455. Problems for the relaxation in ... weekend!
by Virgil Nicula, Jul 9, 2017, 2:12 PM

P1. Prove that




Proof.







![$\sum \left[2xyz+x\left(y^2+z^2\right)\right]=$](http://latex.artofproblemsolving.com/e/8/3/e83ecfb8ba20f12bb40966d2af5d7b388bd67dcf.png)


![$6xyz+\sum yz[(x+y+z)-x]=6xyz+\sum yz\cdot \sum x-\sum (xyz)=$](http://latex.artofproblemsolving.com/c/2/3/c23df91762163b42f3aa2f842030d3e036f06fc1.png)

![$3(s-a)(s-b)(s-c)+s\cdot \sum [bc-s(s-a)]=$](http://latex.artofproblemsolving.com/4/6/0/46077c8c017270d14d6429ea38a0bd912ff1423d.png)








Remark.



P2. For an



![$[AB]\ ;\ D\ -$](http://latex.artofproblemsolving.com/0/f/6/0f6ae9475386cfe0fb972445db1067bbeae1410d.png)



Proof. Let









Hence











P3 (Kadir Altintas). Let






![$[IH].$](http://latex.artofproblemsolving.com/6/c/2/6c29e278279eaafabad7aa9ec99e32a0819f06e8.png)

Proof. Denote












![$2\cdot\left[\frac {ac(s-b)}s-\frac {ab(s-c)}s\right]+2\cdot 4R^2\left(\cos^2B-\cos^2C\right)=2\cdot [(ac-4Rr)-(ab-4Rr)]+2\cdot 4R^2\left(\sin^2C-\sin^2B\right)=$](http://latex.artofproblemsolving.com/4/9/d/49d27c91add8785dee07db9dfa18a04873cdd716.png)










![$\boxed{s^2\cdot NB^2+a(s-a)\cdot AD^2=s\cdot\left[c^2(s-a)+a(s-c)^2\right]}\ .$](http://latex.artofproblemsolving.com/d/8/0/d8038270e4c115b700d7342f73da7fb1cc195a6b.png)
![$\boxed{s^2\cdot NC^2+a(s-a)\cdot AD^2=s\cdot \left[b^2(s-a)+a(s-b)^2\right]}\ .$](http://latex.artofproblemsolving.com/c/9/3/c93ca01a9904348b391edde9961c21832cf605c9.png)


![$(c-b)\left[(s-a)(b+c)-a^2\right]=(c-b)[s(b+c)-a(a+b+c)]=s[(c-b)[(b+c)-2a]\iff$](http://latex.artofproblemsolving.com/a/9/d/a9dae866453f213786012cbca7c5348bd3740531.png)




Remark 1. If





![$(\cancel{c-b})[(b+c)-2a]=\frac {(\cancel{c-b})(c+b)}2\iff$](http://latex.artofproblemsolving.com/9/0/9/909429a8f540f25a581080ab8f947877b54e5143.png)



Remark 2.












P4 (Kadir Altintas). Let







Proof. I"ll use the relations











![$\frac {a^2}{\left(a^2+b^2+c^2\right)^2}\cdot\left[c^2\left(2a^2+2c^2-\cancel{b^2}\right)-b^2\left(2a^2+2b^2-\cancel{c^2}\right)\right]=$](http://latex.artofproblemsolving.com/d/b/1/db15e2fee9ac2fec35789e534c53ccba5ed9e5cf.png)
![$\frac {a^2\left[2a^2\left(c^2-b^2\right)+2\left(c^4-b^4\right)\right]}{\left(a^2+b^2+c^2\right)^2}=$](http://latex.artofproblemsolving.com/6/d/3/6d372506a5e15d7677e68888395401e990766e5d.png)















remark 2 obtain










An easy extension. Let




Proof. If


![$\boxed{M_1M_2^2=-\left[\left(y_1-y_2\right)\left(z_1-z_2\right)\cdot a^2+\left(z_1-z_2\right)\left(x_1-x_2\right)\cdot b^2+\left(x_1-x_2\right)\left(y_1-y_2\right)\cdot c^2\right]}\ .$](http://latex.artofproblemsolving.com/3/9/b/39b30805163bbf2cc82395882c930ac96fe0c140.png)


![$MA^2=-\left[yz\cdot a^2+z(x-1)\cdot b^2+(x-1)y\cdot c^2\right]\implies\odot$](http://latex.artofproblemsolving.com/b/b/2/bb28628f0f468c7206c708c5209e358d74358590.png)
![$\begin{array}{ccc}
\nearrow & MB^2=-\left[zx\cdot b^2+x(y-1)\cdot c^2+z(y-1)\cdot a^2\right] & \searrow\\\\
\searrow & MC^2=-\left[xy\cdot c^2+y(z-1)\cdot a^2+x(z-1)\cdot b^2\right] & \nearrow\end{array}\odot\implies$](http://latex.artofproblemsolving.com/e/0/e/e0ec0f3e77db2133d28d3241a3c3e5f0a1df40b6.png)

Exemple de coordonate baricentrice pentru cateva puncte remarcabile ale unui triunghi




![$[BC]\ ;\ A_1\left(-1,1,1\right)$](http://latex.artofproblemsolving.com/4/6/2/462e169d3cde1ea3f13a53deb9464c0016607b06.png)





















Applications.

![$\boxed{an_a^2+a(s-b)(s-c)=c^2(s-b)+b^2(s-c)\implies \odot\begin{array}{ccccc}
\nearrow & s^2\cdot NB^2+a(s-a)n_a^2 & = & s\cdot \left[c^2(s-a)+a^2(s-c)^2\right] & \searrow\\\\
\searrow & s^2\cdot NC^2+a(s-a)n_a^2 & = & s\cdot \left[b^2(s-a)+a^2(s-b)^2\right] & \nearrow \end{array} \odot \implies NB^2 - NC^2 = (c-b)(b+c-2a)}$](http://latex.artofproblemsolving.com/2/b/6/2b68044f0d93ea81f89be9216de2150115f62017.png)
P5:
Proof.






Hence






![$\left[-\sqrt 2,\sqrt 7-4\right]$](http://latex.artofproblemsolving.com/c/4/5/c45be20f11e99870d3a8384b91dc01e07119b36c.png)

![$\left[\sqrt 7-4,\sqrt 2\right]\ .$](http://latex.artofproblemsolving.com/1/3/c/13c4d1100264822ff9ffc5a6c6a0b181752e2db5.png)




![$\boxed{\begin{array}{ccccccc}
t & \| & -\sqrt 2 & & \sqrt 7-4 & & \sqrt 2\\\
== & == & === & == & === & == & ===\\\
g^{\prime}(t) & \| & + & + & 0 & - & -\\\
== & == & === & == & === & == & ===\\\
g(t) & \| & \frac {2\left(4+\sqrt 2\right)}7 & \nearrow & \frac {2+\sqrt 7}3 & \searrow & \frac {2\left(4-\sqrt 2\right)}7\end{array}}\iff\left\|\begin{array}{c}
\min\limits_{t\in\left[-\sqrt 2,\sqrt 2\right]}g(t)=\min\limits_{x\in\mathbb R}f\left(\theta\right)=\frac {2\left(4-\sqrt 2\right)}7\\\\
\max\limits_{t\in \left[-\sqrt 2,\sqrt 2\right]}g(t)=\max\limits_{x\in\mathbb R}f\left(\theta\right)=\frac {2+\sqrt 7}3\end{array}\right\|\iff$](http://latex.artofproblemsolving.com/2/0/6/2067bdd83d28df22f27548fe90c27b8562d13984.png)
![$f\left(I\right)=\left[\frac {2\left(4-\sqrt 2\right)}7,\frac {2+\sqrt 7}3\right],$](http://latex.artofproblemsolving.com/9/5/f/95fd934f42b42e6c3427153de36af5261035b5af.png)
![$I=\left[-\sqrt 2,\sqrt 2\right]$](http://latex.artofproblemsolving.com/9/d/8/9d87fe6e212cf87ca6277728f5e0763f7d381493.png)
P6 (Carlos Hugo Olivera Díaz). Let an acute




Proof.





P7 (clasa a IV - a). Sa se determine perimetrul figurii mentionate aici (<= click).
Proof. The closed polygonal line


The perimeter













P8 (Miguel Ochoa Sanchez). Let






Proof. Let











the point




Lemma. Prove that for any


Proof 1.


Proof 2.




Proof 3. Observe that




Therefore,





P9 (Van Khea - Cambodgia). Prove that for any



Proof 1. Suppose w.l.o.g. there is




![$t\in\left(1,\sqrt 2\right]$](http://latex.artofproblemsolving.com/7/3/0/730188fa3fd4143fa848773d480938130806d18a.png)

becomes







![$t\in\left[-1-2\sqrt 2,\sqrt 2\right]\cap \left(1,\sqrt 2\right]\iff$](http://latex.artofproblemsolving.com/f/5/8/f58cd2c91d5b689d38c919f28b5ec797adbdaa21.png)
![$t\in \left(1,\sqrt 2\right]$](http://latex.artofproblemsolving.com/b/8/1/b818469b7826fc5b6bd1f816354ebc2a491b2f62.png)
Proof 2. from








P10 (Kunihiko Chikaya). Prove that

Proof.





![$I=\left[0,\frac {\pi}2\right]\ .$](http://latex.artofproblemsolving.com/2/1/7/217fe3ab50978741732e4f853405ce418d95a618.png)

decreasing







P11 (Kunihiko Chikaya). Let



Proof. I"ll use the welll-known inequality






















P12 (Kunihiko Chikaya). Let the square





separates






Proof. Denote the midpoint

![$[PQ]$](http://latex.artofproblemsolving.com/2/1/c/21ca08816cf8b23ddf756ce9ae098ad327f2443d.png)













Thus,













P13 (Mehmet Şahin, Turkey). Let



![$2\cdot [ABCP]=AB^2\ .$](http://latex.artofproblemsolving.com/8/a/6/8a614b24f872f46c4f3cc46f32e15ecd44abff54.png)
Proof 1. Denote






![$2\cdot [ABCP]=PB\cdot (AC\sin\phi )\ \stackrel{(*)}{=}\ PB\cdot PB=PB^2\implies$](http://latex.artofproblemsolving.com/a/9/2/a924ffd17e8681ce0a9513117acb6b4192040974.png)
![$ [ABCP]=\frac {PB^2}2\ .$](http://latex.artofproblemsolving.com/3/f/1/3f181a339897124969a3c999d73702bc157099b0.png)
Proof 2 .
















![$2\cdot [ABP]+2\cdot [CBP]=$](http://latex.artofproblemsolving.com/f/5/a/f5a70b0dbde5fee050bda2c74b73f4e057b4372c.png)
![$\underline{2\cdot [ABCP]}$](http://latex.artofproblemsolving.com/d/5/3/d530d853c90d10e3347e95c2610c8f120c079b91.png)
Proof 3.
P14 (Carlos Hugo Olivera Diaz, Peru). Let



Denote


Proof.















P15 (Leo Giugiuc & Gh. Duca). Let a regular polygon




Proof. Can use the wellknown implication



P16 (Adil Abdullayev, Baku). Prove


Proof.







P17 (Sefket Arslanagic, Berlin). Prove that the inequality


Proof. Suppose w.l.o.g.






![$[x+(y+z)]^2\le$](http://latex.artofproblemsolving.com/7/e/d/7ed7f632a954db2fe84d8dc4687f7d2f9a9e2044.png)

![$\cancel {x^2}+2Sx+\cancel{S^2}\le \cancel{x^2}+1+\left[S^2+(P-1)^2\right]\cdot x^2+$](http://latex.artofproblemsolving.com/8/d/3/8d3205ef7f2eefa1d904e1414555df238532d7e3.png)

![$\left[S^2+(P-1)^2\right]\cdot \underline x^2-2S\cdot \underline x+$](http://latex.artofproblemsolving.com/0/e/8/0e8ca67e6e1227482b6cb12443bc02213dfae028.png)
![$\left[(P-1)^2+1\right]\ge 0$](http://latex.artofproblemsolving.com/e/5/a/e5ab94b453d311d3d555488ca52c32523e7437c3.png)

![$S^2-\left[S^2+(P-1)^2\right]\cdot\left[(P-1)^2+1\right]=-(P-1)^2\left[\left(S^2+1\right)+(P-1)^2\right]\le 0\ .$](http://latex.artofproblemsolving.com/3/4/1/3414202e815b06aef3942f44c3e617260fd9656a.png)


click => P18 (Nelson Cayo Deza Velasquez, Lima-PERU).
Proof. Suppose w.l.o.g. that









in






that








P19 (Kadir Altintas, Turkey). Let




Proof 1. Denote the midpoint

![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)










Hence





Proof 2. I'll apply identities








P20 (Kadir Altintas, Turkey). Let





Proof. Denote the midpoint

![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)








An easy extension. Let an acute








P21 (for Mathskidd - elementary proof). Let




Proof 1. Let the midpoint

![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)
![$[AS]$](http://latex.artofproblemsolving.com/8/1/f/81f842d87b22553e4b674bb2bf46a080da785009.png)












![$2\left(HB^2+HC^2\right)-BC^2\ \stackrel{(1)}{=}\ 2\left[\left(4R^2-b^2\right)+\left(4R^2-c^2\right)\right]-a^2$](http://latex.artofproblemsolving.com/0/8/a/08a055d35cfc0b4ebd32dd22f9cecdca2fedc9e8.png)





![$2\left[\left(4R^2-a^2\right)+\left(16R^2-2b^2-2c^2-a^2\right)\right]-4R^2=$](http://latex.artofproblemsolving.com/5/a/0/5a068e09ee417da38378d4703f7666c04fe4b21f.png)




Proof 2. Observe that





![$5R^2-a^2+2R^2\left[\left(1-2\sin^2B\right)+\left(1-2\sin^2C\right)\right]=$](http://latex.artofproblemsolving.com/b/7/f/b7fdd3d651fa8e18edd606ed8d46d4e108b6a130.png)






Remark.









![$-1-2\cos A[\cos (B-C)-\cos A]=-1-2\cos A[\cos (B-C)+\cos (B+C)]=-1-4\cos A\cos B\cos C\implies$](http://latex.artofproblemsolving.com/1/a/2/1a2ba8cbc23cc09a4dd7a0a1eaadd44d7fddbc86.png)










P21 (Boris COLAKOVIC). Prove that

Proof. I"ll use only the remarkable inequality


Therefore,





Remark. This inequality is equivalent with









![$\left\{\begin{array}{ccccc}
3s^2=3\sum r_br_c\le \left(r_a+r_b+r_c\right)^2=(4R+r)^2 & \iff & \boxed{s\sqrt 3\le 4R+r} & \iff & 9s\sqrt 3\le 9(4R+r)\\\\
3\cdot\sqrt[3]{\prod (s-a)}\le\sum (s-a)=s\iff 27sr^2\le s^3 & \iff & \boxed{3r\sqrt 3\le s} & \implies & 9r\le s\sqrt 3\end{array}\right\|$](http://latex.artofproblemsolving.com/f/9/f/f9ff07dab53ef08bc244e92d7e6222c26948a255.png)


This post has been edited 577 times. Last edited by Virgil Nicula, Feb 27, 2019, 11:09 AM