291. Some integrals.
by Virgil Nicula, Jun 26, 2011, 7:07 PM
PP1. Ascertain
.
Proof.
. By the partial integration
obtain that ![$I(x)=-\left[\frac {1}{2\pi}\cdot y\cos (2\pi y)\right]_{\cos x}^1+$](//latex.artofproblemsolving.com/e/0/b/e0ba9ed1400927b21a74776532c426d1c896287f.png)
.
PP2. Evaluate
.
Proof.
, where
and
.
Observe that
and for estimate
, I"ll apply partial integration :
,
where
.
In conclusion,
.
PP3 Find the area of the domain of the system of inequality
Proof.
Case 1.

Case 2.

Finally my answer is
.
PP4. Generally, for
,
exist
,
and
so that
.
Example. Exist
so that
.
Therefore,
,
i.e.
.
Since

, obtain that
.
PP5. Ascertain a recurrence relation for
, where
.
Proof. Let us consider the general integral
, where
. Since

. Thus,
for all

, where
.
PP6. Ascertain the integral
.
Proof.

(partial integration)
.
PP7. Find the function
such that
.
Proof.

. From this obtain that
.
Solving (1) and (2) we get
and
. Therefore
.
PP8. Let
, where
. Find
, where
Proof.

and 
. Hence
and
. In conclusion,
.
PP9. Ascertain
, where
and
, where
.
Proof.

. Observe that
.
for any
, i.e.
.
PP10. Evaluate
.
Proof.


.
PP11. Evaluate
.
Proof. Observe that

.
PP12. Evaluate
and find 
Proof.
, where
because
. Therefore,
. So 
and
. Denote
, where
and
. Using an well-known property obtain
that
.
Otherwise For
let
, where
and 
. Thus,
, i.e.
.
PP13. Calculate
.
Proof 0. I"ll use the substitution
. Thus,
, where
.
Observe that
, where
and
. Therefore, for
obtain that
, where
because 
, where
and
.a.s.o. (abandon of the work).
Proof 1 (very nice).
so that
. So can use the substitution
. Thus, our integral becomes
, where
.
Proof 2 (nice theory).
so that 
. Therefore, 
. In conclusion,
.
Proof 3.
, where

.
Proof 4. Since
obtain that
, where
. Therefore,
.
.
In conclusion,
.
PP14. Calculate
.
Proof.
. Integration by parts first integral :
. Therefore,
.
PP15. Prove that
.
Proof. Denote
. Observe that
and

, i.e.
.
PP16. Calculate
.
Proof.
, where
![$\int\left[\sin t+\frac {\sin t (1+\cos 2t)}{\cos 2t}\right]\ \mathrm{dt}=$](//latex.artofproblemsolving.com/5/b/f/5bffde2e828b86ea667822bc2de80b91f712cb7c.png)

. In conclusion,
.
PP17. Find the area of the region bounded by the graph of the function
and the tangent line which touches this graph at distinct two points.
See PP20 from here. Answer. The common tangent is
, where
and
. The required area is
.
PP17. Find the minimum value of the function
, where
.
Proof.
.

.
.
In conclusion,
and
.
Remark.
and 
PP18.
is a polynomial of 5th degree for which
, where
and
are polynomials. Find
.
Proof.
will be a polynomial of degree
and divisible by

. Now
.
See here

Proof.



![$I(x)=-\left[\frac {1}{2\pi}\cdot y\cos (2\pi y)\right]_{\cos x}^1+$](http://latex.artofproblemsolving.com/e/0/b/e0ba9ed1400927b21a74776532c426d1c896287f.png)


PP2. Evaluate

Proof.




Observe that
![$L=\left[\frac {1}{3\cdot\cos^3x}\right]_0^{\frac {\pi}{4}}\implies$](http://latex.artofproblemsolving.com/2/d/8/2d86b66d3250988bd46a43667ea6be61950cf9e3.png)



![$K=\left[\frac {\sin x}{2\cos^2x}\right]_0^{\frac {\pi}{4}}-\frac 12\cdot J\implies$](http://latex.artofproblemsolving.com/0/2/a/02ae19713ffe233c5e32e41790d7dfafdb602a1d.png)

where





In conclusion,


PP3 Find the area of the domain of the system of inequality

Proof.
Case 1.




Case 2.



Finally my answer is

PP4. Generally, for
![$P\in\mathbb R[X]$](http://latex.artofproblemsolving.com/0/1/b/01b6537ecd665f5c8f25e51f2217214f9023f826.png)

![$Q\in\mathbb R[X]$](http://latex.artofproblemsolving.com/6/1/1/611d12b8cdff289e0de8c8512c2c5a2496ddfefc.png)



Example. Exist



Therefore,

i.e.



Since





PP5. Ascertain a recurrence relation for


Proof. Let us consider the general integral










PP6. Ascertain the integral

Proof.


(partial integration)




PP7. Find the function


Proof.





Solving (1) and (2) we get



PP8. Let

![$t\in I=[0,1]$](http://latex.artofproblemsolving.com/1/c/b/1cb9af983ade8a324e5bea6832c3796ccf3a27b4.png)

![$P(t)=\left[\int_0^{\frac{\pi}{2}} e^x f(x)\ \mathrm{dx} \right]\cdot\left[\int_0^{\frac{\pi}{2}} e^{-x} f(x)\ \mathrm{dx}\right]$](http://latex.artofproblemsolving.com/4/6/e/46eb4ad771179b41e7801d46e70cc61fce92bd09.png)
Proof.


![$P(t)=\left[tA+(1-t)B\right]\cdot\left[tC+(1-t)D\right]$](http://latex.artofproblemsolving.com/6/2/c/62c2844705758c7814d1db8e5727e63f9e17b5b4.png)




![\[\blacktriangleleft\ \boxed{P(I)=\left[\frac 12\cdot\sinh\left(\frac {\pi}{2}\right)\ ,\ \frac 14\cdot e^{\frac {\pi}{2}}\right]}\ \blacktriangleright\]](http://latex.artofproblemsolving.com/5/3/7/53764297d2c8e11b55058c1272390e259f34d5a5.png)
PP9. Ascertain




Proof.










PP10. Evaluate

Proof.








![$\frac {\sqrt 2}{2}\cdot \ln\left[\left(\sqrt 2-1\right)\left(2+\sqrt 3\right)\right]^2\implies$](http://latex.artofproblemsolving.com/4/f/e/4fe729c6d799914ade77e295407a09e5f84d2864.png)

PP11. Evaluate

Proof. Observe that





PP12. Evaluate


Proof.



![$\left[f(x)\cdot e^{-2x}\right]'=$](http://latex.artofproblemsolving.com/1/a/a/1aa18e1684f850626e607da4fafbf21142b1c307.png)
![$\left[f'(x)-2f(x)\right]\cdot e^{-2x}$](http://latex.artofproblemsolving.com/a/2/2/a2298a1c91ae12e1fc2ea50168deac42f3bba43e.png)







![$a_n=\sqrt[n]{b_n}$](http://latex.artofproblemsolving.com/8/a/7/8a7c7e1a52ba6edbce28b8432a61c94fdf475065.png)


that
![$\lim_{n\to\infty}a_n=\lim_{n\to\infty}\sqrt[n]{b_n}=$](http://latex.artofproblemsolving.com/b/0/b/b0b264939128ac1f669bad82b5dd054e0c486160.png)



![$\boxed{\lim_{n\to\infty}\sqrt[n]{\frac{(2n)!}{n!n^n}}=\frac 4e}$](http://latex.artofproblemsolving.com/2/9/f/29fd78711765caec04362285eee8bb6fb1c7a9d6.png)
Otherwise For


![$\left[\frac{1}{n^n} \prod_{k=1}^n (n+k) \right]^{\frac 1n}=$](http://latex.artofproblemsolving.com/e/2/1/e21fe2c72d79932ee31ccde7c49020eef5764721.png)
![$ \left[\prod_{k=1}^n \left(1 + \frac{k}{n} \right) \right]^{\frac 1n}=e^{l_n}$](http://latex.artofproblemsolving.com/a/a/a/aaadca23aa4e0ced7f8eba8cc5ff019465d8e9cc.png)








PP13. Calculate

Proof 0. I"ll use the substitution




Observe that
![$F=-4\cdot \int\left[\frac {1}{t^2+1}+\frac {1}{\left(t^2+1\right)^2}-\frac {2}{\left(t^2+1\right)^3}\right]\ \mathrm{dt}=$](http://latex.artofproblemsolving.com/f/2/2/f22434c66d1cc262a82d788e17401ade7163de48.png)







![$\frac {1}{2n}\cdot\left[R_n-\frac {t}{\left(t^2+1\right)^n}\right]$](http://latex.artofproblemsolving.com/f/e/8/fe8bf2db1b752c173c1abf0d675646e9e9cfa94f.png)

![$R_{n+1}=R_n+\frac {1}{2n}\cdot\left[\frac {t}{\left(t^2+1\right)^n}-R_n\right]\iff$](http://latex.artofproblemsolving.com/e/0/9/e09018680c79ad3858e5fa96db91df82e7470d97.png)



Proof 1 (very nice).
![$(\forall )\ x\in [-1,1)\ ,\ \stackrel{.}{(\exists)}\ t=\arccos x\in (0,\pi ]$](http://latex.artofproblemsolving.com/8/4/5/845d3fe100b6b148c6c8f3421e076bd7de573c3f.png)







Proof 2 (nice theory).


![$\left[(ax+b)\cdot\sqrt {1-x^2}+c\cdot \int\frac {1}{\sqrt {1-x^2}}\ \mathrm{dx}+\mathbb C\right]'=\frac {x^2-x-2}{\sqrt {1-x^2}}$](http://latex.artofproblemsolving.com/f/e/2/fe2a53b8419ef111f8b8ce190a25dc77f1bc4ba4.png)





Proof 3.










Proof 4. Since













In conclusion,



PP14. Calculate

Proof.







PP15. Prove that

Proof. Denote





![$\int\left[f(x)+f'(x)\right]\cdot e^x\ \mathrm{dx}=f(x)\cdot e^x$](http://latex.artofproblemsolving.com/9/0/0/9002cf2015bde1adb9710e4a383096a7f885a7f6.png)

PP16. Calculate

Proof.



![$\int\left[\sin t+\frac {\sin t (1+\cos 2t)}{\cos 2t}\right]\ \mathrm{dt}=$](http://latex.artofproblemsolving.com/5/b/f/5bffde2e828b86ea667822bc2de80b91f712cb7c.png)





PP17. Find the area of the region bounded by the graph of the function

See PP20 from here. Answer. The common tangent is



![$\int_1^3\left[f(x)-(x+1)\right]\mathrm{dx}=\frac {16}{15}$](http://latex.artofproblemsolving.com/3/e/f/3efdeb42a7d2502730aa3f309b8a78b06ee64dd9.png)
PP17. Find the minimum value of the function


Proof.















In conclusion,


Remark.


PP18.





Proof.







See here
This post has been edited 115 times. Last edited by Virgil Nicula, May 4, 2016, 12:02 PM