291. Some integrals.

by Virgil Nicula, Jun 26, 2011, 7:07 PM

PP1. Ascertain $\int_0^x \sin t\cos t\sin (2\pi\cos t)\ dt$ .

Proof. $I(x)\equiv \int_0^x \sin t\cos t\sin (2\pi\cos t)\ \mathrm{dt}\stackrel{(y=\cos t)}{=}$ $\int_{\cos x}^1 y\sin (2\pi y)\ \mathrm{dy}$ . By the partial integration

$\left\{\begin{array}{ccc}
u(y)=y & \implies & u'(y)=1\\\\
v'(y)=\sin (2\pi y) & \implies & v(y)=-\frac {1}{2\pi}\cdot\cos (2\pi y)\end{array}\right\|$ obtain that $I(x)=-\left[\frac {1}{2\pi}\cdot y\cos (2\pi y)\right]_{\cos x}^1+$

$\frac {1}{2\pi}\cdot\int_{\cos x}^1\cos (2\pi y)\ \mathrm {dy}\implies$ $\boxed{\ I(x)=-\frac {1}{2\pi}+\frac {1}{2\pi}\cdot\cos x\cos (2\pi\cos x)-\left(\frac {1}{2\pi}\right)^2\cdot\sin (2\pi\cos x)\ }$ .



PP2. Evaluate $\int_0^{\frac{\pi}{4}} \frac{\sin x(\sin x \cos x +2)}{\cos ^ 4 x}\ \mathrm{dx}$ .

Proof. $I\equiv \int_0^{\frac{\pi}{4}} \frac{\sin x(2+\sin x \cos x)}{\cos ^ 4 x}\ \mathrm{dx}\implies$ $\boxed{I=2L+K}$ , where $L=\int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos ^ 4 x}\ \mathrm{dx}$ and $K=\int_0^{\frac{\pi}{4}} \frac{\sin^2 x}{\cos ^ 3 x}\ \mathrm{dx}$ .

Observe that $L=\left[\frac {1}{3\cdot\cos^3x}\right]_0^{\frac {\pi}{4}}\implies$ $\boxed{L=\frac {2\sqrt 2-1}{3}}$ and for estimate $K$ , I"ll apply partial integration :

$\left\{\begin{array}{ccc}
u(x)=\sin x & \implies & u'(x)=\cos x\\\\
v'(x)=\frac {\sin x}{\cos^3x} & \implies & v(x)=\frac {1}{2\cdot \cos^2 x}\end{array}\right\|\implies$ $K=\left[\frac {\sin x}{2\cos^2x}\right]_0^{\frac {\pi}{4}}-\frac 12\cdot J\implies$ $\boxed{K=\frac {\sqrt2}{2}-\frac 12\cdot J}$ ,

where $J=\int_0^{\frac{\pi}{4}} \frac{1}{\cos  x}\ \mathrm{dx}=$ $\int_0^{\frac{\pi}{4}} \frac{\cos x}{\cos^2  x}\ \mathrm{dx}=$ $-\int_0^{\frac{\pi}{4}} \frac{(\sin x)'}{\sin^2x-1}\ \mathrm{dx}= $ $-\int_0^{\frac{\sqrt 2}{2}} \frac{1}{x^2-1}\ \mathrm{dx}\implies$ $\boxed{J=\ln \left(1+\sqrt 2\right)}$ .

In conclusion, $I=2L+K=\frac {4\sqrt 2-2}{3}+\frac {\sqrt 2}{2}-\frac 12\cdot\ln\left(1+\sqrt 2\right)\implies$ $\boxed{I=-\frac 23+\frac {11\sqrt 2}{6}-\frac 12\cdot\ln\left(1+\sqrt 2\right)}$ .



PP3 Find the area of the domain of the system of inequality $y(y-|x^{2}-5|+4)\leq 0,\ \ y+x^{2}-2x-3\leq 0\ .$

Proof.

Case 1. $\implies S_1=\int_{1}^{3}(\left |x^2-5  \right |-4)dx =$ $\int_{1}^{\sqrt{5}}(-x^2+1)dx +
\int_{\sqrt{5}}^{3}(x^2-9)dx$ $=(-\frac{x^3}{3}+x)\mid_{1}^{\sqrt{5}} +(\frac{x^3}{3}-9x)\mid_{\sqrt{5}}^{3}\implies$ $S_1=\frac{56-20\sqrt{5}}{3}\ .$

Case 2. $\implies S_2=2\cdot\int_{0}^{1}(\left |x^2-5  \right |-4)dx = 2\cdot\int_{0}^{1}(-x^2+1)dx$ $=2\cdot (-\frac{x^3}{3}+x)\mid_{0}^{1}\implies$ $S_2=\frac{4}{3}\ .$

Finally my answer is $\boxed{S=S_1+S_2=\frac{60-20\sqrt 5}{3}}$ .



PP4. Generally, for $P\in\mathbb R[X]$ , $\mathrm{gr}P=n\in\mathbb N^*$ exist $Q\in\mathbb R[X]$ , $\mathrm{gr}Q\le n-1$ and $C\in\mathbb R$ so that

$\boxed{\ \int\frac{P(x)}{\sqrt{ax^{2}+bx+c}}\ \mathrm{dx}=Q(x)\cdot\sqrt {ax^2+bx+c}+C\cdot\int\frac{1}{\sqrt{ax^{2}+bx+c}}\ \mathrm{dx}\ }$ .


Example. Exist $\{A,B,C\}\subset\mathbb R$ so that $\int\frac{x^{2}+2x+3}{\sqrt{x^{2}+x+1}}\ \mathrm{dx}=$ $(Ax+B)\cdot\sqrt {x^2+x+1}+C\cdot\int\frac{1}{\sqrt{x^{2}+x+1}}\ \mathrm{dx}$ .

Therefore, $A\cdot\sqrt{x^{2}+x+1}+(Ax+B)\cdot\frac {x+\frac 12}{\sqrt{x^2+x+1}}+\frac {C}{\sqrt{x^2+x+1}}=\frac{x^{2}+2x+3}{\sqrt{x^{2}+x+1}}$ ,

i.e. $A\left(x^{2}+x+1\right)+(Ax+B)\left(x+\frac 12\right)+C\equiv x^2+2x+3\iff$ $\left\{\begin{array}{c}
2A=1\\\\
\frac {3A}{2}+B=2\\\\
A+\frac B2+C=3\end{array}\right\|\iff$ $\left\{\begin{array}{c}
A=\frac 12\\\\
B=\frac 54\\\\
C=\frac {15}{8}\end{array}\right\|$ .

Since $\int\frac{1}{\sqrt{x^{2}+x+1}}\ \mathrm{dx}=$ $\int\frac{\left(x+\frac 12\right)'}{\sqrt{\left(x+\frac 12\right)^2+\frac 34}}\ \mathrm{dx}=$ $\ln\left|x+\frac 12+\sqrt{\left(x+\frac 12\right)^2+\frac 34}\right|+\mathbb C\implies$

$\int\frac{1}{\sqrt{x^{2}+x+1}}\ \mathrm{dx}=\ln\left|2x+1+2\cdot\sqrt{x^2+x+1}\right|+\mathbb C$ , obtain that

$\boxed{\int\frac{x^{2}+2x+3}{\sqrt{x^{2}+x+1}}\ \mathrm{dx}=\frac 14\cdot \left(2x+5\right)\cdot\sqrt {x^2+x+1}+\frac {15}{8}\cdot\ln\left|2x+1+2\cdot\sqrt{x^2+x+1}\right|+\mathbb C}$ .



PP5. Ascertain a recurrence relation for $I_n=\int\frac {\sin nx}{\sin x}\ \text{d}x$ , where $n\in\mathbb{N}^{\ast}$ .

Proof. Let us consider the general integral $I_n=\int\frac {\sin nx}{\sin x}\ \text{d}x$ , where $n\in\mathbb{N}^{\ast}$ . Since $\sin\left(n+2\right)x-\sin nx=$ $2\sin x\cos\left(n+1\right)x\implies$

$\frac {\sin\left(n+2\right)x}{\sin x}-\frac {\sin nx}{\sin x}=2\cos\left(n+1\right)x$ . Thus, $I_{n+2}=I_n+2\int\cos\left(n+1\right)x\ \text{d}x=I_n+\frac {2\sin\left(n+1\right)x}{n+1}$ for all $n\in\mathbb{N}^{\ast}$ $\implies$

$\boxed{\ \begin{array}{lll}
I_{2n} & = & 2\sin x+2\sum\limits_{k=1}^{n-1}\frac {\sin\left(2k+1\right)x}{2k+1}+\mathcal{C}\\ \\ 
I_{2n+1} & = & x+2\sum\limits_{k=1}^n\frac {\sin \left(2kx\right)}{2k}+\mathcal{C}
\end{array}\ }$ , where $\begin{cases}
I_1=x+\mathcal{C} \\ 
I_2=2\sin x+\mathcal{C}\end{cases}$ .



PP6. Ascertain the integral $I=\int\frac {1}{(x^2+1)\sqrt {x^2+1}}\ \mathrm{dx}$ .

Proof. $\int\frac {(x^2+1)-x^2}{(x^2+1)\sqrt {x^2+1}}\ \mathrm{dx}= $ $\ln\left(x+\sqrt{x^2+1}\right)-\int x\cdot\frac {x}{(x^2+1)\sqrt {x^2+1}}\ \mathrm{dx}\implies$

(partial integration) $\left\{\begin{array}{ccc}
u(x)=x & \implies & u'(x)=1\\\\
v'(x)=\frac {x}{(x^2+1)\sqrt {x^2+1}} & \implies & v(x)=-\frac {1}{\sqrt{x^2+1}}\end{array}\right\}$

$I=\ln\left(x+\sqrt{x^2+1}\right)-\left(-\frac {x}{\sqrt{x^2+1}}+\int\frac {1}{\sqrt {x^2+1}}\ \mathrm{dx}\right)$ $\implies$ $\boxed{I=\frac {x}{\sqrt{x^2+1}}+\mathbb C}$ .


PP7. Find the function $f(x)$ such that $f(x)=\cos x+\int_0^{2\pi} f(y)\sin (x-y)\ \mathrm{dy}$ .

Proof. $f(x)= \cos x + \int_0^{2\pi}f(y)\sin(x-y)\ \mathrm{dy}=$ $\cos x + \int_0^{2\pi}f(y)(\sin x\cos y-\cos x\sin y)\ \mathrm{dy}=$

$\left(1-\int_0^{2\pi}f(y)\sin ydy\right)\cos x + \left(\int_0^{2\pi}f(y)\cos y dy\right)\sin x\equiv$ $ A \cos x + B\sin x$ . From this obtain that

$\left\{\begin{array}{cccccc}
A & = & 1 - \int_0^{2\pi} (A\cos y + B\sin y)\sin y\ \mathrm{dy} & = & 1-\pi B & (1)\\\\
B & = & \int_0^{2\pi}(A\cos y + B\sin y)\cos y\ \mathrm{dy} & = & \pi A & (2)\end{array}\right\|$ .

Solving (1) and (2) we get $A=\frac{1}{1+\pi^2}$ and $B=\frac{\pi}{1+\pi^2}$ . Therefore $\boxed{f(x) = \frac{\cos x+\pi\sin x}{1+\pi^2}}$ .



PP8. Let $f(x)=t\sin x+(1-t)\cos x$ , where $t\in I=[0,1]$ . Find $P(I)$ , where $P(t)=\left[\int_0^{\frac{\pi}{2}} e^x f(x)\ \mathrm{dx} \right]\cdot\left[\int_0^{\frac{\pi}{2}} e^{-x} f(x)\ \mathrm{dx}\right]$

Proof. $\left\{\begin{array}{cc}
A=\int_0^{\frac{\pi}{2}} e^x\sin x\ \mathrm{dx} & B=\int_0^{\frac{\pi}{2}} e^x\cos x\ \mathrm{dx}\\\\
C=\int_0^{\frac{\pi}{2}} e^{-x}\sin x\ \mathrm{dx} & B=\int_0^{\frac{\pi}{2}} e^{-x}\cos x\ \mathrm{dx}\end{array}\right|\implies$ $\left\{\begin{array}{cc}
A+B=e^{\frac {\pi}{2}} & A-B=1\\\\
C-D=e^{-\frac {\pi}{2}} & C+D=1\end{array}\right|\implies$

$P(t)=\left[tA+(1-t)B\right]\cdot\left[tC+(1-t)D\right]$ and $P'(t)=2(A-B)(C-D)t+(AD+BC-2BD)\implies$

$P'(t)=(1-2t)e^{-\frac {\pi}{2}}$ . Hence $P\left(\frac 12\right)=\frac 14\cdot (A+B)(C+D)=\frac 14\cdot e^{\frac {\pi}2}$ and $P(0)=P(1)=\frac 14\cdot\left(e^{\frac {\pi}{2}}-e^{-\frac {\pi}{2}}\right)$ . In conclusion,

\[\blacktriangleleft\ \boxed{P(I)=\left[\frac 12\cdot\sinh\left(\frac {\pi}{2}\right)\ ,\ \frac 14\cdot e^{\frac {\pi}{2}}\right]}\ \blacktriangleright\].



PP9. Ascertain $I=\int\frac {1}{a^2\cos^2x+b^2\sin^2x}\ \mathrm{dx}$ , where $ab\ne 0$ and $J_n=\int_0^{\pi}\frac {\sin (2n-1)x}{\sin x}\ \mathrm{dx}$ , where $n\in\mathbb N^*$ .

Proof. $I=\int\frac {\sin^2x+\cos^2x}{a^2\cos^2x+b^2\sin^2x}\ \mathrm{dx}=$ $\frac {1}{a^2}\cdot \int\frac {\tan^2x+1}{1+\left(\frac ba\cdot\tan x\right)^2}\ \mathrm{dx}=$ $\frac {1}{ab}\cdot \int\frac {1}{1+\left(\frac ba\cdot\tan x\right)^2}\cdot\left(\frac ba\cdot\tan x\right)'\ \mathrm{dx}=$

$\frac {1}{ab}\cdot \arctan\left(\frac ba\cdot\tan x\right)+\mathbb C$ . Observe that $\int_0^{\frac {\pi}{4}}\frac {\sin^2x+\cos^2x}{a^2\cos^2x+b^2\sin^2x}\ \mathrm{dx}=\frac {1}{ab}\cdot\arctan\frac ba$ .

$J_{n+1}-J_n=\int_0^{\pi}\frac {\sin (2n+1)x-\sin(2n-1)x}{\sin x}\ \mathrm{dx}=$ $2\cdot \int_0^{\pi}\cos 2nx\ \mathrm{dx}=0\implies$ $J_{n+1}=J_n$ for any $n\in\mathbb N^*$ , i.e. $J_n=J_1=\pi$ .



PP10. Evaluate $ \int_0^{\frac{\pi}{6}} \frac{\sqrt{1+\sin x}}{\cos x}\ \mathrm{dx}$ .

Proof. $ I\equiv \int_0^{\frac{\pi}{6}} \frac{\sqrt{1+\sin x}}{\cos x}\ \mathrm{dx}=$ $ \int_0^{\frac{\pi}{6}} \frac{\sqrt{1+\sin x}}{1-\sin^2x}\cdot (\sin x)'\ \mathrm{dx}\stackrel{(t=\sin x)}{\ =\ }$ $\int_0^{\frac 12}\frac {\sqrt {1+t}}{1-t^2}\ \mathrm{dt}\stackrel{(y=\sqrt {1+t})}{\ =}$

$\int_1^{\sqrt{\frac 32}}\frac {2y^2}{1-(y^2-1)^2}\ \mathrm{dy}=$ $-2\cdot \int_1^{\sqrt{\frac 32}}\frac {1}{y^2-2}\ \mathrm{dy}=$ $\left|\frac {\sqrt 2}{2}\cdot\ln\frac {\sqrt 2-y}{\sqrt 2+y}\right|_{\frac {\sqrt 3}{\sqrt 2}}^1=$ $\frac {\sqrt 2}{2}\cdot \ln\frac {\left(\sqrt 2-1\right)\left(\sqrt 2+\frac {\sqrt 3}{\sqrt 2}\right)}{\left(\sqrt 2+1\right)\left(\sqrt 2-\frac {\sqrt 3}{\sqrt 2}\right)}=$

$\frac {\sqrt 2}2\cdot \ln\frac {\left(\sqrt 2-1\right)\left(2+\sqrt 3\right)}{\left(\sqrt 2+1\right)\left(2-\sqrt 3\right)}=$ $\frac {\sqrt 2}{2}\cdot \ln\left[\left(\sqrt 2-1\right)\left(2+\sqrt 3\right)\right]^2\implies$ $\boxed{\ I=\sqrt 2\cdot \ln\left(\sqrt 2-1\right)\left(2+\sqrt 3\right)\ }$ .



PP11. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{2 \sin x-x \cos x}{(\sin x)^{\frac{3}{2}}}\ \mathrm {dx}$ .

Proof. Observe that $I=\int_0^{\frac {\pi}2}\, \frac {2\sin x-x\cos x}{\left(\sin x\right)^{\frac 32}}\ \mathrm {dx}=\int_0^{\frac {\pi}2}\, \frac {2\sin x-x\cos x}{\sin x\sqrt{\sin x}}\ \mathrm {dx}$ $\implies I=\int_0^{\frac {\pi}2}\, \frac {2\sqrt {\sin x}-x\cdot\frac {\cos x}{\sqrt {\sin x}}}{\sin x}\ \mathrm {dx}=$

$\int_0^{\frac {\pi}2}\, \frac {\left(2x\right)^{\prime}\cdot\sqrt {\sin x}-2x\cdot\left(\sqrt {\sin x}\right)^{\prime}}{\left(\sqrt {\sin x}\right)^2}\ \mathrm {dx}$ $\implies I=\int_0^{\frac {\pi}2}\, \left(\frac {2x}{\sqrt {\sin x}}\right)^{\prime}\ \mathrm {dx}=$ $\frac {2\cdot\frac {\pi}2}{\sqrt{\sin\frac {\pi}2}}-2\cdot \lim_{\alpha\searrow 0}\ \sqrt{\alpha}\cdot \sqrt {\frac {\alpha}{\sin\alpha}}\implies \boxed{I=\pi} $ .


PP12. Evaluate $\int_{-1}^1 (1-x^2)e^{-2x}\ \mathrm{dx}$ and find $\lim_{n\to\infty} \left\{\frac{(2n)!}{n!n^n}\right\}^{\frac{1}{n}}\ .$

Proof. $\int (1-x^2)e^{-2x}\ \mathrm{dx}=$ $f(x)\cdot e^{-2x}+\mathbb C$ , where $\left\{\begin{array}{c}
f(x)=ax^2+bx+c\\\\
f'(x)-2f(x)\equiv 1-x^2\end{array}\right\|$ because $\left[f(x)\cdot e^{-2x}\right]'=$ $\left[f'(x)-2f(x)\right]\cdot e^{-2x}$ . Therefore,

$(2ax+b)-2\left(ax^2+bx+c\right)\equiv 1-x^2\iff$ $\left\{\begin{array}{c}
-2a=-1\\\\
2a-2b=0\\\\
b-2c=1\end{array}\right\|\iff$ $\left\{\begin{array}{c}
a=b=\frac 12\\\\
c=-\frac 14\end{array}\right\|\iff$ $f(x)=\frac 14\cdot\left(2x^2+2x-1\right)$ . So $\int_{-1}^{1} (1-x^2)e^{-2x}\ \mathrm{dx}=$

$\left|\frac 14\cdot\left(2x^2+2x-1\right)\cdot e^{-2x}\right|_{-1}^1$ and $\boxed{\int_{-1}^1 (1-x^2)e^{-2x}\ \mathrm{dx}=\frac 14\cdot \left(e^2+3e^{-2}\right)}$ . Denote $a_n=\sqrt[n]{b_n}$ , where $b_n=\frac{(2n)!}{n!n^n}$ and $n\in\mathbb N^*$ . Using an well-known property obtain

that $\lim_{n\to\infty}a_n=\lim_{n\to\infty}\sqrt[n]{b_n}=$ $\lim_{n\to\infty}\frac {b_{n+1}}{b_n}=$ $\lim_{n\to\infty}\frac {(2n+2)!}{(n+1)!(n+1)^{n+1}}\cdot\frac {n!n^n}{(2n)!}=$ $\lim_{n\to\infty}\frac {(2n+1)(2n+2)}{(n+1)^2}\cdot \left(\frac {n}{n+1}\right)^n=\frac 4e\implies$ $\boxed{\lim_{n\to\infty}\sqrt[n]{\frac{(2n)!}{n!n^n}}=\frac 4e}$ .

Otherwise For $\lim_{n\to\infty} a_n$ let $ a_n = \left( \frac{(2n)!}{n!n^n} \right)^\frac {1}{n} = $ $\left[\frac{1}{n^n} \prod_{k=1}^n (n+k) \right]^{\frac 1n}=$ $ \left[\prod_{k=1}^n \left(1 + \frac{k}{n} \right) \right]^{\frac 1n}=e^{l_n}$ , where $l_n=\frac{1}{n}\cdot  \ln \prod_{k=1}^n \left(1 + \frac{k}{n}\right)$ and $\lim_{n\to\infty}l_n=\lim_{n\to\infty}\frac 1n\cdot\sum_{k=1}^n\ln\left(1 + \frac kn\right)=$

$\int_0^1\ln (1+x)\ \mathrm{dx}=$ $\left|x\ln (x+1)\right|_0^1-\int_0^1\frac {x}{x+1}\ \mathrm{dx}=$ $\ln 2-\int_0^1\left(1-\frac {1}{x+1}\right)\ \mathrm{dx}=$ $\ln 2-\left|1-\ln (x+1)\right|_0^1=2\ln 2-1=\ln\frac 4e$ . Thus, $\lim_{n\to\infty}a_n=e^{\ln \frac 4e}$ , i.e. $\lim_{n\to\infty}a_n=\frac 4e$ .


PP13. Calculate $I=\int (x-2)\cdot \sqrt{\frac{x+1}{1-x}}\ \mathrm{dx}$ .

Proof 0. I"ll use the substitution $\left\{\begin{array}{c}
t=\phi (x)=\sqrt{\frac {1+x}{1-x}}\\\\
\left(\frac {1+x}{t^2}=\frac {1-x}{1}=\frac {2}{t^2+1}\right)\\\\
\phi '(x)=\frac {1}{(1-x)\sqrt{1-x^2}}\end{array}\right\|$ . Thus, $I=\int (x-2)(1-x^2)\cdot\phi '(x)\ \mathrm{dx}=$ $F\circ \phi$ , where $F=\int\frac {-4t^2\left(t^2+3\right)}{\left(t^2+1\right)^3}\ \mathrm{dt}$ .

Observe that $F=-4\cdot \int\left[\frac {1}{t^2+1}+\frac {1}{\left(t^2+1\right)^2}-\frac {2}{\left(t^2+1\right)^3}\right]\ \mathrm{dt}=$ $-4\cdot\left(R_1+R_2-2R_3\right)$ , where $R_n=\int\frac {1}{\left(t^2+1\right)^n}\ \mathrm {dt}$ and $n\in\mathbb N^*$ . Therefore, for $n\in\mathbb N^*$ obtain that

$R_{n+1}=\int\frac {\left(t^2+1\right)-t^2}{\left(t^2+1\right)^{n+1}}\ \mathrm{dt}=$ $R_n-J$ , where $J=\int\frac {t^2}{\left(t^2+1\right)^{n+1}}\ \mathrm{dt}=$ $\frac {1}{2n}\cdot\left[R_n-\frac {t}{\left(t^2+1\right)^n}\right]$ because $\left\{\begin{array}{ccc}
u(x)=t & \implies & u'(t)=1\\\\
v'(t)=\frac {t}{\left(t^2+1\right)^{n+1}} & \implies & v(t)=-\frac {1}{2n}\cdot \frac {1}{\left(t^2+1\right)^n}\end{array}\right\|\implies$

$R_{n+1}=R_n+\frac {1}{2n}\cdot\left[\frac {t}{\left(t^2+1\right)^n}-R_n\right]\iff$ $2n\cdot R_{n+1}=(2n-1)\cdot R_n+\frac {t}{\left(t^2+1\right)^n}$ , where $n\in\mathbb N^*$ and $R_1=\arctan t+\mathbb C$ .a.s.o. (abandon of the work).

Proof 1 (very nice). $(\forall )\ x\in [-1,1)\ ,\ \stackrel{.}{(\exists)}\ t=\arccos x\in (0,\pi ]$ so that $x=\phi (t)=\cos t$ . So can use the substitution $\boxed{x=\cos t}$ . Thus, our integral becomes $I=F\circ\arccos$ , where

$F=\int (2-\cos t)(1+\cos t)\ \mathrm{dt}=$ $\int\left(1+\cos t+\sin^2t\right)\ \mathrm{dt}\implies$ $F=t+\sin t+\frac 12\cdot (t-\sin t\cos t)+\mathbb C\implies$ $\boxed{I=\frac 32\cdot\arccos x+\sqrt{1-x^2}-\frac 12\cdot x\sqrt{1-x^2}+\mathbb C}$ .

Proof 2 (nice theory). $\left(\exists\right) \{a,b,c\}\subset\mathbb R$ so that $I\equiv\boxed{\int \frac {x^2-x-2}{\sqrt {1-x^2}}\ \mathrm {dx}=(ax+b)\cdot\sqrt {1-x^2}+c\cdot \int\frac {1}{\sqrt {1-x^2}}\ \mathrm{dx}+\mathbb C}\iff$

$\left[(ax+b)\cdot\sqrt {1-x^2}+c\cdot \int\frac {1}{\sqrt {1-x^2}}\ \mathrm{dx}+\mathbb C\right]'=\frac {x^2-x-2}{\sqrt {1-x^2}}$ . Therefore, $a\sqrt{1-x^2}-(ax+b)\cdot\frac {x}{\sqrt{1-x^2}}+\frac {c}{\sqrt{1-x^2}}=\frac {x^2-x-2}{\sqrt{1-x^2}}\iff$

$a(1-x^2)-x(ax+b)+c=x^2-x-2\iff$ $\left\{\begin{array}{ccc}
-2a  & = & 1\\\
-b & = & -1\\\
a+c & = & -2\end{array}\right\|\iff$ $\left\{\begin{array}{ccc}
a & = & -\frac 12\\\
b & = & 1\\\
c & = & -\frac 32\end{array}\right\|$ . In conclusion, $\boxed{I=\frac 12\cdot (2-x)\sqrt {1-x^2}+\frac 32\cdot\arccos x+\mathbb C}$ .

Proof 3. $I=\int\frac {x^2-x-2}{\sqrt{1-x^2}}\ \mathrm {dx}=$ $J+\sqrt {1-x^2}+2\arccos x$ , where $J=\int\frac {x^2}{\sqrt {1-x^2}}\ \mathrm{dx}=$ $\int x\cdot\frac {x}{\sqrt{1-x^2}}\ \mathrm{dx}=$ $-x\sqrt {1-x^2}+\int\sqrt{1-x^2}\ \mathrm{dx}=$

$-x\sqrt {1-x^2}+\int\frac {1-x^2}{\sqrt{1-x^2}}\ \mathrm{dx}=$ $-x\sqrt {1-x^2}-\arccos x-J$ $\implies$ $J=-\frac 12\cdot\left(x\sqrt {1-x^2}+\arccos x\right)+\mathbb C\implies$ $\boxed{I=\frac 12\cdot (2-x)\sqrt {1-x^2}+\frac 32\cdot\arccos x+\mathbb C}$ .

Proof 4. Since $\frac {x^2-x-2}{\sqrt{1-x^2}}+\sqrt{1-x^2}+\sqrt{\frac {1+x}{1-x}}=0$ obtain that $I+K+L=\mathbb C$ , where $\left\{\begin{array}{c}
K=\int\sqrt{1-x^2}\ \mathrm{dx}\\\\
L=\int\sqrt{\frac {1+x}{1-x}}\ \mathrm{dx}\end{array}\right\|$ . Therefore,

$\blacktriangleright\ K=\int\sqrt{1-x^2}\ \mathrm{dx}=\int\frac {1-x^2}{\sqrt{1-x^2}}\ \mathrm{dx}=$ $-\arccos x+\int x\left(\sqrt{1-x^2}\right)'\ \mathrm{dx}=$ $-\arccos x+x\sqrt{1-x^2}-K\implies$ $\boxed{K=\frac 12\cdot\left(x\sqrt{1-x^2}-\arccos x\right)+\mathbb C}$ .

$\blacktriangleright\ L=\int\sqrt{\frac {1+x}{1-x}}\ \mathrm{dx}\stackrel{(x=\cos t)}{\ =\ }$ $-\int\sqrt{\frac {1+\cos t}{1-\cos t}}\cdot\sin t\ \mathrm{dt}=$ $-\int 2\cos^2\frac t2\ \mathrm{dt}=$ $-\int (1+\cos t)\ \mathrm{dt}=$ $-t-\sin t+\mathbb C\implies$ $\boxed{L=-\arccos x-\sqrt {1-x^2}+\mathbb C}$ .

In conclusion, $I=-(K+L)=-\frac 12\cdot $ $\left(x\sqrt{1-x^2}-\arccos x\right)+\left(\arccos x+\sqrt {1-x^2}\right)+\mathbb C\implies$ $\boxed{I=\frac 12\cdot (2-x)\sqrt {1-x^2}+\frac 32\cdot\arccos x+\mathbb C}$ .



PP14. Calculate $I = \int\sin^{n-1}x \cdot \cos (n+1)x\ \mathrm{dx}$ .

Proof. $I=\int\sin^{n-1}x \left(\cdot \cos nx\cos x-\sin nx\sin x\right)\ \mathrm{dx}=$ $\int\sin^{n-1}x \cos nx\cos x \ \mathrm{dx}- \int\sin^nx \sin nx\ \mathrm{dx}$ . Integration by parts first integral :

$\left\{\begin{array}{ccc}
u(x)=\cos nx & \implies & u'(x)=-n\cdot  \sin nx\\\\
v'(x)=\sin^{n-1}\cos x & \implies & v(x)=\frac 1n\cdot\sin^nx\end{array}\right\|$ $\implies$ $\int\sin^{n-1}x \cos nx\cos x \ \mathrm{dx}=\frac 1n\cdot\sin^nx\cos nx+\int \sin^n x\sin nx\ \mathrm {dx}$ . Therefore,

$I=\frac{1}{n}\cdot \sin^{n}x\cos nx+\int\sin^{n}x \sin nx \ \mathrm{dx}- \int\sin^{n}x \sin nx\ \mathrm{dx}\implies$ $\boxed{I = \frac{1}{n}\sin^{n}x\cos nx+\mathbb C}$ .


PP15. Prove that $I=\int_0^{\frac {\pi}{2}}\frac{1+\sin x}{1+\cos x}\cdot e^x\ \mathrm{dx}=e^{\frac {\pi}{2}}$ .

Proof. Denote $f(x)=\tan\frac x2$ . Observe that $f'(x)=\frac 12\cdot\left(1+\tan^2\frac x2\right)$ and $\frac {1+\sin x}{1+\cos x}=\frac {1+\frac {2\tan\frac x2}{1+\tan^2\frac x2}}{1+\frac {1-\tan^2\frac x2}{1+\tan^2\frac x2}}=$ $\frac 12\cdot\left(1+\tan\frac x2\right)^2=$

$\tan\frac x2+\frac 12\cdot\left(1+\tan^2\frac x2\right)\implies$ $\int\left[f(x)+f'(x)\right]\cdot e^x\ \mathrm{dx}=f(x)\cdot e^x$ , i.e. $\boxed{\int\frac{1+\sin x}{1+\cos x}\cdot e^x\ \mathrm{dx}=e^x\cdot\tan\frac x2+\mathbb C}\implies I=e^{\frac {\pi}{2}}$ .



PP16. Calculate $I=\int\frac{\sin\frac x2}{\cos\frac x3}\ \mathrm{dx}$ .

Proof. $I\stackrel{(x=6t)}{\ =\ }6\cdot J\left(\frac x6\right)+\mathbb C$ , where $J=\int\frac {\sin 3t}{\cos 2t}\ \mathrm{dt}=$ $\int\frac {\sin t\cos 2t+\sin 2t\cos t}{\cos 2t}\ \mathrm {dt}=$ $\int\left[\sin t+\frac {\sin t (1+\cos 2t)}{\cos 2t}\right]\ \mathrm{dt}=$

$\int\left(2\sin t+\frac {\sin t}{\cos 2t}\right)\ \mathrm{dt}=$ $-2\cos t-\frac 12\cdot\int\frac {(\cos t)'}{\cos^2t-\frac 12}\ \mathrm{dt}=$ $-2\cos t-\frac 12\cdot\frac {1}{2\cdot\frac {\sqrt 2}{2}}\cdot\ln\left|\frac {\sqrt 2\cdot\cos t-1}{\sqrt 2\cdot\cos t+1}\right|+\mathbb C=-2\cos t+$

$\frac {\sqrt 2}{4}\cdot \ln\left|\frac {\sqrt 2\cdot\cos t+1}{\sqrt 2\cdot\cos t-1}\right|+\mathbb C$ . In conclusion, $\boxed{\ I=-12\cdot\cos\frac x6+\frac {\sqrt 2}{4}\cdot \ln\left|\frac {\sqrt 2\cdot\cos \frac x6+1}{\sqrt 2\cdot\cos \frac x6-1}\right|+\mathbb C\ }$ .



PP17. Find the area of the region bounded by the graph of the function $f(x)=x^4-8x^3+22x^2-23x+10\ ,\ x\in\mathbb R$ and the tangent line which touches this graph at distinct two points.

See PP20 from here. Answer. The common tangent is $AB$ , where $A(1,2)$ and $(3,4)$ . The required area is $\int_1^3\left[f(x)-(x+1)\right]\mathrm{dx}=\frac {16}{15}$ .


PP17. Find the minimum value of the function $f(x)=\int_0^1 t\cdot |t-x|\ \mathrm{dt}$ , where $x\in\mathbb R$ .

Proof.

$\blacktriangleright\ x\le 0\implies f(x)=\int_0^1t(t-x)\ \mathrm{dt}=$ $\left|\left(\frac {t^3}{3}-\frac {xt^2}{2}\right)\right|_0^1\implies$ $f(x)=\frac {2-3x}{6}\ \searrow\ \implies$ $\min_{x\le 0}f(x)=f(0)=\frac 13$ .

$\blacktriangleright\ x\in (0,1)\implies f(x)=$ $\int_0^x t(x-t)\ \mathrm{dt}+\int_x^1 t(t-x)\ \mathrm{dt}=$ $\left|\left(\frac {xt^2}2-\frac {t^3}3\right)\right|_0^x +$ $\left|\left(\frac {t^3}3-\frac {xt^2}2\right)\right|_x^1\implies$

$f(x)=\frac {x^3}{2}-\frac {x^3}{3}+\frac 13-\frac x2-\frac {x^3}{3}+\frac {x^3}{2}\implies$ $f(x)=\frac 16\cdot\left(2x^3-3x+2\right)\ \searrow\ \nearrow\ \implies$ $\min_{x\in (0,1)}f(x)=f\left(\frac {\sqrt 2}{2}\right)=\frac {2-\sqrt 2}{6}$ .

$\blacktriangleright\ x\ge 1\implies f(x)=\int_0^1t(x-t)\ \mathrm{dt}=$ $\left|\left(\frac {xt^2}{2}-\frac {t^3}{3}\right)\right|_0^1\implies$ $f(x)=\frac {3x-2}{6}\ \nearrow\ \implies$ $\min_{x\ge 1}f(x)=f(1)=\frac 16$ .

In conclusion, $f(x)=\frac 16\cdot \left\{\begin{array}{ccc}
2-3x & \mathrm{if} & x\le 0\\\\
2x^3-3x+2 & \mathrm{if} & 0<x<1\\\\
3x-2 & \mathrm{if} & x\ge 1\end{array}\right|$ and $\min_{x\in\mathbb R}f(x)=f\left(\frac {\sqrt 2}{2}\right)=\frac {2-\sqrt 2}{6}$ .

Remark. $f(x)=\frac 16\cdot \left\{\begin{array}{ccc}
2x^3-3x+2 & \mathrm{if} & 0<x<1\\\\
|3x-2| & \mathrm{if} & x\not\in (0,1)\end{array}\right|$ and $\left\|\begin{array}{ccccccccccc}
x & \implies & -\infty & & 0 & & \frac {\sqrt 2}{2} & & 1 & & \infty\\\\
f(x) & \implies & \infty & \searrow & \frac 13 & \searrow & \frac {2-\sqrt 2}{6} & \nearrow & \frac 16 & \nearrow & \infty\end{array}\right\|$



PP18. $P(x)$ is a polynomial of 5th degree for which $\left\{\begin{array}{c}
P(x)=(x-1)^{3}A(x)+8\\\\
P(x)=(x+1)^{3}B(x)-8\end{array}\right\|$ , where $A(x)$ and $B(x)$ are polynomials. Find $P(2)$ .

Proof. $P'(x)$ will be a polynomial of degree $4$ and divisible by $(x-1)^2(x+1)^2$ $\implies$ $ P(x)=\int_{-1}^x a(x^4-2x^2+1)\ dx -8=$

$a\left(\frac {x^5}{5}-\frac{2x^3}{3}+x+\frac{8}{15}\right)-8$ . Now $P(1)=8\implies a=15\implies P(x)=3x^5-10x^3+15x\implies P(2)=46$ .


See here
This post has been edited 115 times. Last edited by Virgil Nicula, May 4, 2016, 12:02 PM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Really a great collection of good problems,
Thanks for sharing!!

by Amith, Aug 17, 2020, 4:42 AM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404400
  • Total comments: 37
Search Blog
a