273. The area of the triangle IOH. When I belongs to OH ?

by Virgil Nicula, May 6, 2011, 2:17 AM

Proposed problem 1. Let $I$ , $O$ , $H$ be the incenter, the circumcenter and the orthocenter respectively of a triangle $ABC$ with the

lengths of sides $a$ , $b$ , $c$ and the inradius $r$ . Prove that the area of the triangle $IOH$ is $[IOH]=\frac {|(a-b)(b-c)(c-a)|}{8r}$ .


Proof. Let us use areal coordinates (normalized barycentric coordinates) w.r.t.$ \triangle ABC$ . Coordinates of the centroid, orthocenter and incenter are given by $ G \left(\frac {1}{3}: \frac {1}{3}: \frac {1}{3} \right )$ , $H(\cot B \cot C: \cot A \cot C: \cot A \cot B)$ , $I \left ( \frac {a}{2p}: \frac {b}{2p}: \frac {c}{2p} \right )$ . Thus, $\left(\begin{array}{ccc}\frac {1}{3} & \frac {1}{3} & \frac {1}{3} \\
 \\
\cot B \cot C & \cot A \cot C & \cot A \cot B \\
 \\
\frac {a}{2p} & \frac {b}{2p} & \frac {c}{2p} \end{array}\right) = $

$\frac {[IGH]}{[ABC]}$ $\Longrightarrow$ $ 6p \cdot \frac {[IGH]}{[ABC]} = \sum_{\text{cyclic}} a(\cot A\cot C-\cot A\cot B)$ . Using the well-known relations $ \cot A = \frac {b^2 + c^2 - a^2}{4[ABC]}$ , $\cot B = \frac {a^2 + c^2 - b^2}{4[ABC]}$ ,

$\cot C = \frac {a^2 + b^2 - c^2}{4[ABC]}$ obtain that $ \frac {48\cdot [IHG] \cdot [ABC]^2}{r} = \sum_{\text{cyclic}} a^4(c - b) +  a^3(c^2 - b^2)$ $\implies$ $48\cdot [IHG] \cdot [ABC]^2 = $

$2rp[a^3(c - b) + b^3(a - c) + c^3(b - a)]$ $ \Longrightarrow $ $\ [IHG]$ $ = \frac {a^3(c - b) + b^3(a - c) + c^3(b - a)}{24\cdot [ABC]}=$ $\frac {|(a-b)(b-c)(c-a)|}{12r}$ .

Thus, $2\cdot  [IOH] = 3\cdot [IHG]  \Longrightarrow$ $[IOH] = \frac {|(a - b)(b - c)(c - a)|}{8r}$ .


Application. If $r$, $R$, $O$, $I$ , $H$ are the inradius, the circumradius, the circumcenter, the incenter and the

orthocenter respectively of the triangle $ABC$, then $[OIH] \ge 4rR \sin\frac{|A-B|}{2} \sin \frac{|B-C|}{2} \sin \frac{|C-A|}{2}$ .


Proof. From Mollweide formulas we have $\sin \frac{|A-B|}{2}=\frac{|a-b|}{c} \cdot \cos \frac{C}{2}$ a.s.o. $\Longrightarrow$ $\sin \frac{|A-B|}{2} \sin \frac{|B-C|}{2} \sin \frac{|C-A|}{2}=$

$\frac{|(a-b)(b-c)(c-a)|}{abc} \cos \frac{A}{2}  \cos \frac{B}{2} \cos \frac{C}{2}$ . But $\cos \frac{A}{2}  \cos \frac{B}{2} \cos \frac{C}{2}=$ $\frac{1}{4}(\sin A+ \sin B+ \sin C)=$ $\frac{a+b+c}{8R}$ $\Longrightarrow$

$\sin \frac{|A-B|}{2} \sin \frac{|B-C|}{2} \sin \frac{|C-A|}{2}=$ $\frac{|(a-b)(b-c)(c-a)|}{abc} \cdot \frac{(a+b+c)}{8R} \ \ (1)$ . From the above proposed problem obtain that

$[OIH]=\frac{|(a-b)(b-c)(c-a)|}{8r} \ \ (2)$ . Substituting $(1)$ and $(2)$ into the desired inequality gives $\frac{|(a-b)(b-c)(c-a)|}{8r} \ge $

$4rR \cdot \frac{|(a-b)(b-c)(c-a)|}{abc} \cdot \frac{(a+b+c)}{8R}$ $\iff$ $\frac{abc}{a+b+c} \ge $ $4r^2 \ \Longleftrightarrow R \ge 2r$ , which is clearly true.



Proposed problem 2. Ascertain the nature of $\triangle ABC$ such that the incenter $I\in HG$ , where $H$ is orthocenter and $G$ is centroid of $\triangle ABC$ .

Proof 1. $I\in HG\Longleftrightarrow \left|\begin{array}{ccc}1&1&1\\\
a&b&c\\\
\tan A&\tan B&\tan C\end{array}\right| =0$ $\Longleftrightarrow (a-b)(b-c)(c-a)(a+b+c)^2=0\iff a=b\ \vee\ b=c\ \vee\ c=a$ .

Proof 2. We will show that $\triangle ABC$ is isosceles. Well, assume it is not. According to the condition of the problem, the incenter $I\in HG$ , i. e. on the line $HO$ ,

where $O$ is the circumcenter of $\triangle ABC$ . The line $BI$ bisects the $\angle HBO$ . Hence $\frac{HI}{IO}=\frac{BH}{BO}$ . Similarly of course, $\frac{HI}{IO}=\frac{AH}{AO}$ and $\frac{HI}{IO}=\frac{CH}{CO}$ .

Now, as $AO = BO = CO$ we get $AH = BH = CH$ . This readily yields that $\triangle ABC$ is equilateral and thus isosceles, contradicting with our assumption.



Proposed problem 3. Consider $\triangle{ABC}$ with $a=14 $ , $b=15$ , $c=13$ . Circle $ w_{1} $ with center $ X $ which lies outside $ \triangle{ABC} $ is tangent to $ AB $ at the midpoint

of $ [AB] $ and the circumcircle of $ \triangle {ABC} $ . Circle $ w_{2} $ with center $ Y $ which lies outside $ \triangle{ABC} $ is tangent to $ BC $ at the midpoint of $ BC $ and the circumcircle of $ \triangle {ABC} $ .

Circle $ w_{3} $ with center $ Z $ which lies outside $ \triangle{ABC} $ is tangent to $ AC $ at the midpoint of $ AC $ and the circumcircle of $ \triangle {ABC} $ . What is the area of $ \triangle {XYZ} $ ?


Proof. Observe that $\triangle ABC$ is acute, $OX'=R\cos A$ and $2\cdot OX=R+OX'\implies$ $OX=\frac {R(1+\cos A)}{2}\implies$ $OX=\frac {a(s-a)}{4r}$ .

Therefore, $\boxed{\frac {OX}{a(s-a)}= \frac {OY}{b(s-b)}=\frac {OZ}{c(s-c)}=\frac {1}{4r}}$ . Thus, $[YOZ]=\frac 12\cdot OY\cdot OZ\cdot\sin \widehat{YOZ}=$ $\frac 12\cdot\frac {b(s-b)}{4r}\cdot\frac {c(s-c)}{4r}\cdot\sin A\implies$

$\boxed{\ [YOZ]=\frac {(s-b)(s-c)\cdot S}{16r^2}\ }$ . Therefore, $[XYZ]=\sum [YOZ]=\frac {S}{16r^2}\cdot\sum (s-b)(s-c)=$ $\frac {S}{16r^2}\cdot r(4R+r)\implies$

$\boxed{\boxed {\ [XYZ]=\frac {s(4R+r)}{16}\ }}\ (*)$ . In conclusion, $\left\{\begin{array}{c}
a=14\ ;\ b=15\ ;\ c=13\\\\
s=21\ ;\ s-a=7\ ;\ s-b=6\ ;\ s-c=8\\\\
S=84\ ;\ r=4\ ;\ R=\frac {65}{8}\end{array}\right\|\stackrel{(*)}{\implies}$

$[XYZ]=\frac {21\cdot\left(4\cdot \frac {65}{8}+4\right)}{16}=$ $\frac {21\cdot\left(\frac {65}{2}+4\right)}{16}=$ $\frac {21(65+8)}{32}=$ $\frac {21\cdot 73}{32}=\frac {1533}{32}$ .
This post has been edited 25 times. Last edited by Virgil Nicula, Nov 22, 2015, 7:54 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a