221. Some nice and simple "slicing" problems.

by Virgil Nicula, Feb 15, 2011, 2:04 PM

PP1. Let $ABC$ be an $A$-isosceles triangle with $A=108^{\circ}$ . Denote $\left\|\begin{array}{ccc}
D\in (BC) & ; & DB=DC\\\
E\in (CA) & ; & \widehat{EBA}\equiv\widehat{EBC}\end{array}\right\|$ . Prove that $BE=2\cdot AD$ .

Proof 1 (trig.). $\frac {BE}{AD}=$ $\frac {BE}{AB}\cdot\frac {AB}{AD}=$ $\frac {\sin\widehat{BAE}}{\sin \widehat{BEA}}\cdot\frac {1}{\cos\widehat{BAD}}=$ $\frac {\sin 2x}{\sin\left(45^{\circ}+\frac {3x}{2}\right)}\cdot\frac {1}{\cos x}=$ $2\cdot\frac {\sin x}{\sin\left(45^{\circ}+\frac {3x}{2}\right)}$ . For $x=54^{\circ}$ obtain that $\frac {BE}{AD}=2$ .

Proof 2 (syn.). Denote $F\in AD$ so that $\left\|\begin{array}{c}
D\in (AF)\\\
DF=DA\end{array}\right\|$ . Prove easily that $ABFE$ is a isosceles trapezoid for which $BF\parallel AE$ . In conclusion, $BE=2\cdot AD$ .



PP2. Let $ABC$ be a triangle. Denote $D\in (BC)$ so that $\widehat{DAB}\equiv\widehat{DAC}$ . Suppose that $DB\cdot DC=AD^2$ and $m\left(\widehat{ADB}\right)=45^{\circ}$ . Ascertain $A$ , $B$ , $C$ .

Proof 1 (trigonometric). Denote $m\left(\widehat{DAB}\right)=m\left(\widehat{DAC}\right)=x$ . Thus, $B=135^{\circ}-x$ and $C=45^{\circ}-x$ . Apply the Sinus' theorem

in the triangles : $\left\|\begin{array}{ccc}
\triangle DAB & ; & \frac {DA}{\sin\left(135^{\circ}-x\right)}=\frac {DB}{\sin x}\\\\
\triangle DAC & ; & \frac{DA}{\sin \left(45^{\circ}-x\right)}=\frac{DC}{sinx}\end{array}\right\|\ \bigodot\implies$ $\sin^{2}x=\sin\left(45^{\circ}-x\right) \cdot \sin\left(45^{\circ}+x\right)$ . I used the given relation

$DA^2=DB \cdot DC$ . Therefore, $1-\cos 2x=\cos 2x \iff$ $\cos 2x=\frac 12$ $\iff$ $x=30^{\circ}$ . In conclusion, $A=60^{\circ}$ , $B=105^{\circ}$ and $C=15^{\circ}$ .

Remark. Can use the well-known relation $\boxed{\ AD^2=bc-DB\cdot DC\ }$ .

Proof 2 (metrico-synthetic). Denote the midpoint $M$ of the side $[BC]$ and the diameter $[EF]$ in the circumcircle $w=C(O,R)$ of $\triangle ABC$

so that $M\in EF$ and the sideline $BC$ separates $E$ , $A$ . Using the power of $D$ w.r.t. $w$ obtain that $AD^2=DB\cdot DC=DA\cdot DE$ , i.e.

$DA=DE$ $\iff$ $OD\parallel AF$ , i.e. $M$ is the midpoint of $[OE]$ $\iff$ the triangle $BFC$ is equilateral $\implies$ $A=60^{\circ}$ , $B=105^{\circ}$ and $C=15^{\circ}$ .



PP3. Let $ABC$ be an equilateral triangle. Consider the points $\left\|\begin{array}{ccc}
D\in (BC) & ; & DC=2\cdot DB\\\
E\in (CA) & ; & EC=EA\\\
F\in (AB) & ; & FA=3\cdot FB\end{array}\right\|$ . Ascertain $m(\angle DEF)$ .

Proof 1 (metric). Suppose w.l.o.g. that $AB=12$ . Thus, $\left\|\begin{array}{ccc}
DB=8 & ; & DC=4\\\
EC=6 & ; & EA=6\\\
FA=9 & ; & FB=3\end{array}\right\|$ and using the generalized Pytagoras' theorem obtain that $ED=2\sqrt 7$ , $EF=3\sqrt 7$ and $DF=7$ . Can suppose w.l.o.g. again that $ED=2$ , $EF=3$ and $DF=\sqrt 7$ . In conclusion, using again the generalized Pytagoras' theorem

in $\triangle DEF$ for the side $[DF]$ obtain that $\cos\widehat{DEF}=\frac {ED^2+EF^2-DF^2}{2\cdot ED\cdot EF}=$ $\frac {4+9-7}{2\cdot 2\cdot 3}=\frac 12$ , i.e. $m\left(\widehat{DEF}\right)=60^{\circ}$ .

Proof 2 (synthetic - Sunken rock). Denote the point $M$ for which $MCAB$ is a rhombus. Observe that $M\in ED$ because $\frac {DB}{DC}=\frac {MB}{CE}=2$ .

Denote the intersection $N\in EF\cap BC$ and the midpoint $P$ of $[AB]$ . Show easily that $BEPN$ is a parallelogram $\implies$ $BN=CE\implies$

$\triangle MBN\equiv \triangle MCE$ and a $60^\circ$ rotation around $M$ will map $C$ to $B$ and $E$ to $N$, i.e. $\triangle MEN$ is equilateral $\implies$ $m\left(\widehat{DEF}\right)=60^{\circ}$ .



PP4. Let $ABC$ be an $A$-isosceles triangle with $A=100^\circ$ . Denote $\left\|\begin{array}{ccc}
D\in (BC) & ; & m\left(\widehat{DAC}\right)=40^\circ\\\
E\in (AB) & ; & m(\widehat{BCE})=10^\circ\end{array}\right\|$ . Find $m\left(\widehat{DEC}\right)$ .

Proof. Note that $m(\angle BAD)=60^{\circ}$ $\implies$ $E'\in (AB)$ such that $\triangle ADE'$ is equilateral. Note that $m(\angle ACD)=m(\angle DAC)=$ $40^{\circ}\implies DA=DC$ .

Hence $CD=AD=DE'$ . Since we have $m(\angle CDE')=160^{\circ}$ , then $m(\angle DCE')=m(\angle DE'C)=10^{\circ}$ $\implies$ $E'=E$. So $m(\angle DEC)=10^{\circ}$ .



PP5. Let $ ABCD$ be a quadrilateral for which $ BA=BD$ , $ AC=AD$ , $ m(\angle BAC)<30^{\circ}$ and $ m(\angle BAC) +m(\angle BDA) = 60^{\circ}$ . Find $ m(\angle BCA)$ .

Proof. Denote $ x=m(\angle BAC)$ . Observe that $ \underline {BA=BD}$ and $ \underline {m(\angle BAC) +m(\angle BDA) = 60^{\circ}}$ $ \implies$ $ m(\angle BAD)=m(\angle BDA)=60^{\circ}-x$ ,

$ m(\angle CAD)=60-2x$ and $ m(\angle DBA)=60+2x$ . Construct the equilateral $ \triangle  ABE$ so that $ AD$ separates $ B$ , $ E$ . Observe that $ m(\angle DBE)=2x$ ,

$ m(\angle DAE)=x$ , $\triangle  DBE$ is $ B$-isosceles, i.e. $ m(\angle BED)=m(\angle BDE)=90^{\circ}-x$ and $ \boxed {\ m(\angle ADE)=30^{\circ}\ }$ . Observe that $ ABC\equiv AED$ because

$ AB=AE$ , $ \underline{AC=AD}$ and $ m(\angle BAC)=m(\angle EAD)=x$ . Hence $ BC=ED$ and $ m(\angle BCA)=m(\angle EDA)=30^{\circ}$ , i.e. $ m(\angle BCA)=30^{\circ}$ .


Particular case. For $ m(\angle BAC)=10^{\circ}$ we"ll obtain an well-known problem.


PP6. Se considera doua triunghiuri isoscele $ ABC$ , $ MNP$ astfel incat $ AB=AC$ , $ MN=MP$ si $ N\in (AC)$ , $ B\in (MP)$ .

Notam $ R\in AB\cap MN$ , $ S\in BC\cap NP$ . Sa se arate ca $ BP=CN\ \Longleftrightarrow$ semidreapta $ [RS$ este bisectoarea unghiului $ \widehat {BRN}$ .


Dem. Notam $ X\in BC\cap MN$ , $ Y\in AB\cap NP$ , $ Z\in NB\cap RS$ . Aplicam teorema Menelaus transversalelor $\overline{XBC}/\triangle ANR$ , $ \overline{YPN}/\triangle BMR$ respectiv:

$ \left|\begin{array}{ccc}
\frac {XR}{XN}\cdot\frac {CN}{CA}\cdot\frac {BA}{BR}=1 & \implies & \frac {XN}{XR}=\frac {CN}{BR}\\\\
\frac {YR}{YB}\cdot\frac {PB}{PM}\cdot\frac {NM}{NR}=1 & \implies & \frac {YR}{YB}=\frac {NR}{PB}\end{array}\right|$ . Aplicam teorema lui Ceva punctului $ S$ si triunghiului $ BRN\ : \ \ \frac {TB}{TN}\cdot\frac {XN}{XR}\cdot\frac {YR}{YB}=1$ $ \implies$

$ \frac {TN}{TB}=\frac {XN}{XR}\cdot\frac {YR}{YB}$ $ \implies$ $ \frac {TN}{TB}=\frac {NC}{PB}\cdot\frac {RN}{RB}$ . In concluzie, $ NC=PB$ $ \Longleftrightarrow$ $ \frac {TN}{TB}=\frac {RN}{RB}$ $ \Longleftrightarrow$ semidreapta $ [RS$ este bisectoarea unghiului $ \widehat {BRN}$ .



PP7. Let $ ABC$ be an $ A$-isosceles triangle. Let $ M\in BC$ , $ N\in (AC)$ , $ P\in (AB)$

so that $ AN=BP$ and $ MN=MP$ . Prove that $ \triangle\ MNP\ \sim\ \triangle\ ABC$ .


Proof. $ \left\|\begin{array}{c}
R\in (AB)\ ,\ AR=BP\\\\
X\in (NR)\ ,\ XN=XR\\\\
T\in (NP)\ ,\ TN=TP\\\\
S\in (BC)\ ,\ PS\perp BC\end{array}\right\|\implies\ NR\parallel BC$ , $ AX=PS$ , $ AX\parallel PS$ , $ XT\parallel AB$ ;

$ APSX$ is a parallelogram $ \implies XS\parallel AB$ ; $ XT\parallel AB\ \implies T\in XS$ ; $ TM\perp PN\ \implies$

$ MSPT$ is cyclically$ \implies\widehat {MNP}\equiv\widehat {MPT}\equiv\widehat {MST}\equiv\widehat{MBA}$ . In conclusion, $ m(\widehat {MNP})=B$ .



PP8. Let $ABC$ be a triangle with an acute $\angle A$ . Denote angle bisector $AE$ and the altitude

$BH$ , where $E\in BC$ , $H\in AC$ . Suppose $m(\angle AEB)=45^{\circ}$ . Ascertain $m(\angle EHC)$ .


Proof. Denote $D\in AB$ for which $CD\perp AB$ and $x=m(\angle BAE)$ . Observe that $m(\angle BCH)=45^\circ-x$ , $m(\angle CBD)=45^\circ+x$

and $m(\angle BCD)=45^\circ-x$ . Thus, $\widehat {BCH}\equiv\widehat {BCD}$ , i.e. the lines $AE$ and $CE$ are angle bisectors. So the line $DE$ is also an angle bisector

of $\widehat{ADC}$ . From $\triangle BCH\equiv\triangle BCD$ obtain that $m(\angle EHC)=m(\angle EDC)=45^\circ$ .



An easy extension. Consider in the triangle $ABC$ two points $E\in (BC)$ and $H\in (AC)$

so that $\widehat{EAB}\equiv\widehat{EAC}$ and $m(\angle AHB)=2\cdot m(\angle AEB)=2\phi$ . Ascertain $m(\angle EHC)$ .


Proof 1. Denote $x=m(\angle BAE)=m(\angle CAE)$ and $m(\angle AEB)=\phi$ . Observe that $m(\angle AHB)=2\phi$ , $m(\angle BCA)=\phi -x$ and

$m(\angle CBH)=\phi +x$ , $m(\angle ADC)=180^{\circ}-2\phi $. Denote $D\in AB$ so that $B\in (AD)$ and $\widehat{BCA}\equiv\widehat{BCD}$ . Thus $E$ is the incenter of

$\triangle ACD$ . So the line $DE$ is also an angle bisector of $\widehat{ADC}$ . From $\triangle BCH\equiv\triangle BCD$ obtain that $m(\angle EHC)=m(\angle EDC)=90^\circ -\phi$ .

Remark. Since $\phi =\frac A2+C$ obtain that $m(\angle EHC)=m(\angle EDC)=90^\circ -\phi =$ $90^\circ -\left(\frac A2+C\right)\implies$ $\boxed{m(\angle EHC)=\frac {B-C}{2}}$ .

Proof 2. Let $I$ be the incenter of $\triangle AHB$ . Observe that $\angle EAB={A\over 2}\implies \phi=\pi-B-{A\over 2}={A\over 2}+C$ and $\angle AHI=\angle BHI=$ ${A\over 2}+C\implies$

$\angle BHC=$ $\pi-A-2C=B-C$ . Thus, $\angle HBC=\pi-\angle BHC-C=$ $\pi-B\implies $ $\angle ABI=$ $\angle HBI=$ $B-{\pi\over 2}$ . Hence $\angle IBE={\pi\over 2}$

and $\angle IHB=\angle IEB$ $\implies$ the quadrilateral $IHEB$ is cyclic. Hence $\angle IHE={\pi\over 2}$ $\implies $ $\angle EHC=$ $\pi-{\pi\over 2}-\phi=$ ${\pi\over 2}-\phi$ $\left(={B-C\over 2}\right)$ .
This post has been edited 70 times. Last edited by Virgil Nicula, Nov 22, 2015, 3:10 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a