455. Problems for the relaxation in ... weekend!

by Virgil Nicula, Jul 9, 2017, 2:12 PM

$\boxed{\mathrm{LEMMA\ :}\ (\forall )\ x>0\ ,\ x^3+1\ge x\sqrt{2\left(x^2+1\right)}\ .\ \mathrm{APPLICATION\ :}\ (\forall )\ \triangle\ ABC\ ,\ a^3+b^3+c^3\ \ge\ \left(2+\sqrt 2\right)abc}$


P1. Prove that $\sum_{\mathrm{cyc}} a^2(s-a)=4rs(R+r)$ and $\sum_{\mathrm{cyc}}\frac {a^2}{(s-b)(s-c)}\ge 12\ ,$ where $2s=a+b+c\ ($ standard notations for $\triangle ABC)\ .$

Proof.

$\blacktriangleright$ Denote $\left\{\begin{array}{ccc}
x & := & s-a\\\
y & := & s-b\\\
z & := & s-c\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
a & = & y+z\\\
b & = & x+z\\\
c & = & x+y\end{array}\right\|\ .$ Hence $\left\{\begin{array}{ccc}
x+y+z & = & s\\\\
a+b+c & = & 2s\end{array}\right\|\ .$ Therefore, $\sum_{\mathrm{cyc}} a^2(s-a)=$ $\sum x(y+z)^2=$ $\sum \left[2xyz+x\left(y^2+z^2\right)\right]=$

$2\cdot \sum (xyz)+\sum x\left(y^2+z^2\right)=$ $6xyz+\sum yz(y+z)=$ $6xyz+\sum yz[(x+y+z)-x]=6xyz+\sum yz\cdot \sum x-\sum (xyz)=$ $3xyz+\sum (s-b)(s-c)\cdot\sum (s-a)=$

$3(s-a)(s-b)(s-c)+s\cdot \sum [bc-s(s-a)]=$ $3sr^2+s\left(\cancel{s^2}+r^2+4Rr\right)-\cancel{s^3}=4sr^2+4Rsr=4sr(R+r)\implies$ $\boxed{\sum_{\mathrm{cyc}} a^2(s-a)=4sr(R+r)}\ .$ We have equality iff $P=1\ ,$ i.e. $yz=1\ .$

$\blacktriangleright\ \sum_{\mathrm{cyc}}\frac {a^2}{(s-b)(s-c)}=\sum_{\mathrm{cyc}}\frac {(y+z)^2}{yz}=$ $\sum_{\mathrm{cyc}}\left(\frac yz+\frac zy+2\right)=6+\sum\left(\frac yz+\frac zy\right)\ge 12\implies$ $\boxed{\sum_{\mathrm{cyc}}\frac {a^2}{(s-b)(s-c)}\ge 12}\ .$ I used the identities $\left\|\begin{array}{c}
s(s-a)+(s-b)(s-c)=bc\\\\
ab+bc+ca=s^2+r^2+4Rr\\\\
(s-a)(s-b)(s-c)=sr^2\end{array}\right\|\ .$

Remark. $\sum\frac {a^2}{(s-b)(s-c)}=\frac 1{(s-a)(s-b)(s-c)}\cdot\sum a^2(s-a)=$ $\frac {4sr(R+r)}{sr^2}=\frac {4(R+r)}r\ge \frac {4(2r+r)}r=12\implies$ $\sum\frac {a^2}{(s-b)(s-c)}\ge 12\ .$



P2. For an $A$-rightangled $\triangle ABC$ denote $:\ M\ -$ the midpoint of $[AB]\ ;\ D\ -$ the projection of $A$ on $BC\ .$ Prove that the equivalence $\boxed{m\left(\widehat{MCA}\right)=2\cdot m\left(\widehat{MCB}\right)\iff\frac {DB}{DC}=\frac {1+\sqrt {17}}2}\ .$

Proof. Let $m\left(\widehat{MCB}\right)=\phi$ and $\boxed{t:=\frac {c^2}{b^2}}\ .$ $\implies$ $\frac {DB}{DC}=\frac {a\cdot DB}{a\cdot DC}=\frac {c^2}{b^2}=t\implies$ $\boxed{\frac{DB}{DC}=t}\ (*)\ .$ Thus, $1=\frac {MA}{MB}=\frac {CA}{CB}\cdot\frac {\sin\widehat{MCA}}{\sin\widehat{MCB}}=$ $\frac ba\cdot \frac {\sin 2\phi}{\sin\phi}\implies$ $1=\frac {2b\cos\phi}a \implies $ $\cos\phi =\frac a{2b}\ .$

Hence $ \cos^2\phi =\frac {a^2}{4b^2}=\frac {b^2+c^2}{4b^2}=\frac {t+1}4\implies$ $2\cos^2\phi -1=\frac {t+1}2-1=\frac {t-1}2\implies$ $\boxed{2\cos^2\phi -1=\frac {t-1}2}\ (1)\ .$ Thus, $\cos 2\phi =\frac {CA}{CM}=\frac {CA}{\sqrt {AC^2+AM^2}}=\frac b{\sqrt{b^2+\frac {c^2}4}}=$ $\frac {2b}{\sqrt{4b^2+c^2}}=\frac 2{\sqrt{t+4}}\implies$ $\boxed{\cos 2\phi =\frac 2{\sqrt{t+4}}}\ (2)\ .$ Thus, $\cos2\phi=2\cos^2\phi -1\ \stackrel{(1\wedge 2)}{\iff}\ \frac 2{\sqrt {t+4}}=\frac {t-1}2\iff$ $(t-1)\sqrt{t+4}=4\iff$ $t>1$ and $t^3+2t^2-7t-12=0\iff$

$(t+3)(t^2-t-4)=0\iff t^2-t-4=0\iff t=\frac {1+\sqrt {17}}2\ \stackrel{(*)}{\iff}\ \boxed{\frac {DB}{DC}=\frac {1+\sqrt {17}}2}\ .$



P3 (Kadir Altintas). Let $\triangle ABC$ with $b\ne c,$ the incenter $I,$ the orthocenter $H,$ the Nagel's point $N$ and the midpoint $M$ of $[IH].$ Prove that $NM\perp BC\iff b+c=5a.$

Proof. Denote $\left\{\begin{array}{cccc}
D\in AN\cap BC\ : & DB=s-c\ ; & DC=s-b\\\\ 
E\in BN\cap BC\ : & EC=s-a\ ; & EA=s-c\\\\ 
F\in CN\cap BC\ : & FA=s-b\ ; & FB=s-a\end{array}\right\|\ .$ From the Aubel's relation obtain that $\frac {NA}{ND}=\frac {FA}{FB}+\frac {EA}{EC}=\frac {s-c}{s-a}+\frac {s-b}{s-a}=\frac a{s-a}$ $\implies$ $\boxed{\frac {NA}{ND}=\frac a{s-a}}\ (*)$ $\implies$

$\frac {NA}a=\frac {ND}{s-a}=\frac {AD}s\ .$ Apply the Stewart's relation to the ray $[AD$ in $\triangle ABC\ :\ \boxed{a\cdot AD^2+a(s-b)(s-c)=c^2(s-b)+b^2(s-c)}\ .$ Apply the theorem of median to the following triangles $:$

$\left\{\begin{array}{cc}
BM/\triangle BIH\ : & 4\cdot MB^2=2\cdot\left(BI^2+BH^2\right)-IH^2\\\\
CM/\triangle CIH\ : & 4\cdot MC^2=2\cdot\left(CI^2+CH^2\right)-IH^2\end{array}\right\|\ .$ Product of the substruction between the previous relations becomes $4\cdot\left(MB^2-MC^2\right)=$ $2\left(BI^2-CI^2\right)+2\cdot\left(BH^2-CH^2\right)=$

$2\cdot\left[\frac {ac(s-b)}s-\frac {ab(s-c)}s\right]+2\cdot 4R^2\left(\cos^2B-\cos^2C\right)=2\cdot [(ac-4Rr)-(ab-4Rr)]+2\cdot 4R^2\left(\sin^2C-\sin^2B\right)=$ $2a(c-b)+2\left(c^2-b^2\right)=$ $2(c-b)(a+b+c)=$

$4s(c-b)\implies$ $4\cdot\left(MB^2-MC^2\right)=$ $4s(c-b)\iff$ $\boxed{MB^2-MC^2=s(c-b)}\ (1)\ .$ Apply the Stewart's relation to the ray $[NB/\triangle ABD\ :\ NB^2\cdot AD+AD\cdot NA\cdot ND=$

$c^2\cdot ND+(s-c)^2\cdot NA\iff$ $NB^2+\frac {a(s-a)}{s^2}\cdot AD^2=$ $\frac {c^2(s-a)}s+\frac {a(s-c)^2}s\iff$ $\boxed{s^2\cdot NB^2+a(s-a)\cdot AD^2=s\cdot\left[c^2(s-a)+a(s-c)^2\right]}\ .$ Get analogously the similar relation

$\boxed{s^2\cdot NC^2+a(s-a)\cdot AD^2=s\cdot \left[b^2(s-a)+a(s-b)^2\right]}\ .$ From the substruction between the previous relations get $s\cancel{^2}\cdot\left(NB^2-NC^2\right)=\cancel s(s-a)(c-b)(c+b)-\cancel sa^2(c-b)\iff$

$s\cdot\left(NB^2-NC^2\right)=(s-a)(c-b)(c+b)-a^2(c-b)=$ $(c-b)\left[(s-a)(b+c)-a^2\right]=(c-b)[s(b+c)-a(a+b+c)]=s[(c-b)[(b+c)-2a]\iff$

$\boxed{NB^2-NC^2=(c-b)(b+c-2a)}\ (2)\ .$ In conclusion, $NM\perp BC\iff$ $NB^2-NC^2=MB^2-MC^2\ \stackrel{1\wedge 2}{\iff}\ b+c-2a=s\iff 2(b+c)-4a=a+(b+c)\iff$ $b+c=5a\ .$

Remark 1. If $E$ is the Euler's nine-point center, then prove easily that $\boxed{EB^2-EC^2=\frac {c^2-b^2}2}\ .$ From PP3 we have $\boxed{NB^2-NC^2=(c-b)(b+c-2a)}\ .$ Therefore, $NE\perp BC\iff$

$NB^2-NC^2=EB^2-EC^2\iff$ $(\cancel{c-b})[(b+c)-2a]=\frac {(\cancel{c-b})(c+b)}2\iff$ $2(b+c)-4a=c+b\iff$ $b+c=4a.$ In conclusion, $\boxed{NE\perp BC\iff b+c=4a}\ .$

Remark 2. $I -$ the incenter of $\triangle ABC\implies$ $IB^2-IC^2=\frac {ac(s-b)}s-\frac {ab(s-c)}s=$ $ac-ab=a(c-b),$ i.e. $\boxed{IB^2-IC^2=a(c-b)}\ .$ From the previous remark obtain that

$\boxed{EB^2-EC^2=\frac {c^2-b^2}2}\ .$ Hence $IE\perp BC\iff$ $IB^2-IC^2=EB^2-EC^2\iff$ $a(c-b)=\frac {(c-b)(c+b)}2\iff$ $a=\frac{c+b}2\iff$ $b+c=2a,$ i.e. $\boxed{IE\perp BC\iff b+c=2a}$



P4 (Kadir Altintas). Let $\triangle ABC$ with $b\ne c,$ the incenter $I,$ the centroid $G,$ the Euler's nine-point center $E$ and the Lemoine's point $K\ .$ Prove that $\left\{\begin{array}{ccc}
KG\perp BC & \iff & b^2+c^2=5a^2\\\\
KE\perp BC & \iff & b^2+c^2=3a^2\\\\
KI\perp BC & \iff & a=b+c-\sqrt {2bc}\end{array}\right\|\ .$

Proof. I"ll use the relations $\boxed{s_a=\frac {2bc}{b^2+c^2}\cdot m_a}\ (*)$ and $\boxed{4m_a^2=2\left(b^2+c^2\right)-a^2}\ (1)\ ,$ where $m_a$ is the length of the $A$-median and $s_a$ is the length of the $A$-symmedian. Let $Y\in BK\cap AC$ and

$Z\in CK\cap AB\ .$ Prove easily that $\left\{\begin{array}{ccc}
\frac {KB}{a^2+c^2}=\frac {BY}{a^2+b^2+c^2}=\frac {2acm_b}{\left(a^2+c^2\right)\left(a^2+b^2+c^2\right)} & \implies & KB=\frac {2acm_b}{a^2+b^2+c^2}\\\\
\frac {KC}{a^2+b^2}=\frac {CZ}{a^2+b^2+c^2}=\frac {2acm_c}{\left(a^2+b^2\right)\left(a^2+b^2+c^2\right)} & \implies & KB=\frac {2acm_b}{a^2+b^2+c^2}\end{array}\right\|\ .$ Therefore, $KB^2-KC^2=\left(\frac {2acm_b}{a^2+b^2+c^2}\right)^2-\left(\frac {2abm_c}{a^2+b^2+c^2}\right)^2=$

$\frac {4a^2\left(c^2m_b^2-b^2m_c^2\right)}{\left(a^2+b^2+c^2\right)^2}=$ $\frac {a^2}{\left(a^2+b^2+c^2\right)^2}\cdot\left[c^2\left(2a^2+2c^2-\cancel{b^2}\right)-b^2\left(2a^2+2b^2-\cancel{c^2}\right)\right]=$ $\frac {a^2\left[2a^2\left(c^2-b^2\right)+2\left(c^4-b^4\right)\right]}{\left(a^2+b^2+c^2\right)^2}=$ $\frac {2a^2\left(c^2-b^2\right)\left(a^2+b^2+c^2\right)}{\left(a^2+b^2+c^2\right)^2}=$ $\frac {2a^2\left(c^2-b^2\right)}{a^2+b^2+c^2}\implies$

$\boxed{KB^2-KC^2=\frac {2a^2\left(c^2-b^2\right)}{a^2+b^2+c^2}}\ (2)\ .$ Prove easily that $\boxed{GB^2-GC^2=\frac {c^2-b^2}3}\ (3)\ .$ Hence $KG\perp BC\iff$ $KB^2-KC^2=GB^2-GC^2\stackrel{2\wedge 3}{\iff}\ \frac {2a^2\left(c^2-b^2\right)}{a^2+b^2+c^2}=\frac {c^2-b^2}3\iff$

$a^2+b^2+c^2=6a^2\iff b^2+c^2=5a^2\ .$ In conclusion, $\boxed{KG\perp BC \iff b^2+c^2=5a^2}\ .$ In the previous remark 2 proved that $EB^2-EC^2=\frac {c^2-b^2}2\ .$ Hence $KE\perp BC\iff$

$KB^2-KC^2=EB^2-EC^2\iff$ $\frac {2a^2\left(c^2-b^2\right)}{a^2+b^2+c^2}=\frac {c^2-b^2}2\iff$ $a^2+b^2+c^2=4a^2\iff$ $b^2+c^2=3a^2\ .$ In conclusion, $\boxed{KE\perp BC\iff b^2+c^2=3a^2}\ .$ From the previous

remark 2 obtain $IB^2-IC^2=a(c-b)\ .$ Hence $KI\perp BC\iff$ $KB^2-KC^2=IB^2-IC^2\iff$ $\frac {2a^2\left(c^2-b^2\right)}{a^2+b^2+c^2}=a(c-b)\iff$ $2a(b+c)=a^2+b^2+c^2\iff$

$a^2-2a(b+c)+(b+c)^2-2bc=0\iff$ $(b+c-a)^2=2bc\iff$ $b+c-a=\sqrt{2bc}\iff$ $a=b+c-\sqrt {2bc}\ .$ In conclusion, $\boxed{KI\perp BC\iff a=b+c-\sqrt {2bc}}\ .$


An easy extension. Let $M(x,y,z)$ be the point with barrycentrical coordinates w.r.t. $\triangle ABC,$ where $x+y+z=1.$ Prove that $\boxed{MB^2-MC^2=(z-y)\cdot a^2+x\left(c^2-b^2\right)}$ (standard notations).

Proof. If $M_k\left(x_k,y_k,z_k\right)$ where $k\in\overline{1,2},$ then $\boxed{M_1M_2^2=-\left[\left(y_1-y_2\right)\left(z_1-z_2\right)\cdot a^2+\left(z_1-z_2\right)\left(x_1-x_2\right)\cdot b^2+\left(x_1-x_2\right)\left(y_1-y_2\right)\cdot c^2\right]}\ .$ For example, if $M(x,y,z)$ and $A(1,0,0)$ then:

$MA^2=-\left[yz\cdot a^2+z(x-1)\cdot b^2+(x-1)y\cdot c^2\right]\implies\odot$ $\begin{array}{ccc}
\nearrow & MB^2=-\left[zx\cdot b^2+x(y-1)\cdot c^2+z(y-1)\cdot a^2\right] & \searrow\\\\
\searrow & MC^2=-\left[xy\cdot c^2+y(z-1)\cdot a^2+x(z-1)\cdot b^2\right] & \nearrow\end{array}\odot\implies$ $MB^2-MC^2=(z-y)\cdot a^2+x\left(c^2-b^2\right)\ .$

Exemple de coordonate baricentrice pentru cateva puncte remarcabile ale unui triunghi $ABC,$ unde $A(1,0,0)\ ;\ B(0,1,0)\ ;\ C(0,0,1)$ sunt varfurile triunghiului $ABC\ .$

$\blacktriangleright\ D\left(0,\frac 12,\frac 12\right)$ - mijlocul lui $[BC]\ ;\ A_1\left(-1,1,1\right)$ - simetricul lui $A$ fata de $D\ ;\ A_2\left(2,-\frac 12,-\frac 12\right)$ - simetricul lui $D$ fata de $A\ ;\ G\left(\frac 13,\frac 13,\frac 13\right)$ - centru de greutate al triunghiului $ABC\ .$

$\blacktriangleright\ I\left(\frac a{2s},\frac b{2s},\frac c{2s}\right)$ - centrul cercului inscris $w=\mathbb (I,r)\ ,\ a+b+c=2s\ ;\ O\left(\frac {R^2\sin 2A}{2S},\frac {R^2\sin 2A}{2S},\frac {R^2\sin 2A}{2S}\right)$ - centrul cercului circumscris $\Omega =\mathbb C\left(O,R\right)\ ,\ \sum \sin 2A=\frac {2S}{R^2}\ .$

$\blacktriangleright\ H\left(\cot B\cot C,\cot C\cot A,\cot A\cot B\right)$ - ortocentrul$,\ \sum\cot B\cot C=1\ ;\ I_a\left(\frac {-a}{2(s-a)},\frac b{2(s-a)},\frac c{2(s-a)}\right)$ - centrul cercului exinscris $w_a=\mathbb C\left(I_a,r_a\right)\ ,\ -a+b+c=2(s-a).$

$\blacktriangleright\ N\left(\frac {s-a}s,\frac {s-b}s,\frac {s-c}s\right)$ - punctul lui Nagel$,\ \sum (s-a)=s\ ;\ \Gamma\left(\frac {(s-b)(s-c)}{r(4R+r)},\frac {(s-c)(s-a)}{r(4R+r)},\frac {(s-a)(s-b)}{r(4R+r)}\right)$ - punctul lui Gergonne$,\ \sum (s-b)(s-c)=r(4R+r)\ .$

$\blacktriangleright\ L\left(\frac {a^2}{\sum a^2},\frac {b^2}{\sum a^2},\frac {a^2}{\sum a^2}\right)$ - punctul lui Lemoine (centrul simedian). Daca $s_a-$ lungimea $A$-simedianei si $m_a-$ lungimea $A$-medianei, atunci $\boxed{s_a=\frac {2bc}{b^2+c^2}\cdot m_a}$ si $\boxed{4m_a^2+a^2=2\left(b^2+c^2\right)}\ .$

Applications. $\left\{\begin{array}{ccccccc}
GA^2=\frac {4m_a^2}9 & \implies & GB^2-GC^2=\frac 13\cdot \left(c^2-b^2\right) & ; & IA^2=bc-4Rr & \implies & IB^2-IC^2=a(c-b)\\\\
\begin{array}{cccc}
I_aB^2 & = & r_a^2+(s-c)^2 & \searrow\\\\
I_aC^2 & = & r_a^2+(s-b)^2 & \nearrow\end{array} & \implies & I_aB^2-I_aC^2=a(b-c) & ; & I_aA^2=r_a^2+s^2 & \implies & \begin{array}{ccccc}
\nearrow & I_aA^2-I_aB^2=c(a+b)\\\\
\searrow & I_aA^2-I_aC^2=b(a+c)\end{array}\\\\
HA^2=4R^2-a^2 & \implies & HB^2-HC^2=c^2-b^2 & ; & LA=\frac {2bcm_a}{a^2+b^2+c^2} & \implies & LB^2-LC^2=\frac {2a^2\left(c^2-b^2\right)}{a^2+b^2+c^2}\end{array}\right\|\ \mathrm{a.s.o.\ !}$

$\boxed{an_a^2+a(s-b)(s-c)=c^2(s-b)+b^2(s-c)\implies \odot\begin{array}{ccccc}
\nearrow & s^2\cdot NB^2+a(s-a)n_a^2 & = & s\cdot \left[c^2(s-a)+a^2(s-c)^2\right] & \searrow\\\\
\searrow & s^2\cdot NC^2+a(s-a)n_a^2 & = & s\cdot \left[b^2(s-a)+a^2(s-b)^2\right] & \nearrow \end{array}  \odot \implies NB^2 - NC^2 = (c-b)(b+c-2a)}$


P5:

Proof. $f(\theta )=\frac 1{2+\cos\theta}+\frac 1{2+\sin\theta}=$ $\frac {(\sin\theta +\cos\theta)+4}{\sin\theta\cos\theta +2(\sin\theta +\cos\theta)+4},$ where $\theta\in\mathbb R\ .$ I"ll use the substitution $\boxed{t=h(\theta )=\sin\theta +\cos\theta }\ ,$ where $|t|\le \sqrt 2$ and $\boxed{\sin\theta\cos\theta =\frac {t^2-1}2}\ (*)\ .$

Hence $f(\theta )=(g\circ h)(\theta),$ where $g(t)=\frac {2(t+4)}{t^2+4t+7}$ and $|t|\le\sqrt 2\ .$ Prove easily that $g'(t)\ s.s\ -(t^2+8t+9)\ s.s.\ -\left(t+4-\sqrt 7\right),$ i.e. $g$ is increasing $(\nearrow )$ on $\left[-\sqrt 2,\sqrt 7-4\right]$ and decreasing

$(\searrow )$ on $\left[\sqrt 7-4,\sqrt 2\right]\ .$ Thus, $g(-4+\sqrt 7)=\boxed{\frac {2+\sqrt 7}3\ge g(t)\ge \frac {2(4-\sqrt 2)}7}=g\left(\sqrt 2\right)\ .$ For $\{a,b\}\subset\mathbb R$ defined the equivalence $:\ a\ s.s\ b\iff a=b=0$ or $ab>0\iff\mathrm{sign} a=\mathrm{sign} b.$

$\boxed{\begin{array}{ccccccc}
t & \| & -\sqrt 2 & & \sqrt 7-4 & & \sqrt 2\\\
== & == & === & == & === & == & ===\\\
g^{\prime}(t) & \| & + & + & 0 & - & -\\\
== & == & === & == & === & == & ===\\\
g(t) & \| & \frac {2\left(4+\sqrt 2\right)}7 & \nearrow & \frac {2+\sqrt 7}3 & \searrow & \frac {2\left(4-\sqrt 2\right)}7\end{array}}\iff\left\|\begin{array}{c}
\min\limits_{t\in\left[-\sqrt 2,\sqrt 2\right]}g(t)=\min\limits_{x\in\mathbb R}f\left(\theta\right)=\frac {2\left(4-\sqrt 2\right)}7\\\\
\max\limits_{t\in \left[-\sqrt 2,\sqrt 2\right]}g(t)=\max\limits_{x\in\mathbb R}f\left(\theta\right)=\frac {2+\sqrt 7}3\end{array}\right\|\iff$ $f\left(I\right)=\left[\frac {2\left(4-\sqrt 2\right)}7,\frac {2+\sqrt 7}3\right],$ where $I=\left[-\sqrt 2,\sqrt 2\right]$



P6 (Carlos Hugo Olivera Díaz). Let an acute $\Delta\ ABC$ with the excircle $w_a$ for what denote $\left\{\begin{array}{ccc}
M\in AB\cap w_a\ & ; & X\in BC\ ,\ MX\perp BC\ ,\ MX=m\\\\
N\in AC\cap w_a\ & ; & Y\in BC\ ,\ NY\perp BC\ ,\ NY=n\\\\
D\in BC & ; & AD\perp BC \ ,\ AD=h_a\end{array}\right\|\ .$ Prove that $h_a=\frac {2mn}{1-\cos A}\ .$

Proof. $\left\{\begin{array}{ccccc}
MX\parallel AD & \iff & \frac {AD}{MX}=\frac {AB}{BM} & \iff & \frac {h_a}m=\frac c{s-c}\\\\
NY\parallel AD & \iff & \frac {AD}{NY}=\frac {AC}{CN} & \iff & \frac {h_a}n=\frac b{s-b}\end{array}\right\|$ $\bigodot$ $\implies$ $\frac {h_a^2}{mn}=\frac {bc}{(s-b)(s-c)}=\csc^2\frac A2=\frac 1{\sin^2\frac A2}=\frac 2{1-\cos A}\implies$ $\boxed {h_a^2=\frac {2mn}{1-\cos A}}\ .$


P7 (clasa a IV - a). Sa se determine perimetrul figurii mentionate aici (<= click).

Proof. The closed polygonal line $ABCDEFGHA$ has $:\ AB=315\ ,\ BC=300\ ,\ EF=55\ ;\ AB\parallel GH\parallel EF\parallel CD\ ;\ BC\parallel ED\parallel FG\parallel AH\ ;\ K\in AH\cap CD\ ,\ L\in HG\cap DE\ .$

The perimeter $p(CDEFGHA)=CD+DE+EF+FG+GL+LH+HA=$ $(CD+LH)+(LG+EF)+(DE+FG+HA)=$ $AB+2\cdot EF+BC\ .$ In conclusion,

$p(CDEFGHA)=$ $AB+2\cdot EF+BC$ and the required perimeter $p(ABCDEFGHA)=$ $AB+BC+p(CDEFGHA)=$ $AB+BC+(AB+2\cdot EF+BC)=$

$2\cdot (AB+BC+EF)=$ $2(315+300+55)=$ $2\cdot 670=1340$ $\implies $ $\boxed{p(ABCDEFGHA)=1340}\ .$



P8 (Miguel Ochoa Sanchez). Let $ABCD$ be a square with the circumcircle $w$ and choose $\left|\begin{array}{c}
M\in \overarc{BC}\ ;\ N\in \overarc{CD}\\\\
m\left(\widehat{MAN}\right)=45^{\circ}\end{array}\right|$ for which denote $F\in BC\cap w,$ $E\in CD\cap w\ .$ Prove that $\frac {MC}{AF}+\frac {NC}{AE}=1\ .$

Proof. Let $\left\{\begin{array}{c}
m\left(\widehat{CAM}\right)=m\left(\widehat{DAN}\right)=\alpha\\\\
m\left(\widehat{CAN}\right)=m\left(\widehat{BAM}\right)=\beta\end{array}\right\|$ where $\alpha +\beta =45^{\circ}\ .$ Thus, $\left\{\begin{array}{ccccc}
\frac {MC}{AF}=\frac {AC}{AB}\cdot\frac {MC}{AC}\cdot\frac {AB}{AF}=\sqrt 2\cdot\sin \alpha \cdot\cos\beta\\\\
\frac {NC}{AE}=\frac {AC}{AD}\cdot\frac {NC}{AC}\cdot\frac {AD}{AE}=\sqrt 2\cdot\sin\beta\cdot\cos\alpha\end{array}\right\|\bigoplus\implies$ $\frac {MC}{AF}+\frac {NC}{AE}=\sqrt 2\cdot (\sin\alpha\cos\beta +\sin\beta\cos\alpha )=$

$\sqrt 2\cdot\sin (\alpha +\beta )=\sqrt 2\cdot\frac {\sqrt 2}2=1\implies$ $\frac {MC}{AF}+\frac {NC}{AE}=1\ .$ Observe that $:\ BMCN,$ $CNDM,$ $ABMN,$ $ADNM$ are isosceles trapezoids and $MN=AB\ ;\ \triangle BMC\equiv\triangle CND\ ;$

the point $H\in BN\cap DM$ is the orthocenter of $\triangle AMN\ ;$ a.s.o. Remark. If $\alpha +\beta =\phi <90^{\circ},$ then $\frac {MC}{AF}+\frac {NC}{AE}=1+\sqrt 2\cdot\sin\left(\phi -45^{\circ}\right)\cdot\cos\left(\alpha -\beta \right)\ .$



Lemma. Prove that for any $x>0$ there is the inequality $x^3+1\ge x\sqrt {2\left(x^2+1\right)}\ .$

Proof 1. $x^3+1\ge \frac 12\cdot (x+1)\left(x^2+1\right)=\frac 12\cdot (x+1)\cdot \sqrt{x^2+1}\cdot\sqrt{x^2+1}\ge \frac 12\cdot 2\sqrt x\cdot \sqrt{2x}\cdot\sqrt{x^2+1}=x\sqrt{2\left(x^2+1\right)}\implies$ $\boxed{x^3+1\ge x\sqrt{2\left(x^2+1\right)}}\ .$

Proof 2. $\left\{\begin{array}{ccc} 
x^2+1 & \ge & 2x\\\\
x^4-x^2+1 & \ge & x\left(x^2-x+1\right)\end{array}\right\|\bigodot\implies$ $x^6+1\ge 2x^2\left(x^2-x+1\right)\iff$ $x^6+2x^3+1\ge 2x^2\left(x^2+1\right)\iff$ $\boxed{x^3+1\ge x\sqrt{2\left(x^2+1\right)}}\ .$

Proof 3. Observe that $x^3+1\ge\frac {3x^2+1}2\iff$ $2x^3-3x^2+1\ge 0\iff$ $(2x+1)(x-1)^2\ge 0$ what is truly. Hence $\boxed{x^3+1\ge \frac {3x^2+1}2}\ (*)\ .$

Therefore, $x\sqrt {2\left(x^2+1\right)}=\sqrt{2x^2\cdot \left(x^2+1\right)}\le$ $\frac {2x^2+\left(x^2+1\right)}2=$ $\frac {3x^2+1}2\ \stackrel{(*)}{\le}\ x^3+1$ $\implies$ $\boxed{x^3+1\ge x\sqrt {2\left(x^2+1\right)}}\ .$


P9 (Van Khea - Cambodgia). Prove that for any $A$-right-angled $\triangle ABC$ there is the inequality $a^3+b^3+c^3\ge \left(2+\sqrt 2\right)abc\ .$ (standard notations).

Proof 1. Suppose w.l.o.g. there is $x\in\left(0,\frac {\pi}2\right)$ so that $a=1\ ,\ b=\sin x$ and $c=\cos x\ .$ I"ll use the substitution $\boxed{t:=\sin x+\cos x}\ ,$ where $t\in\left(1,\sqrt 2\right]$ and $\boxed{\sin x\cos x=\frac {t^2-1}2}\ .$ The our inequality

becomes $1+(\sin x+\cos x)(1-\sin x\cos x)\ge \left(2+\sqrt 2\right)\sin x\cos x\iff$ $1+t\cdot\left(1-\frac{t^2-1}2\right)\ge \left(2+\sqrt 2\right)\cdot  \frac{t^2-1}2\iff$ $2(t+1)-t\left(t^2-1\right)\ge$ $\left(2+\sqrt 2\right)\left(t^2-1\right)\ \stackrel{t+1>0}{\iff}$

$2-t(t-1)\ge \left(2+\sqrt 2\right)(t-1)\iff$ $t^2+\left(1+\sqrt 2\right)t-\left(4+\sqrt 2\right)\le 0\iff$ $\left(t-\sqrt 2\right)\left(t+1+2\sqrt 2\right)\le 0\iff$ $t\in\left[-1-2\sqrt 2,\sqrt 2\right]\cap \left(1,\sqrt 2\right]\iff$ $t\in \left(1,\sqrt 2\right]$ what is truly.

Proof 2. from $a^3=a\cdot a^2=$ $a\cdot \left(b^2+c^2\right)\ge 2abc$ obtain that $\boxed{a^3\ge 2abc}\ (1)\ .$ I"ll use the previous lemma in the particular case $x=\frac bc\ :$

$b^3+c^3\ge bc\sqrt{2\left(b^2+c^2\right)}\iff\boxed{b^3+c^3\ge abc\sqrt 2}\ (2)\ .$ From the sum of the relations $(1)$ and $(2)$ get the required inequality $\boxed{a^3+b^3+c^3\ge \left(2+\sqrt 2\right)abc}\ .$



P10 (Kunihiko Chikaya). Prove that $\int_0^{\frac {\pi}2}\sqrt{1-2\sin 2x+3\cos^2x}\ \mathrm{dx}=\int_0^{\frac {\pi}2}|2\cos x-\sin x|\ \mathrm{dx}=2\sqrt 5-3\ .$

Proof. $1-2\sin 2x+3\cos^2x=$ $\left(1-\cos^2x\right)-4\sin x\cos x+4\cos^2x=$ $\sin^2x-4\sin x\cos x+4\cos^2x=(2\cos x-\sin x)^2\implies$

$\int_0^{\frac {\pi}2}\sqrt{1-2\sin 2x+3\cos^2x}\ \mathrm{dx}=\int_0^{\frac {\pi}2}|f(x)|\ \mathrm{dx}\ ,\ $ where $f:I\rightarrow \mathbb R\ ,\ f(x)=2\cos x-\sin x$ and $I=\left[0,\frac {\pi}2\right]\ .$ Prove easily that $f$ is strict

decreasing $(\searrow)$ on $I$ and $2=f(0)\ \searrow\ f(\arctan 2)=0\ \searrow\ -1=f\left(\frac {\pi}2\right)\ .$ Let $F(x)=\int_I f(x)\ \mathrm{dx}=2\sin x+\cos x+\mathbb C\ .$ Therefore,

$\int_0^{\frac {\pi}2}|f(x)|\ \mathrm{dx}=$ $\int_0^{arctan 2} f(x)\ \mathrm{dx}-\int_{\arctan 2}^{\frac {\pi}2} f(x)\ \mathrm{dx}=$ $2\cdot F(\arctan 2 )-F(0)-F\left(\frac {\pi}2\right)=2\cdot \left(2\cdot\frac 2{\sqrt 5}+\frac 1{\sqrt 5}\right)-3=2\sqrt 5-3\ .$



P11 (Kunihiko Chikaya). Let $\{x,y\}\subset\mathbb R$ such that $2\sin x\sin y+3\cos y+6\cos x\sin y=7\ .$ Find the value of $\tan^2x+2\tan^2y\ .$

Proof. I"ll use the welll-known inequality $\boxed{\left|a\sin\phi +b\cos\phi\right|\le \sqrt{a^2+b^2}}\ (*)\ .$ For example $\boxed{|\sin x+3\cos x|\le\sqrt {10}}\ (1)$ and $2\sin x\sin y+3\cos y+6\cos x\sin y=7\iff $

$2(\sin x+3\cos x)\cdot \underline{\sin y}+3\cdot\underline{\cos y}=7\implies$ $4(\sin x+3\cos x)^2+9\ge 49\implies$ $(\sin x+3\cos x)^2\ge 10\ \stackrel{(1)}{\implies}\ \sqrt {10}\ge |\sin x+3\cos x|\ge \sqrt{10}\implies\boxed{|\sin x+3\cos x|=\sqrt {10}}\ (2)$

$\iff$ $(\sin x+3\cos x)^2=10\left(\sin^2+\cos^2x\right)\iff$ $\left(\tan x+3\right)^2=10\left(\tan^2x+1\right)\iff$ $9\tan^2x-6\tan x+1=0\iff$ $(3\tan x-1)^2=0\implies$ $\boxed{\tan^2 x=\frac 19}\ (3)\ .$ Observe that

$7-3\cos y=2\sin y(\sin x+3\cos x)\ \stackrel{(2)}{\implies}\ |7-3\cos y|=2\sqrt{10}|\sin y|\iff$ $(7-3\cos y)^2=40\sin^2y\iff$ $49+9\cos^2y-42\cos y=40\sin^2y\iff$ $(7\cos y-3)^2=0\iff$

$\cos y=\frac 37\iff$ $\tan^2y=\frac {1-\cos^2y}{\cos^2y}=\frac {40}{9}\implies$ $\boxed{\tan^2y=\frac {40}9}\ (4)\ .$ In conclusion, from the sum of $(3)$ and $(4)$ obtain that $\boxed{\tan^2x+2\tan^2y=9}\ .$ Very nice problem!
Thank you.


P12 (Kunihiko Chikaya). Let the square $ABOC$ with $AB=1$ and the circle $w=\mathbb C(O,1)\ .$ For a mobile point $P\in w$ so that $BC$

separates $P$ and $O$ denote $\{P,Q\}=AP\cap w\ .$ Prove that the area $S$ of the triangle $POQ$ is $\max\ \iff\  m\left(\widehat{PAB}\right)=\frac {\pi}{12}\ .$


Proof. Denote the midpoint $M$ of $[PQ]$ and $m\left(\widehat{PAB}\right)=\phi\
 .$ Suppose w.l.o.g. that $\boxed{0<\phi <\frac {\pi}4}\ ,$ i.e. $\tan\phi =a\in (0,1)\ .$ Observe that $:\ OA=\sqrt 2$ and $m\left(\widehat{OAM}\right)=\frac {\pi}4-\phi\implies$

$\left\{\begin{array}{cccc}
AM=OA\cos\widehat{OAM}=\sqrt 2\cdot \cos\left(\frac {\pi}4-\phi\right) & \implies & \boxed{AM=\cos\phi +\sin\phi} & (1)\\\\
OM=OA\sin\widehat{OAM}=\sqrt 2\cdot \sin\left(\frac {\pi}4-\phi\right) & \implies & \boxed{OM=\cos\phi-\sin\phi} & (2)\end{array}\right\|\ .$ Therefore, $AP\cdot AQ=AB^2\ ,$ i.e. $\boxed{AP\cdot AQ=1}$ and $AP+AQ=2\cdot AM\ \stackrel{(1)}{=}\ 2(\cos\phi+\sin\phi )$

$\implies\boxed{AP+AQ=2(\cos\phi +\sin\phi )}\ (3)\ .$ Hence $(AP-AQ)^2=(AP+AQ)^2-4\cdot AP\cdot AQ=4(1+\sin 2\phi)-4=4\sin2\phi\implies$ $\boxed{PQ=2\sqrt {\sin2\phi}}\ (4)\ .$ Denote $\boxed{\cos \phi -\sin\phi =t}\ .$

Thus, $\boxed{\sin2\phi =1-t^2}\ ,$ where $t\in (0,1)\ .$ In conclusion, $\cancel 2S=PQ\cdot OM=\cancel 2(\cos\phi -\sin\phi)\sqrt {\sin 2\phi}=\cancel 2t\sqrt{1-t^2}\implies$ $\boxed{S^2=t^2\left(1-t^2\right)}\ (5)\ .$ Thus, $S$ is $\max\iff$ $t^2\left(1-t^2\right)$ is $\max$ with

$t^2+\left(1-t^2\right)=1$ (constant) $\implies$ $t^2=1-t^2=\frac 12\iff$ $\boxed{t=\frac {\sqrt 2}2}\iff$ $\sin 2\phi =1-t^2=1-\frac 12=\frac 12\iff \sin 2\phi =\frac 12\iff 2\phi =\frac {\pi}6\iff \boxed{\phi =\frac {\pi}{12}}\ ,\ a=\tan\phi =2-\sqrt 3\ ,\ S=\frac 12$



P13 (Mehmet Şahin, Turkey). Let $ABCD$ be a square with the circumcircle $w$ and a point $P\in \overarc{AD}\ .$ Prove that $2\cdot [ABCP]=AB^2\ .$

Proof 1. Denote $I\in BP\cap AC$ and $\left\{\begin{array}{ccc}
m\left(\widehat{PBA}\right) & = &\alpha\\\
m\left(\widehat{PBD}\right) & = & \beta\\\
m\left(\widehat{BIC}\right) & = & \phi\end{array}\right\|\ ,$ where $\alpha +\beta =\frac {\pi}4$ and $\sin\phi =\cos \beta\ .$ Hence $PB=BD\cos\beta =AC\sin\phi\implies$

$ \boxed{AC\sin\phi =PB}\ (*)\ \implies$ $2\cdot [ABCP]=PB\cdot (AC\sin\phi )\ \stackrel{(*)}{=}\ PB\cdot PB=PB^2\implies$ $ [ABCP]=\frac {PB^2}2\ .$

Proof 2 . $\left\{\begin{array}{c}
E\in PB\ ;\ AE\perp BP\\\\
F\in PB\ ;\ CF\perp BP\end{array}\right\|\implies$ $\triangle ABE\equiv\triangle BCF\implies$ $BE=CF,$ $AE=BF\implies$ $E$-right-angled $\triangle AEP, $ $F$-right-angled $CFP$ are isosceles: $EA=EP,$ $FC=FP\implies$

$\left\{\begin{array}{c}
BE=CF=FP\\\\
AE=BF=EP\end{array}\right\|\implies$ $ AE+CF=BF+FP=BP$ $\implies$ $\underline{PB^2}=PB\cdot PB=$ $PB\cdot (AE+CF)=$ $PB\cdot AE+PB\cdot CF=$ $2\cdot [ABP]+2\cdot [CBP]=$ $\underline{2\cdot [ABCP]}$ (S. Fulger).

Proof 3.



P14 (Carlos Hugo Olivera Diaz, Peru). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and the circumcircle $\Omega =\mathbb (O,R)\ .$

Denote $\left\{\begin{array}{ccccc}
Q\in BI\cap \Omega & ; & P\in CI\cap \Omega\\\\
M\in AB\cap w & ; & N\in AC\cap w\end{array}\right\|\ .$ Prove that $\boxed{M\in PQ\iff A=90^{\circ}\iff N\in PQ}\ .$


Proof. $M\in PQ\iff$ $\frac {MA}{MB}=\frac {QA}{QB}\iff$ $\frac {s-a}{s-b}=\frac {\sin\frac B2}{\sin\left( A+\frac B2\right)}\iff$ $\frac {s-a}{s-b}=\frac {2\cos\frac B2\sin\frac B2}{2\cos\frac B2\sin \left(A+\frac B2\right)}\iff$ $\frac {s-a}{s-b}=\frac {\sin B}{\sin A+\sin C}\iff\frac {s-a}{s-b}=\frac b{a+c}\ .$ In conclusion,

$\boxed{M\in PQ\iff\frac {s-a}{s-b}=\frac b{a+c}}\iff$ $\frac {s-a}{(s-a)+(s-b)}=\frac b{a+b+c}\iff$ $2s(s-a)=bc\iff$ $2s(s-a)=s(s-a)+(s-b)(s-c)\iff$ $s(s-a)=(s-b)(s-c)\iff$

$\tan^2\frac A2=\frac {(s-b)(s-c)}{s(s-a)}=1\iff A=90^{\circ}\ .$ Prove analogously that $N\in PQ\iff$ $\frac {NA}{NC}=\frac {PA}{PC}\iff$ $\frac {s-a}{s-c}=\frac {\sin \frac C2}{\sin\left(A+\frac C2\right)}=\frac c{a+b}\iff$ $\boxed{N\in PQ\iff \frac {s-a}{s-c}=\frac c{a+b}}$ a.s.o.



P15 (Leo Giugiuc & Gh. Duca). Let a regular polygon $A_1A_2\ldots A_{n-1}A_n$ with the circumcircle $w=\mathbb C(O,R)\ .$ Prove that for any $P\in w$ there is the identity $\sum_{k=1}^n PA_k^2=2nR^2\ .$

Proof. Can use the wellknown implication $\{M,N\}\subset w\implies MN=2R\sin\frac{\widehat{MON}}2$ and the trigonometrical identity $:\ \sum_{k=1}^n\cos x_k=\frac {\cos\frac {x_1+x_n}2\sin\frac {nr}2}{\sin\frac {nr}2}\ ,$ where $x_k=x_1+(k-1)r\ ,\ \forall\ k\in\overline{1,n}\
 .$


P16 (Adil Abdullayev, Baku). Prove $(\forall )\ \triangle ABC$ there is the following inequality $:\ \frac {r_a}{\cos^2\frac A2}+\frac {r_b}{\cos^2\frac B2}+\frac {r_c}{\cos^2\frac C2}\ge 6R$ (standard notations).

Proof. $\frac {r_a}{\cos^2\frac A2}=$ $\frac {2r_a\sin\frac A2}{\cos\frac A2\sin A}=$ $\frac {2r_a\tan\frac A2}{\sin A}=$ $\frac {2r_a^2}{s\cdot \sin A}\implies$ $\sum\frac {r_a}{\cos^2\frac A2}=\frac 2s\cdot\sum\frac {r_a^2}{\sin A}\ \stackrel{C.B.S}{\ge}\ \cdot\frac {2\left(\sum r_a\right)^2}{s\sum \sin A}=$ $\frac {2R(4R+r)^2}{s^2}\ge 6R$ because is wellknown the inequality $\boxed{s\sqrt 3\le 4R+r}\ .$


P17 (Sefket Arslanagic, Berlin). Prove that the inequality $\sqrt {a-1}+\sqrt {b-1}+\sqrt {c-1}\le \sqrt {abc+\min \{a,b,c\}}$ for any $\{a,b,c\}\subset (1,\infty )\ .$

Proof. Suppose w.l.o.g. $a\le b\le c$ and denote $\left\{\begin{array}{ccccc}
\sqrt {a-1}=x>0 & \implies & a=x^2+1>1\\\\
\sqrt {b-1}=y>0 & \implies & b=y^2+1>1\\\\
\sqrt {c-1}=z>0 & \implies & c=z^2+1>1\end{array}\right\|\ .$ Thus, our inequality becomes $\sqrt {a-1}+\sqrt {b-1}+\sqrt {c-1}\le \sqrt {abc+\min \{a,b,c\}}$ for any

$\{a,b,c\}\subset (1,\infty )\ ,$ i.e. $x+y+z\le \sqrt {\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)+x^2+1}\ (*)\ .$ Denote $\boxed{y+z=S\ \mathrm{and}\  yz=P}\ (1)\ .$ In conclusion, the inequality becomes $[x+(y+z)]^2\le$

$x^2+1+\left(y^2+1\right)\left(z^2+1\right)\cdot x^2+\left(y^2+1\right)\left(z^2+1\right)\ \stackrel{(1)}{\iff}$ $\cancel {x^2}+2Sx+\cancel{S^2}\le \cancel{x^2}+1+\left[S^2+(P-1)^2\right]\cdot x^2+$ $\cancel{S^2}+(P-1)^2\implies$ $\left[S^2+(P-1)^2\right]\cdot \underline x^2-2S\cdot \underline x+$

$\left[(P-1)^2+1\right]\ge 0$ what is true because $\Delta^{\prime}=$ $S^2-\left[S^2+(P-1)^2\right]\cdot\left[(P-1)^2+1\right]=-(P-1)^2\left[\left(S^2+1\right)+(P-1)^2\right]\le 0\ .$ We have equality iff $P=1\ ,$ i.e. $yz=1\ .$



click => P18 (Nelson Cayo Deza Velasquez, Lima-PERU).

Proof. Suppose w.l.o.g. that $:$ the big circle is $\alpha =\mathbb C(O,1)$ and touches $AD$ at $P\ ;$ the semicircle is $\beta =\mathbb  C(I,r)\ ,$ touches $\alpha$ at $T\ ,$ where $r\in (0,1)\ .$ Denote $PE=y$ and apply the Pythagoras' theorem

in $\triangle OPI\ :\ OI^2=PO^2+PI^2\iff$ $(r+1)^2=1^2+(y+r)^2\iff$ $\cancel{r^2}+2r+\cancel 1=\cancel 1+y^2+2ry+\cancel{r^2}\iff$ $2r=y^2+2ry\iff$ $2r(1-y)=y^2\iff$ $\boxed{\ 2r=\frac {y^2}{1-y}\ }\ (*)\ .$ Observe

that $:\ ED=PD-PE=1-y\implies$ $\boxed{\ ED=1-y\ }\ (1)\ ;$ $\boxed{\ EF=2r\ }\ (2)\ ;$ $AF=AE+EF=1+y+2x\ \stackrel{(*)}{=}\ 1+y+\frac {y^2}{1-y}=$ $\frac {(1+y)(1-y)+y^2}{1-y}=\frac {1-\cancel{y^2}+\cancel{y^2}}{1-y}=\frac 1{1-y}\implies$

$\boxed{\ AF=\frac 1{1-y}\ }\ (3)\ .$ In conclusion, $\sqrt {ED}+\sqrt {EF}\ \stackrel {1\wedge 2}{=}\ \sqrt {1-y}+\sqrt{2r}\ \stackrel{(*)}{=}\ \sqrt {1-y}+\frac y{\sqrt {1-y}}=\frac {(1-y)+y}{\sqrt {1-y}}=\frac 1{\sqrt {1-y}}\ \stackrel{(3)}{=}\ \sqrt {AF}\implies$ $\boxed{\sqrt {ED}+\sqrt {EF}=\sqrt{AF}}\ .$ Nice problem!



P19 (Kadir Altintas, Turkey). Let $\triangle ABC$ with the centroid $G$ and the orthocenter $H\ .$ Prove that $\boxed{\ GH\perp GA\iff b^2+c^2=2a^2\ }\ .$ (standard notations).

Proof 1. Denote the midpoint $M$ of the side $[BC]$ and the projection $D$ of the vertex $A$ on $BC\ .$ Observe that $GH\perp GA\iff$ $HDMG$ is cyclic, i.e. $AH\cdot AD=AG\cdot AM\iff$

$2R\cos A\cdot h_a=\frac {2m_a}3\cdot m_a\iff$ $2Rh_a\cdot \cos A=\frac {4m_a^2}6\ .$ I"ll use the well-known identities $\boxed{2Rh_a=bc}\ (*)\ ,\ b^2+c^2-a^2=2bc\cdot \cos A$ and $4m_a^2+a^2=2\left(b^2+c^2\right)\ .$

Hence $GH\perp GA\iff$ $6bc\cdot \cos A=4m_a^2\iff$ $3\left(b^2+c^2-a^2\right)=2\left(b^2+c^2\right)-a^2\iff$ $3\left(b^2+c^2\right)-3a^2=2\left(b^2+c^2\right)-a^2\iff$ $b^2+c^2=2a^2\ .$

Proof 2. I'll apply identities $\boxed{\ HG=2\cdot OG\ }$ and $\boxed{\ OG^2=R^2-\frac {a^2+b^2+c^2}9\ }\ .$ From the Pythagoras' theorem obtain that $\ :\ GH\perp GA\iff$ $GH^2+GA^2=AH^2\iff$

$4\cdot\left(\cancel{R^2}-\frac {a^2+b^2+c^2}9\right)+\frac {2\left(b^2+c^2\right)-a^2}9=\cancel{4R^2}-a^2\iff$ $4\left(a^2+b^2+c^2\right)-2\left(b^2+c^2\right)+a^2=9a^2\iff$ $4a^2+4\left(b^2+c^2\right) -2\left(b^2+c^2\right)+a^2=9a^2\iff$ $b^2+c^2=2a^2\ .$



P20 (Kadir Altintas, Turkey). Let $\triangle ABC$ with the centroid $G$ and the incenter $I$ for what denote $\left\{\begin{array}{ccc}
E & \in & IG\cap (AC)\\\\
F & \in & IG\cap (AB)\end{array}\right\|\ .$ Prove that $\boxed{IG\perp IA\iff \frac 1b+\frac 1c=\frac 6{a+b+c}}\ .$

Proof. Denote the midpoint $M$ of $[BC]$ and $D\in AI\cap BC\ .$ Observe that $IA\perp IG\iff AE=AF=m\ ,$ i.e. $\left\{\begin{array}{ccc}
FB & = & c-m\\\\
EC & = & b-m\end{array}\right\|\ .$ Apply the well-known Cristea's theorem to the points $:$

$\odot \begin{array}{cccccccccc}
\nearrow\ G & : & \frac {FB}{FA}\cdot MC+\frac {EC}{EA}\cdot MB=\frac {GM}{GA}\cdot BC & \iff & \frac {c-m}m+\frac {b-m}m=1 & \iff & (c-m)+(b-m)=m & \iff & \boxed{3m=b+c} & \searrow\\\\
\searrow\ I & : & \frac {FB}{FA}\cdot DC+\frac {EC}{EA}\cdot DB=\frac {ID}{IA}\cdot BC & \iff & \frac {c-m}m\cdot b+\frac {b-m}m\cdot c= a & \iff & b(c-m)+c(m-b)=am & \iff & \boxed{2bc=m(a+b+c)} & \nearrow\end{array}\bigodot\implies$

$3\cancel m\cdot 2bc=(b+c)\cdot \cancel m(a+b+c)\iff 6bc=(b+c)(a+b+c)\iff$ $\frac {b+c}{bc}=\frac 6{a+b+c}\iff$ $\frac 1b+\frac 1c=\frac 6{a+b+c}\ .$ Done. Nice problem !


An easy extension. Let an acute $\triangle ABC$ with the incenter $I$ and its interior point $P$ with the barycentrical coordinates $(x,y,z)\ ,$

$x+y+z=1$ w.r.t. $\triangle ABC$ for what denote $\left\{\begin{array}{ccc}
E & \in & IP\cap (AC)\\\\
F & \in & IP\cap (AB)\end{array}\right\|\ .$ Prove that $\boxed{IP\perp IA\iff \frac yb+\frac zc=\frac 2{a+b+c}}\ .$



P21 (for Mathskidd - elementary proof). Let $ABC$ be a triangle with the orthocentre $H$ and the circumcircle $w=\mathbb C(O,R)\ .$ Prove the identity $OH^2=9R^2-\left(a^2+b^2+c^2\right)$ (standard notations).

Proof 1. Let the midpoint $M$ of $[BC]$ and the diameter $[AS]$ of $w\ .$ $\left\{\begin{array}{cccc}
BH\perp AC\ ;\ SC\perp AC & \implies & SC\parallel BH\\\\
CH\perp AB\ ;\ SB\perp AB & \implies & SB\parallel CH\end{array}\right\|$ $\implies$ $BHCS$ is a parallelogram $\implies M\in HS$ and $HB=CS$ $\implies$

$HB^2=CS^2=AS^2-AC^2=4R^2-b^2\implies$ $HB^2=4R^2-b^2$ a.s.o. $\implies$ $\boxed{HA^2+a^2=HB^2+b^2=HC^2+c^2=4R^2}\ (1)\ .$ Median $HM/\triangle BHC\ :\ HS^2=4\cdot HM^2=$

$2\left(HB^2+HC^2\right)-BC^2\ \stackrel{(1)}{=}\ 2\left[\left(4R^2-b^2\right)+\left(4R^2-c^2\right)\right]-a^2$ $\implies$ $\boxed{HS^2=16R^2-2\left(b^2+c^2\right)-a^2}\ (2)\ .$ Median $HO/\triangle AHS\ :\ 4\cdot HO^2+AS^2=$ $2\left(AH^2+HS^2\right)\ \stackrel{(1\wedge 2)}{\implies}$

$4\cdot HO^2=$ $2\left[\left(4R^2-a^2\right)+\left(16R^2-2b^2-2c^2-a^2\right)\right]-4R^2=$ $36R^2-4\left(a^2+b^2+c^2\right)$ $\implies$ $4\cdot HO^2=36R^2-4\left(a^2+b^2+c^2\right)\implies$ $OH^2=9R^2-\left(a^2+b^2+c^2\right)\ .$

Proof 2. Observe that $m\left(\widehat{OAH}\right)=|B-C|\ .$ Hence can apply the generalized Pythagoras' theorem to $\triangle AOH\ :\ HO^2=AH^2+AO^2-2\cdot AH\cdot AO\cdot\cos\widehat{OAH}=\left(4R^2-a^2\right)+R^2-$

$4R^2\cos A\cos (B-C)=$ $5R^2-a^2+4R^2\cos (B+C)\cos (B-C)=$ $5R^2-a^2+2R^2\cos 2B\cos 2C=$ $5R^2-a^2+2R^2\left[\left(1-2\sin^2B\right)+\left(1-2\sin^2C\right)\right]=$ $5R^2-a^2+$

$4R^2\left(1-\sin^2B-\sin^2C\right)=$ $5R^2-a^2+4R^2-b^2-c^2\implies$ $HO^2=9R^2-\left(a^2+b^2+c^2\right)\ .$ I used the identities $\cos 2x=1-2\sin^2x$ and $\cos x+\cos y=2\cdot\cos\frac {x+y}2\cdot \cos\frac {x-y}2\ .$

Remark.

$\blacktriangleright\ 2R^2\cdot\sum\cos 2A=$ $2R^2\cdot\sum\left(1-2\sin^2A\right)=$ $6R^2-4R^2\cdot\sum\sin^2A=$ $6R^2-\sum (2R\sin A)^2=$ $6R^2-\sum a^2$ $\implies$ $\boxed{\sum a^2=6R^2-2R^2\cdot\sum\cos 2A}\ (1)\ .$

$\blacktriangleright\ \sum\cos 2A=$ $\cos 2A+(\cos 2B+\cos 2C)=\cos 2A+2\cos (B+C)\cos (B-C)=2\cos^2A-1-2\cos A\cos (B-C)=$

$-1-2\cos A[\cos (B-C)-\cos A]=-1-2\cos A[\cos (B-C)+\cos (B+C)]=-1-4\cos A\cos B\cos C\implies$ $\boxed{\sum\cos 2A=-1-4\prod\cos A}\ (2)\ .$

$\blacktriangleright\ HO^2=9R^2-\sum a^2\ \stackrel{(1)}{=}\ 9R^2-\left(6R^2-2R^2\cdot\sum\cos 2A\right)=$ $3R^2+2R^2\cdot\sum\cos 2A\ \stackrel{(2)}{=}\ 3R^2+2R^2\left(-1-4\prod\cos A\right)=$

$R^2-8R^2\cdot\prod\cos A=$ $R^2\left(1-8\cdot\prod\cos A\right)\implies$ $\boxed{HO^2=R^2\cdot\left(1-8\prod\cos A\right)}\ (3)\ .$ The power of $H$ w.r.t. $w$ is $p_w(H)=OH^2-R^2\ ,$ i.e. $\boxed{p_w(H)=-8R^2\prod\cos A}\ (4)\ .$



P21 (Boris COLAKOVIC). Prove that $(\forall )\ \triangle\ ABC\ \mathrm{there\ is\ the\  following\ inequality\ :}\ \frac 1a+\frac 1b+\frac 1c\le\frac {\sqrt 3}{2r}$ .

Proof. I"ll use only the remarkable inequality $\boxed{\ s\le\frac {3R\sqrt 3}2\ }\ (*)$ and the well-known inequality $\boxed{\ 3(bc+ca+ab)\le (a+b+c)^2\ }\ (1)\ .$

Therefore, $\sum\frac 1a=$ $\frac {ab+bc+ca}{abc}\ \stackrel{(1)}{\le}\ \frac {(a+b+c)^2}{3\cdot abc}=$ $\frac {4s^2}{3\cdot 4Rrs}=$ $\frac s{3Rr}\ \stackrel{(*)}{\le}\ \frac 1{\cancel{3R}r}\cdot \frac {\cancel{3R}\sqrt 3}2=\frac {\sqrt 3}{2r}\implies$ $\boxed{\ \frac 1a+\frac 1b+\frac 1c\le \frac {\sqrt 3}{2r}\ }\ .$

Remark. This inequality is equivalent with $\underline{\underline{\boxed{\ h_a+h_b+h_c\le s\sqrt 3\ }}}\ .$ Indeed, $\sum h_a\le s\sqrt 3\iff$ $\sum\frac {bc}{2R}\le s\sqrt 3\iff$ $\sum bc\le 2Rs\sqrt 3\iff$ $\frac {\sum bc}{abc}\le\frac {2Rs\sqrt 3}{4Rsr}\iff$

$\underline{\underline{\boxed{\ \frac 1a+\frac 1b+\frac 1c\le \frac {\sqrt 3}{2r}\ }}}\ .$ Prove easily that $\left\{\begin{array}{ccc}
r_a+r_b+r_c & = & 4R+r\\\\
r_ar_b+r_br_c+r_cr_a & = & s^2\\\\
(s-a)(s-b)(s-c) & = & sr^2\end{array}\right\|
\ .$ I"ll prove the inequality $s\sqrt 3\le 4R+r$ and the chain of the inequalities $\boxed{\ 3r\sqrt 3\le s\le \frac {3R\sqrt 3}2\ }\ :$

$\left\{\begin{array}{ccccc}
3s^2=3\sum r_br_c\le \left(r_a+r_b+r_c\right)^2=(4R+r)^2 & \iff & \boxed{s\sqrt 3\le 4R+r} & \iff & 9s\sqrt 3\le 9(4R+r)\\\\
3\cdot\sqrt[3]{\prod (s-a)}\le\sum (s-a)=s\iff 27sr^2\le s^3 & \iff & \boxed{3r\sqrt 3\le s} & \implies & 9r\le s\sqrt 3\end{array}\right\|$ $\bigoplus\implies$ $8s\sqrt 3\le 36R\iff 2s\sqrt 3\le 9R\iff \boxed{\ s\le \frac {3R\sqrt 3}2\ }\ .$
This post has been edited 577 times. Last edited by Virgil Nicula, Feb 27, 2019, 11:09 AM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Dear sir Virgil Nicula, thanks. Furthermore, I have in doubt that can $\boxed{OH^2= R^2(1-8\cos A \cos B \cos C)}$ ?
This post has been edited 1 time. Last edited by Virgil Nicula, Aug 12, 2017, 8:13 AM

by Mathskidd, Aug 11, 2017, 1:08 PM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a