}=\frac {EA}{EC}\cdot\frac {FB}{FA}=$ $\frac {DB}{DC}\cdot\frac {DB}{DC}\implies$ $\boxed{\frac {SB}{SC}=\left(\frac mn\right)^2}\ (2)$ . Apply the Menelaus' theorem to the transversals $:\ \left\{\begin{array}{cc}
\overline{APS}/\triangle BEC\ : & \frac {AE}{AC}\cdot\frac {SC}{SB}\cdot\frac {PB}{PE}=1\\\\
\overline{APS}/\triangle BFC\ : & \frac {AF}{AB}\cdot\frac {SB}{SC}\cdot\frac {PC}{PF}=1\end{array}\right\|$ $\bigodot\implies$

$\frac {PB\cdot PC}{PE\cdot PF}=\frac {bc}{xy}=$ $\frac by\cdot\frac cx=\frac am\cdot \frac an=\frac {a^2}{mn}\implies$ $\boxed{\frac {PB\cdot PC}{PE\cdot PF}=\frac {a^2}{mn}}$ and $\boxed{\frac{bc}{a^2}=\frac {xy}{mn}}\ (1)$ . Is well-known or prove easily that the division $(A,P;Q,S)$ is a harmonical division,

i.e. $\frac {QA}{QP}=\frac {SA}{SP}$ . Thus, $\frac {PA}{PQ}=1+\frac {QA}{QP}=1+\frac {SA}{SP}=$ $2+\frac {PA}{PS}=2+\frac {FA}{FB}+\frac {EA}{EC}=$ $\frac {AB}{FB}+\frac {AC}{EC}=$ $\frac am+\frac an=\frac {a^2}{mn}$ . In conclusion, $\boxed{\frac {PB\cdot PC}{PE\cdot PF}=\frac {PA}{PQ}}\ (3)$ .

Apply an well-known relation for the estimate of the ratio $\frac {QE}{QF}=\frac {SC}{SB}\cdot\frac {AE}{AC}$ $\cdot\frac {AB}{AF}\ \stackrel{(2)}{=}\ \left(\frac nm\right)^2$ $\cdot \frac yb\cdot \frac cx=$ $\left(\frac nm\right)^2\cdot\frac ma\cdot\frac an=$ $\frac nm=\frac {DC}{DB}\implies$ $\boxed{\frac {QE}{QF}=\frac {DC}{DB}}\ (*)$ .

Remark. $\frac {[BAC]}{[EAF]}=\frac {bc}{xy}=\frac {PB\cdot PC}{PE\cdot PF}=\frac {[BPC]}{[EPF]} \implies$ $[BAC]\cdot [EPF]=[EAF]\cdot [BPC]$ . For any $D\in (BC)$ the ratio $\frac {xy}{mn}=\frac {bc}{a^2}$ , i.e. it is constant.



PP6 (Edson Curahua). Let $\triangle ABC$ with the $B$-bisector $[BD$ , where $D\in (AC)$ and $m\left(\widehat{BDC}\right)=60^{\circ}$ . Prove that $DB+DC=AB\iff A=40^{\circ}$ .

Proof 1 (trigonometric). Apply the theorem of Sines in $\triangle ABD$ and $\triangle CBD\ :\ DB+DC=AB\iff$ $1+\frac {DC}{DB}=\frac {AB}{DB}\iff$ $1+\frac {\sin\left(60^{\circ}+A\right)}{\sin\left(60^{\circ}+A\right)}=\frac {\sin 60^{\circ}}{\sin A}\iff$

$\left[\cos\left(30^{\circ}-A\right)+\cos\left(30^{\circ}+A\right)\right]\sin A=\sin  60^{\circ}\sin \left(60^{\circ}-A\right)\iff$ $2\cos 30^{\circ}\cos A\sin A=\sin 60^{\circ}\sin\left(60^{\circ}+A\right)\iff$ $\sin 2A=\sin \left(60^{\circ}+A\right)\iff$ $\boxed{\ A=40^{\circ}\ }$ .



PP7 (Ruben Dario). Let an equilateral $\triangle ABC$ with $\left\{\begin{array}{ccccc}
D\in (BC) & , & C\in (BD) & ; & CD=n\\\\
E\in (AD) & ; & EA=ED & ; & BE=m\end{array}\right\|$ . Prove that $\widehat{CAD}\equiv\widehat{DCE}\iff m=n$ .

Proof (metric). Denote $AB=l$ , $AD=2p$ and $CE=r$ . Apply the generalized Pythagoras' theorem to $\triangle ACD$ , where $m\left(\widehat{ACD}\right)=120^{\circ}\ :$

$AD^2=CA^2+CD^2+CA\cdot CD\implies$ $\boxed{4p^2=n^2+l^2+nl}\ (*)$ . Apply the theorem of median in the mentioned triangles $:$

$\left\{\begin{array}{cccccc}
CE/\triangle ACD & \implies & 4\cdot CE^2=2\cdot \left(CA^2+CD^2\right)-AD^2 & \stackrel{(*)}{\implies} & 4r^2=l^2+n^2-ln & (1)\\\\
BE/\triangle ABD & \implies & 4\cdot BE^2=2\left(BA^2+BD^2\right)-AD^2 & \stackrel{(*)}{\implies} & 4m^2=3l(l+n)+n^2 & (2)\end{array}\right\|$ In conclusion, $\widehat{CAD}\equiv\widehat{DCE}\iff$

$\triangle DCE\sim\triangle DAC\iff$ $\frac {DC}{DA}=\frac {DE}{DC}\iff$ $DC^2=DA\cdot DE\iff$ $n^2=2p^2\ \stackrel{(*)}{\iff}\ n^2=l(l+n)\ \stackrel{(2)}{\iff}\ 4m^2=4n^2\iff m=n$ .

Remark. $m=n\iff x=y\iff n^2-ln-l^2=0\iff$ $\frac nl=\frac {1+\sqrt 5}{2}\iff$ $\frac m{\sqrt 2\left(1+\sqrt 5\right)}=$ $\frac p{1+\sqrt 5}=\frac r2=\frac l{2\sqrt 2}$ . Prove
easily that $\cos x=\sqrt {\frac 58}$ . Indeed, $\cos x=\frac {4p^2+l^2-n^2}{4lp}=$ $\frac {4\left(1+\sqrt 5\right)^2+8-2\left(1+\sqrt 5\right)^2}{8\sqrt 2\left(1+\sqrt 5\right)}=$ $\frac {5+\sqrt 5}{2\sqrt 2\left(1+\sqrt 5\right)}\implies$ $\cos x=\sqrt{\frac 58}$ .



PP8. Let $\triangle ABC$ and the interior point $P$ so that $\left\{\begin{array}{ccc}
m\left(\widehat{PAB}\right)=30^{\circ} & ; & m\left(\widehat{PAC}\right)=70^{\circ}\\\\
m\left(\widehat{PBA}\right)=10^{\circ} & ; & m\left(\widehat{PCA}\right)=10^{\circ}\end{array}\right\|$ . Prove that $m\left(\widehat{PBC}\right)=40^{\circ}$ .

Proof 1 (Sunken Rock). Let $D\in BC\cap AP$ and $E$ the reflection of $B$ in $AP$. Triangle $\triangle ABE$ is equilateral and, since $\angle ACP=\angle AEP=10^\circ$ we infer that $APEC$ is cyclic.

Also $PE$ is angle bisector of $\angle CPD$, wherefrom due to angles equality we get $CE=AE$ , hence $E$ is the circumcenter of $\triangle ABC$, consequently $\angle ACB=30^\circ$, giving $\angle PCB=20^\circ$

Proof 2. Denote $m\left(\widehat{PBC}\right)=x$ and apply the trigonometric form of the Ceva's theorem $:\ \sin\widehat{PAB}\sin\widehat{PBC}\sin\widehat{PCA}=\sin\widehat{PAC}\sin\widehat{PBA}\sin\widehat{PCB}\iff$

$\sin 30^{\circ}\sin x\sin 10^{\circ}=\sin 70^{\circ}\sin 10^{\circ}\sin \left(60^{\circ}-x\right)\iff$ $\sin x=2\cos 20^{\circ}\sin \left(60^{\circ}-x\right)\iff$ $\sin x=\sin \left(80^{\circ}-x\right)+$ $\sin \left(40^{\circ}-x\right)\iff$

$\sin\left(x-40^{\circ}\right)=2\sin\left(40^{\circ}-x\right)\cos 40^{\circ}\iff$ $\sin\left(x-40^{\circ}\right)\left(1+2\cos 40^{\circ}\right)=0\iff$ $\sin\left(x-40^{\circ}\right)=0\iff$ $x=40^{\circ}\iff$ $m\left(\widehat{PBC}\right)=40^{\circ}$ .


Quote:
Balkan Mathematical Olympiad - Athens, Hellas, 2015. Let ABC be a scalene triangle with incentre I and circumcircle (ω). The lines AI,BI,CI intersect
again (ω) at D,E,F respectively. The lines through I parallel to BC,CA,AB intersect EF,FD,DE at K,L,M respectively. Prove that K,L,M are collinear.


Proof. First we will prove that KA is tangent to (ω). Indeed, it is a well-known fact that FA=FB=FI and EA=EC=EI, so EF is the perpendicular bisector of AI. It follows that KA=KI and ∠KAF=∠KIF=∠FCB=∠FEB=∠FEA, so KA is tangent to (ω). Similarly we can prove that LB,MC are tangent to (ω) as well. Let A',B',C' the intersections of AI,BI,CI with BC,CA,AB respectively. From Pascal’s theorem on the cyclic hexagon AABEFC we get K,C',B' collinear. Similarly L,C',A' collinear and M,B',A' collinear. Then from Desargues’ theorem for DEF and A'B'C' which are perspective from I, we get that K,L,M of the intersection of their corresponding sides are collinear as wanted.

Remark. After proving that KA,LB,MC are tangent to (ω), we can argue as follows: it readily follows that KAF~KEA, i.e. KA/KE=KF/KA=AF/EA, thus KF/KE=(AF/AE)^2. In a similar way we can find that ME/MD=(CE/CD)^2 and LD/LF=(BD/BF)^2. Multiplying we obtain (KF/KE).(ME/MD).(LD/LF)=1, so by the converse of Menelaus theorem applied in DEF we get that K,L,M are collinear.


PP9. Let an $A$-rightangled $\triangle ABC$ with $D\in BC\ ,\ AD\perp BC$ . Let the incircles $w=C(I,r)$ , $w_1=C\left(I_1,r_1\right)$ and

$w_2=C\left(I_2,r_2\right)$ of the triangles $ABC$ , $DAB$ and $DAC$ respectively and $E\in I_1I_2\cap AD$ . Prove that $\frac 1{AE}=\frac 1{AB}+\frac 1{AC}$ .


Proof. Let $\left\{\begin{array}{c}
X\in BC\cap w_1\\\\
Y\in BC\cap w_2\end{array}\right\|$ . Thus, $DAC\sim ABC\sim DBA\implies$ $\frac {r_1}c=\frac ra=\frac {r_2}b$ . In the trapezoid $I_1XYI_2$ there is the relation $\frac {DX}{DY}=\frac {r_1}{r_2}=\frac {DI_1}{DI_2}$ .

Therefore, $XI_2\cap YI_1\subset DE$ and $\frac 2{DE}=\frac 1{XI_1}+\frac 1{YI_2}\iff$ $\frac 2{DE}=\frac 1{r_1}+\frac 1{r_2}=$ $\frac ar\left(\frac 1c+\frac 1b\right)=$ $\frac {a(b+c)}{rbc}$ . Since $2r=b+c-a$ obtain that

$DE=\frac {bc(b+c-a)}{a(b+c)}=\frac {bc}a-\frac {bc}{b+c}=$ $AD-\frac {bc}{b+c}\iff$ $AE=AD-DE=\frac {bc}{b+c}\iff$ $\frac 1{AE}=\frac 1{c}+\frac 1{b}$ , i.e. $\frac 1{AE}=\frac 1{AB}+\frac 1{AC}$ .


An easy extension. Let $\triangle ABC$ with $D\in (BC)\ ,\ AD\perp BC$ . Let the incircles $w=C(I,r)$ , $w_1=C\left(I_1,r_1\right)$ and $w_2=C\left(I_2,r_2\right)$

of the triangles $ABC$ , $DAB$ and $DAC$ respectively and $E\in I_1I_2\cap AD$ . Prove that $\boxed{\frac 1{AE}=\frac {b+c}{2S}+\frac a{2S}\cdot\left(1-\cot\frac A2\right)}$ .


Proof. Let $\left\{\begin{array}{c}
X\in BC\cap w_1\\\\
Y\in BC\cap w_2\end{array}\right\|$ . Thus, in the trapezoid $I_1XYI_2$ there is the relation $\frac {DX}{DY}=\frac {r_1}{r_2}=\frac {DI_1}{DI_2}$ . Thus, $XI_2\cap YI_1\subset DE$ and $\frac 2{DE}=\frac 1{XI_1}+\frac 1{YI_2}\iff$

$\frac 2{DE}=\frac 1{r_1}+\frac 1{r_2}\iff$ $\boxed{DE=\frac {2r_1r_2}{r_1+r_2}}\ (*)$ . Denote $AD=h$ , $DB=u$ and $DC=v$ , where $u+v=a$ . Observe that $\left\{\begin{array}{ccc}
2r_1 & = & h+u-c\\\\
2r_2 & = & h+v-b\end{array}\right\|$ . Therefore,

$2r_1+2r_2=2h-2(s-a)$ and $4r_1r_2=h^2-2h(s-a)+(b-v)(c-u)\implies$ $AE=AD-DE\ \stackrel{(*)}{=}\ h-\frac {h^2-2h(s-a)+(b-v)(c-u)}{2h-2(s-a)}\implies$

$AE=\frac {h^2-(b-v)(c-u)}{2h-2(s-a)}\implies$ $\boxed{\frac 1{AE}=\frac {2h-2(s-a)}{h^2-(b-v)(c-u)}}\ (1)$ . Observe that $:\ h-(s-a)=\frac {2S}a-\frac S{r_a}\implies$ $\boxed{h-(s-a)=\frac S{ar_a}\cdot \left(2r_a-a\right)}\ (2)\ ;$

$h^2=$ $h\cdot h=c\sin B\cdot b\sin C=bc\sin B\sin C=$ $4bc\sin\frac B2\cos\frac B2\sin\frac C2\cos\frac C2\implies$ $\boxed{h^2=4bc\sin\frac B2\cos\frac B2\sin\frac C2\cos\frac C2}\ (3.1)$ and $(b-v)(c-u)=$

$(b-b\cos C)(c-c\cos B)=$ $bc(1-\cos B)(1-\cos C)\implies$ $\boxed{(b-v)(b-u)=4bc\sin^2\frac B2\sin^2\frac C2}\ (3.2)$ . So $h^2-(b-v)(c-u)=$

$4bc\sin\frac B2\sin\frac C2\left(\cos\frac B2\cos\frac C2-\sin\frac B2\sin\frac C2\right)=$ $4bc\sin\frac A2\sin\frac B2\sin\frac C2=$ $\frac {4bc(s-a)(s-b)(s-c)}{abc}=$ $\frac {4sr^2}{a}\implies$ $\boxed{h^2-(b-v)(c-u)=\frac {4Sr}a}\ (3)$ .

In conclusion, using the relations $(1)$ , $(2)$ and $(3)$ obtain that $\frac 1{AE}=\frac {\frac S{ar_a}\cdot \left(2r_a-a\right)}{\frac {2Sr}a}\implies$ $\boxed{\frac 1{AE}=\frac {2r_a-a}{2rr_a}}\ (4)$ . Are well-known the relations $\frac r{s-a}=\tan\frac A2=\frac {r_a}s$

and $S\tan\frac A2=(s-b)(s-c)=rr_a$ . Thus, the relation $(4)$ becomes $\frac 1{AE}=\frac 1r-\frac a{2rr_a}=$ $\frac {a+b+c}{2S}-\frac a{2S\tan\frac A2}\implies$ $\frac 1{AE}=\frac 1{2S}\left[(b+c)+a\left(1-\cot\frac A2\right)\right]$ .

Particular case. $A=90^{\circ}\implies$ $2S=bc\ ,\ \tan\frac A2=1\implies$ $\frac 1{AE}=\frac {b+c}{bc}\implies$ $\frac 1{AE}=\frac 1b+\frac 1c\implies$ $\frac 1{AE}=\frac 1{AB}+\frac 1{AC}$ .



PP10 (JBMO - team selection test 2015). Let an $A$- rightangled $\triangle ABC$ with the $B$-bisector $[BE$ , where $E\in (AC)$ . The sideline $AB$

cut again the circumcircle of $\triangle BCE$ at the point $F$ . Consider the point $L\in (AB)$ for which $BL=BK$ . Prove that $\frac {AL}{AF}=\sqrt{\frac {BK}{BC}}$ .


Proof (Gabi Cuc). Apply the theorem of the $B$-bisector $[BE\ :\ \frac {EA}{EC}=\frac {BA}{BC}\iff$ $\frac {EA}c=\frac {EC}a=\frac b{a+c}=\frac {a-c}b\implies$ $\boxed{EA=\frac {c(a-c)}b}\ (1)$ . Therefore,

$BFEC$ is cyclic $\iff$ $AB\cdot AF=AC\cdot AE\ \stackrel{(1)}{=}\ AF=$ $\frac bc\cdot\frac {c(a-c)}b\iff$ $\boxed{AF=a-c}\ (2)$ . Thus, $BL=BK=\frac {c^2}a\implies$ $AL=AB-BL\implies$

$\boxed{AL=c-\frac {c^2}a}\iff$ $\boxed{AL=\frac {c(a-c)}a}\ (3)$ . In conclusion, $\frac {AL}{AF}\ \stackrel{(2\wedge 3)}{=}\ \frac ca$ and $\sqrt{\frac {BK}{BC}}=\sqrt{\frac {\frac {c^2}a}{a}}\implies$ $\sqrt{\frac {BK}{BC}}=\frac ca$ , i.e. $\frac {AL}{AF}=\sqrt{\frac {BK}{BC}}$ .



PP11 (Ruben Dario). Let $\triangle ABC$ with $AD\perp BC\ ,\ D\in (BC)$ and $\left\{\begin{array}{ccc}
M\in (AB)\ ,\ DM\perp AB & ; & N\in (AC)\ ,\ DN\perp AC\\\\
X\in (BC)\ ,\ MX\perp BC & ; & Y\in (BC)\ ,\ NY\perp BC\end{array}\right\|$ . Prove that $\widehat{DAX}\equiv\widehat{DAY}\iff A=90^{\circ}$

Proof 1. $AM\cdot AB=AD^2=AN\cdot AC\implies\boxed{\frac {AM}b=\frac {AN}c}\ (*)$ .Thus, $\widehat{DAX}\equiv\widehat{DAY}\iff DX=DY\iff $ $AM\cdot \cos B=AN\cdot\cos C\ \stackrel{(*)}{\iff}$

$\boxed{b\cdot\cos B=c\cdot\cos C}\ (1)\ \iff\ b^2\cdot 2ac\cos B=c^2\cdot 2ab\cos C\iff$ $b^2\left(a^2+c^2-b^2\right)=c^2\left(a^2+b^2-c^2\right)\iff$ $a^2\left(b^2-c^2\right)=b^4-c^4\ \stackrel{(b\ne c)}{\iff}$

$a^2=b^2+c^2\iff A=90^{\circ}$ . Otherwise. The relation $(1)\iff$ $2R\sin B\cos B=2R\sin C\cos C$ where $R$ - length of the circumradius for $\triangle ABC\iff$

$\sin 2B=\sin 2C\ \stackrel{B\ne C}{\iff}\ 2(B+C)=180^{\circ}\iff B+C=90^{\circ}\iff A=90^{\circ}$ .

Proof 2. $\left\{\begin{array}{ccc}
BD & = & AB\cdot cos B\\\\
BM & = & BD\cdot \cos B\\\\
BX & = & BM\cdot \cos B\end{array}\right\|\bigodot\implies$ $BX=c\cdot\cos^3B\iff DX=BD-BX=$ $c\cdot\cos B-c^3\cdot\cos^3B=$ $c\cdot\cos B\left(1-\sin^2B\right)=$

$c\cdot\cos B\sin^2B\iff$ $\boxed{DX=c\cdot\cos B\sin^2B}\ (2)\ .$ Get similarly that $\boxed{DY=b\cdot\cos C\sin^2C}\ (3)\ .$ Therefore, $\widehat{DAX}\equiv\widehat{DAY}\iff$ $DX=DY\ \stackrel{2\wedge 3}{\iff}$

$ c\sin B\cdot\cos B\sin B=b\sin C\cdot\cos C\sin C\ \stackrel{c\sin B=b\sin C\ne 0}{\iff}\ \cos B\sin B=\cos C\sin C\iff$ $\sin 2B=$ $\sin 2C\ \stackrel{B\ne C}{\iff}\ 2(B+C)=180^{\circ}\iff A=90^{\circ}\ .$
This post has been edited 252 times. Last edited by Virgil Nicula, Sep 28, 2015, 5:35 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a