443. Problems of the type "instant" (continuare).

by Virgil Nicula, May 11, 2016, 6:14 PM

Cezar . 296.060 . GIL

$$\bf\color{red}Problems\ of\ the\ type\ "instant"$$$$\bf\color{black}====================$$
P0.0. Find $\{a,b,c\}\subset\mathbb N$ so that $a \cdot b \cdot c = 70$ and $ a + b + c = 14\ .$

Proof. Suppose w.l.o.g. that $1\le a\le b\le c\ .$ Since $a\le \frac {14}{3}\ ($or a "stronger" $a\le \sqrt[3]{70})$ . But $a\in\mathbb N$ and $a$ divides $70$ , i.e. $a\ |\ 70$ , obtain $\boxed{\ a\in\{1,2\}\ }\ .$ Appear

two cases $:$ IF $a=1$ , then $\left\|\begin{array}{ccc}
 bc & = & 70\\\\
 b+c & = & 13\end{array}\right\|\ \stackrel{\frac {13}2<7<\sqrt{70}}{\implies}\ \mathrm{absurd}\ ;$ IF $a=2$ , then $\left\|\begin{array}{ccc}
 bc & = & 35\\\\
 b+c & = & 12\end{array}\right\|$ $\iff$ $\{b,c\}=\{5,7\}\ .$ In conclusion, $\boxed{\ \{a,b,c\}=\{2,5,7\}\ }\ .$



P0.1 (variations on the same theme). Find $\{a,b,c\}\subset\mathbb N$ so that $a \cdot b \cdot c = 70$ and $ ab+bc+ca=59\ .$

Proof. Suppose w.l.o.g. that $1\le a\le b\le c\ .$ Since $a\le \frac 3{\frac 1a+\frac 1b+\frac 1c}=\frac {3abc}{ab+bc+ca}=\frac {210}{59}<\frac{18}5=3,6\ .$ But $a\in\mathbb N$ and $a\ |\ 70\implies\boxed{\ a\in\{1,2\}\ }\ .$ Appear two cases $:$

$a=1\implies \left\|\begin{array}{ccc}
 bc & = & 70\\\\
 bc+b+c & = & 13\end{array}\right\|\implies\mathrm{absurd}\ ;\ a=2\implies\left\|\begin{array}{ccc}
 bc & = & 35\\\\
 bc+2(b+c) & = & 59\end{array}\right\|$ $\implies$ $\left\|\begin{array}{ccc}
 bc & = & 35\\\\
 b+c & = & 12\end{array}\right\|$ $\iff$ $\{b,c\}=\{5,7\}$ $\implies$ $\boxed{\ \{a,b,c\}=\{2,5,7\}\ }\ .$



P0.2. $\{a,b,c\}\subset\mathbb R^*_+\ \implies\ \boxed{\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge abc(a+b)(b+c)(c+a)}\ (*)\ .$

Proof 1. $\left\|\ \begin{array}{ccc}
 a^4+b^2c^2 & \ge & 2a^2bc\\\\
a^2\left(b^2+c^2\right) & = & a^2\left(b^2+c^2\right)
\end{array}\right\|\ \bigoplus$ $\implies$ $\left(a^2+b^2\right)\left(a^2+c^2\right)\ge a^2(b+c)^2\implies$ $\left\{\begin{array}{ccc}
 \left(a^2+b^2\right)\left(a^2+c^2\right) & \ge & a^2(b+c)^2\\\\
 \left(b^2+c^2\right)\left(b^2+a^2\right) & \ge & b^2(c+a)^2\\\\
 \left(c^2+a^2\right)\left(c^2+b^2\right) & \ge & c^2(a+b)^2\end{array}\ \right\|\ \bigodot$ $\implies\ (*)\ .$

Proof 2. From the product of $\left|\begin{array}{ccc}
2(a^2+b^2) & \geq & (a+b)^2\\\\
2(b^2+c^2) & \geq & (b+c)^2\\\\
2(c^2+a^2) & \geq & (c+a)^2\end{array}\right|$ and $\left|\begin{array}{ccc}
a^2+b^2 & \geq & 2ab\\\\
b^2+c^2 & \geq & 2bc\\\\
c^2+a^2 & \geq & 2ca\end{array}\right|$ obtain $(a^2+b^2)^2(b^2+c^2)^2(c^2+a^2)^2 \ge $ $[abc(a+b)(b+c)(c+a)]^2\implies\ (*)\ .$

Remark. See and
here, where I"ll use the remarkable C.B.S - inequality.


P0.3. Prove $\forall\ \{a,b,c \}\subset \mathbb{R}$ there is the inequality $\left(a^2+c^2\right)\left(b^2+c^2\right)\ge c(a+b)\left(ab+c^2\right)$ and $\left(\frac {ab}c+\frac {bc}a+\frac {ca}b\right)^2\ge 3\left(a^2+b^2+c^2\right)\ .$

Proof. Apply the C.B.S - inequality $:\ \left\|\begin{array}{ccc}
(a\cdot c+c\cdot b)^2 & \le & \left(a^2+c^2\right)\left(c^2+b^2\right)\\\\
(a\cdot b+c\cdot c)^2 & \le & \left(a^2+c^2\right)\left(b^2+c^2\right)
\end{array}\ \right\|\ \bigodot\ \implies\ \left|c(a+b)\left(ab+c^2\right)\right|\le\left(a^2+c^2\right)\left(b^2+c^2\right)\ .$ From $x\le |x|$

obtain $c(a+b)\left(ab+c^2\right)\ \le\ \left(a^2+c^2\right)\left(b^2+c^2\right)\ .$ We have equality iff $a=b=c\ .$ For $c:=1$ obtain the particular inequality $\left(a^2+1\right)\left(b^2+1\right)\geq  (a+b)(ab+1)\ .$

$\blacktriangleright\ \left(\frac {ab}c+\frac {bc}a+\frac {ca}b\right)^2\ge 3\left(\frac {ab}c\cdot\frac {bc}a+\frac {bc}a\cdot\frac {ca}b+\frac {ca}b\cdot\frac {ab}c\right)=3\left(a^2+b^2+c^2\right)\implies$ $\boxed{\left(\frac {ab}c+\frac {bc}a+\frac {ca}b\right)^2\ge 3\left(a^2+b^2+c^2\right)}\ .$



P0.4. Prove that $\left\|\begin{array}{c}0<a\le b\le c\\\\
0<m\le n\le p\end{array}\right\|\ \implies\ ma^2+nb^2+pc^2\ge mbc+nca+pab\ .$

Proof 1 (F.C). Aplicam convenabil teorema majorizarii (Karamata, Polya sau cum o numeste fiecare) pentru functia convexa $f(t)=e^t\ .$ Spunem ca $\mathrm a = (a_1, ..., a_n)$ majoreaza

$\mathrm b= (b_1, ..., b_n)$ in $\mathbb{R}^n$ daca $a_1 \ge a_2 \ge ... \ge a_n$ , $ b_1 \ge b_2 \ge ... \ge b_n$ , $a_1 + \cdots + a_k \ge b_1 + \cdots + b_k$ , $(\forall )\ k\in\overline{1, ..., n-1}$ si $\sum a_j = \sum b_j\ .$ Atunci, pentru functia

convexa $f : [a,b] \rightarrow \mathbb{R}$ convexa si $\mathbf{a}$ majoreaza pe $\mathbf{b}$ , avem si $f(a_1) + \cdots + f(a_n) \ge f(b_1) + \cdots + f(b_n)\ .$ Demonstratia se face prin inductie, aplicand Jensen.

Proof 2 (M.M). Inegalitatea rearanjamentelor $:\ \left\{\begin{array}{ccc}
ma^2+nb^2+pc^2 & \ge & mb^2+nc^2+pa^2\\\\
ma^2+nb^2+pc^2 & \ge & mc^2+na^2+pb^2\end{array}\right\|\ \bigoplus\ \implies$ $2\left(ma^2+nb^2+pc^2\right)\ge $

$m\left(b^2+c^2\right)+n\left(c^2+a^2\right)+p\left(a^2+b^2\right)\ge$ $m\cdot 2bc+n\cdot 2ca+p\cdot 2ab\implies$ $ma^2+nb^2+pc^2\ge mbc+nca+pab\ .$

Proof 3 (N.V). Apply the Chebyshev's theorem $:\ \left\{\begin{array}{cc}
a_1\le a_2\le\ \cdots\ \le a_{n-1}\le a_n & \uparrow\\\\
b_1\le b_2\le\ \cdots\ \le b_{n-1}\le b_n & \uparrow\end{array}\right\|\implies$ $\sum_{k=1}^na_k\cdot\sum_{k=1}^nb_k\le n\cdot \sum_{k=1}^n\left(a_kb_k\right)\implies$

$\left\{\begin{array}{ccc}
bc+ca+ab & \le & a^2+b^2+c^2\\\\
\left(\underrightarrow{m+n+p}\right)\left(\underrightarrow{a^2+b^2+c^2}\right) & \stackrel{\mathrm{Cheb}\ \uparrow\uparrow}{\le} & 3\left(ma^2+nb^2+pc^2\right)\\\\
3\left(mbc+nca+pab\right) & \stackrel{\mathrm{Cheb}\ \uparrow\downarrow}{\le} & \left(\underrightarrow{m+n+p}\right)\left(\underleftarrow{bc+ca+ab}\right)\end{array}\right\|\ \bigodot\ \implies$ $mbc+nca+pab\le ma^2+nb^2+pc^2\ .$

F.C., permite-mi te rog un mic comentariu ... Tehnica asta "tare" o poti enunta sa o invete, cel putin pe dinafara, si ceilalti ?! Si cand te gandesti ca de fapt inegalitatea propusa de mine este foarte usoara, se face intr-un rand. Iata ce inseamna ca un elev de clasa a X - a sa fie "dopat" cu tot felul de "bombe atomice" (carora deseori nu le stie nici macar o demonstratie) pentru "a omori o musca sau un fluture". Sper ca nu te vei supara pe mine, P.C ! Am dreptul si eu la o parere personala.



P0.5. Prove that for any $\{a,b,c\}\subset \mathbb R$ the equation $f(x)=0$ , where $f(x)\equiv (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)$ has only real roots.

Proof 1. Denote the roots $\odot\begin{array}{ccc}
\nearrow & x_1 & \searrow\\\\
\searrow & x_2 & \nearrow\end{array}\odot$ of the equation $f(x)=0$ and suppose w.l.o.g. that $a\le b\le c$ . Observe that the dominant coefficient $3$ is positive and

$f(a)=(a-b)(a-c) \ge 0$ , $f(b)=(b-c)(b-a) \le 0$ and $f(c)=(c-a)(c-b) \ge 0$ . In conclusion, the roots $x_1$ and $x_2$ are real and si $a \le x_1 \le  b\le x_2\le c$ .

Proof 2. Observe that the equation becomes $f(x)=3x^2-2(a+b+c)x+(ab+bc+ca)=0$ and its discriminant

$\Delta^{\prime} (a,b,c)=(a+b+c)^2-3(ab+bc+ca)=\frac 12\cdot [(a-b)^2+(b-c)^2+(c-a)^2]\ge 0$ , i.e. $\left\{x_1,x_2\right\}\subset\mathbb R\ .$



P0.6. Prove that $\{a,b,c\}\subset\mathbb R^*_+$ and $a+b+c=1\implies$ $\frac{a^2+a}{a+bc}+\frac{b^2+b}{b+ca}+\frac{c^2+c}{c+ab}=3\ .$

Proof. $\sum a^2(b+c)=\sum bc(b+c)$ , i.e. $\sum \frac {a^2-bc}{(a+b)(a+c)}=0\ .$ Hence $\sum\left(\frac {a^2+a}{a+bc}-1\right)=$ $\sum \frac {a^2-bc}{(a+b)(a+c)}=0\iff$ $\sum\frac {a^2+a}{a+bc}=3\ .$


P0.7 (M.O. Sanchez). Let an $A$-right $\triangle ABC$ and $E\in (AC)$ , $D\in (BE)$ so that $m\left(\widehat{EDC}\right)=m\left(\widehat{ECD}\right)=B$ . Prove that $BD=2\cdot AE$ .

Let the symmetric $L$ of $E$ w.r.t. $A$ . Prove easily that $\left\{\begin{array}{ccc}
m\left(\widehat{AFC}\right)=m\left(\widehat{LBC}\right)=C & ; & m\left(\widehat{BDF}\right)=m\left(\widehat{EDC}\right)=m\left(\widehat{ECD}\right)=B\\\
m\left(\widehat{AEB}\right)=2B\ ;\ m\left(\widehat{CBE}\right)=2B-C & ; & m\left(\widehat{LBA}\right)=m\left(\widehat{FBE}\right)=m\left(\widehat{FCB}\right)=90^{\circ}-2B\end{array}\right\|$ .

Proof 1.Observe that $\triangle DEC$ is $E$-isosceles, $\triangle LBE$ is $B$-isosceles and $\triangle BLC$ is $L$-isosceles. Therefore, $ED=EC$ , $BL=BE$ , $LB=LC$ and

$LE=2\cdot AE$ . In conclusion, $BE=LC\iff$ $BD+DE=LE+EC\iff$ $BD=LE\iff$ $BD=2\cdot AE$ (Jose Luis F. Ballena). See
here.

Proof 2. $\triangle ACF\sim\triangle ABC\iff$ $\frac bc=\frac {CF}a=\frac {AF}b$ $\iff$ $\begin{array}{cccc}
\nearrow & CF=\frac {ab}c & (1) & \searrow\\\\
\searrow & AF=\frac {b^2}c & (2) & \nearrow\end{array}\odot$ Hence $FB=AB-AF\stackrel{(2)}{=}\ c-$ $\frac {b^2}c\implies$ $\boxed{FB=\frac {c^2-b^2}c}\ (3)$ .

See analogously $\triangle DFB\sim \triangle BFC\iff$ $\frac {DB}{BC}=\frac{FB}{FC}\ \stackrel{(1\wedge 3)}{=}\ \boxed{DB=\frac {c^2-b^2}b}\ (4)\ .$ Thus, $\tan\widehat{AEB}=\frac {AB}{AE}\iff$ $AE=c\cdot\cot 2B\iff$ $2\cdot AE=$

$c\cdot 2\cot 2B=c\cdot\left(\cot B-\tan B\right)=$ $c\cdot\left(\frac cb-\frac bc\right)\iff$ $\boxed{AE=\frac {c^2-b^2}{2b}}\ (5)\ .$ In conclusion, from the relations $(4)$ and $(5)$ obtain that $BD=2\cdot AE\ .$

Remark. $\frac {BD}{\sin\widehat{BCD}}=\frac {BC}{\sin \widehat{BDC}}\iff$ $\frac {BD}{\cos 2B}=\frac a{\sin B}\iff$ $BD=\frac {a\left(1-2\sin^2B\right)}{\sin B}=\frac a{\frac ba}\cdot\left[1-2\cdot\left(\frac ba\right)^2\right]=$ $\frac {a^2}b\cdot\frac {a^2-2b^2}{a^2}=$ $\frac {c^2-b^2}b\implies$ $\boxed{BD=\frac {c^2-b^2}b}\ .$



P0.8 (IMO TST 2015) Let an acute $\triangle ABC$ wuth $AB>AC\ .$ Denote $T\in BB\cap CC$ and $S\in (AB)$ so that $TS\parallel AC\ .$ Prove that $SC=SA\ .$

Proof. Observe that $TS\parallel AC\implies$ $\widehat{SCA}\equiv \widehat{CST}$ and $\widehat{BST}\equiv\widehat{BAC}\equiv\widehat{BCT}\implies$ $\widehat{BST}\equiv\widehat{BCT}\implies$

$BSCT$ is cyclic $\implies$ $\widehat{SCA}\equiv\widehat{CST}\equiv \widehat{CBT}\equiv\widehat{SAC}\implies$ $\widehat{SCA}\equiv\widehat{SAC}\implies$ $SA=SC\ .$



P0.9. Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and $E\in AC\cap w$, $F\in AB\cap w$. Let the midpoints $M$, $N$ of the sides $[BC]$, $[AB]$ respectively. Prove that $MN\cap EF\cap CI\ne\emptyset .$

Proof. Denote $S\in CI\cap EF$ . Observe yhat $\widehat{AFS}\equiv \widehat{BIS}$ , i.e. $BFSI$ is cyclic $\implies$ $SB\perp SC$ , i.e. $\triangle BSC$ is right and for its

median $SM$ have $\widehat{ECS}\equiv\widehat{MCS}\equiv$ $\widehat{MSC}\implies$ $\widehat{ECS}\equiv\widehat{MSC}\implies$ $MS\parallel AC\implies N\in MS\implies$ $MN\cap EF\cap CI\ne\emptyset .$



P0.10. Prove that $\triangle ABC$ is acute $\implies\tan A\tan B+\tan B\tan C+\tan C\tan A\ge 3+\frac 1{\cos A}+\frac 1{\cos B}+\frac 1{\cos C}$ and $\sin^2x-\sin^2y=\sin(x+y)\sin (x-y)\ .$

Proof. $\sum\cos^2A\ge$ $ \sum\cos B\cos C\iff$ $-\sum \cos (B+C)\cos A\ge $ $\sum \cos B\cos C\iff$ $\sum (\sin B\sin C-\cos B\cos C)\cos A\ge $

$\sum \cos B\cos C\iff$ $\sum \sin B\sin C\cos A\ge $ $3\cos A\cos B\cos C+\sum\cos B\cos C\iff$ $\sum\tan B\tan C\ge $ $3+\sum\frac 1{\cos A}\ .$

$\blacktriangleright\ 2\left(\sin^2x-\sin^2y\right)=(1-\cos 2x)-(1-\cos 2y)=$ $\cos 2y-\cos 2x=$ $2\sin(x+y)\sin (x-y)\implies$ $\boxed{\sin^2x-\sin^2y=\sin(x+y)\sin (x-y)}\ .$



P0.11 (O.L. Iasi 2008). Prove that in any $A$-right $\triangle ABC$ with $b\ne c$ the line $IG$ cann't be parallel with the hypotenuse $BC$ , but can be parallel with a cathetus (standard notations).

Proof 1. Prove easily that in any $\triangle ABC$ there is the equivalencies $\boxed{\begin{array}{ccc}
IG\perp BC & \iff & b+c=3a\\\\
IG\parallel BC & \iff & b+c=2a\end{array}}\ (*)\ .$ Indeed, denote the projections $K$ , $D$ , $S$ of $A$ , $I$ , $G$ on $BC\ :$

$\blacktriangleright\ IG\perp BC\iff$ $\mathrm{pr}_{BC}(I)=\mathrm{pr}_{BC}(G)\iff$ $D\equiv S\iff$ $DM=SM=\frac 13\cdot KM\iff$ $\frac {|b-c|}2=\frac 13\cdot \frac {|b^2-c^2|}{2a}\iff$ $b+c=3a$ , where $M$ is the midpoint of $[BC]\ .$

$\blacktriangleright\ IG\parallel BC\iff$ $\delta_{BC}(I)=\delta_{BC}(G)\iff$ $r=\frac {h_a}3\iff $ $3r=h_a\iff$ $3ar=2S=2sr\iff$ $3a=2s=a+b+c\iff b+c=2a\ .$

Suppose that $AB\perp AC\ .$ In this case $(b+c)^2\le 2\left(b^2+c^2\right)=$ $2a^2$ , i.e. $b+c\le a\sqrt 2\ .$ Appear three cases $:$

$\blacktriangleright$ If $IG\parallel BC$ , then $b+c=2a\ \iff\ 2a\le a\sqrt 2$ , what is absurd. If $IG\perp BC$ , then $b+c=3a\ \iff\ 3a\le a\sqrt 2$ , what is absurd.

$\blacktriangleright\ IG\ \parallel\ AC\ (\ IG\perp AB\ )\ \iff\ \odot\begin{array}{ccccc}
\nearrow & a+c & = & 2b & \searrow\\\\
\searrow & a+b & = & 3c & \nearrow \end{array}\odot \iff\ a=2b-c=3c-b\ \iff\ 3b=4c\iff\ \frac a5=\frac b4=\frac c3\ .$

$\blacktriangleright\ IG\ \parallel\ AB\ (\ IG\perp AC\ )\ \iff\ \odot\begin{array}{ccccc}
\nearrow & a+b & = & 2c & \searrow\\\\
\searrow & a+c & = & 3b & \nearrow \end{array}\odot \iff\ a=2c-b=3b-c\ \iff\ 4b=3c\iff\ \frac a5=\frac b3=\frac c4\ .$

Proof 2. Let $D\in IG\cap BC$. Thus, $IG\perp BC\iff$ https://scontent.fomr1-1.fna.fbcdn.net/v/t1.0-9/17362649_1888040991464614_817726152431194852_n.jpg?oh=f66f0d7493dcd9887079d79d2271b141&oe=59519C90


P0.12. Let $\triangle ABC$ and mobile $M\in [AC]$ , $N\in [AB]$ so that $\frac {MA}{MC}+\frac {NA}{NB}=2\ .$ Find the locus of $L\in BM\cap CN$ and its position for what $LB+LC$ is minimum.


Proof. Denote the centroid $G$ of $\triangle ABC$ and the intersection $K\in BC\cap AL$ . Apply the Aubel's relation $\frac {LA}{LK}=\frac{MA}{MC}+\frac {NA}{NB}=2$ (constant), i.e. $LG\parallel BC$

(the centroid $G$ is fixed point). Hence the locus of $L$ is the segment $[UV]$ for what $G\in UV\parallel BC\ .$ Let $E\in AC\cap LG$ and $F\in AB\cap LG\ .$ The required point

$L_{\mathrm{min}}$ from $[EF]$ has the property $\widehat{BLE}\equiv\widehat{CLF}$ , i.e. the symmetric point of $C$ w.r.t. $EF$ belongs to $BL_{\mathrm{min}}\ .$



P0.13. Prove that in any acute $\triangle ABC$ there are the inequalities $:\ \left\{\begin{array}{cccc}
\frac{b+c}{\cos A}+\frac{c+a}{\cos B}+\frac{a+b}{\cos C} & \ge & 4(a+b+c) & (1)\\\\
\frac a{\cos B+\cos C}+\frac b{\cos C+\cos A}+\frac c{\cos A+\cos B} & \ge & a+b+c & (2)\end{array}\right\|\ .$

Proof 1 $\sum\frac {b+c}{\cos A}=\sum\frac {(b+c)^2}{(b+c)\cos A}\ \stackrel{\mathrm{C.B.S}}{\ge}\  \frac {\left[\sum(b+c)\right]^2}{\sum (b+c)\cos A}=$ $\frac {(4s)^2}{\sum(b\cos C+c\cos B)}=$ $\frac {16s^2}{\sum a}=$ $\frac {16s^2}{2s}=8s=4(a+b+c)\implies$ $\sum\frac {b+c}{\cos A}\ge 4(a+b+c)\ .$

$\sum\frac a{\cos B+\cos C}=\sum\frac {a^2}{a(\cos B+\cos C)}\ \stackrel{C.B.S}{\ge}\ \frac {\left(\sum a\right)^2}{\sum [a(\cos B+\cos C)]}=$ $\frac {4s^2}{\sum (b\cos C+c\cos B)}=\frac {4s^2}{\sum a}=\frac {4s^2}{2s}=a+b+c\implies \sum\frac a{\cos B+\cos C}\ge a+b+c\ .$


P0.14 (clasa a VII - a). Let $\triangle ABC$ and $D\in (AB)$ so that $CDFE$ is a parallelogram where $C\in (BE)$ . For $Q\in (CD)$ denote $N\in DE\cap (QF)\ .$ Prove that $\frac {DE}{DN}=2+\frac {QC}{QD}\ .$

Proof. Denote $S\in FQ\cap BC$ and observe that $\frac {DE}{DN}=\frac {DN+NE}{DN}=1+\frac {NE}{ND}=$ $1+\frac {SE}{DF}=1+\frac {SC+CE}{CE}=2+\frac {CS}{CE}=2+\frac {SC}{DF}=2+\frac {QC}{QD}$ , i.e. $\frac {DE}{DN}=2+\frac {QC}{QD}\ .$


P0.15. Solve over $\mathbb R$ the following system: $\left\{\begin{array}{c}
 2-x=\frac {2}{y^2+1}\\\\
  2-y=\frac {2}{z^2+1}\\\\
  2-z=\frac {2}{x^2+1}\end{array}\right\|$ (at least two methods).

Proof . Observe that $\{x,y,z\}\subset [0,2)$ and $x=0\iff y=0\iff z=0\ .$ Suppose w.l.o.g. $xyz\ne 0\ .$ Our system is equivalently with

$\left\{\begin{array}{c}
x\left(y^2+1\right)=2y^2\\\\
y\left(z^2+1\right)=2z^2\\\\
z\left(x^2+1\right)=2x^2\end{array}\right\|\ \bigodot\implies$ $xyz\left(x^2+1\right) \left(y^2+1\right)\left(z^2+1\right)=8x^2y^2z^2\implies$ $\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)=8xyz\implies$

$\boxed{x=y=z=1}$ because over $\mathbb R^*_+$ there is the inequality $\left(x^2+1\right)\cdot \left(y^2+1\right)\cdot\left(z^2+1\right)\ge 2x\cdot 2y\cdot 2z$ with equality iff $x=y=z\ .$



P0.16. Discutia pozitiei radacinilor reale ale unei ecuatii de gradul doi fata de un numar real dat.

Demonstratie. Studiul pozitiei radacinilor $\{\ x_1\ ,\ x_2\ \}\subset\mathbb R^*_+$ ale ecuatiei $f(x)\equiv ax^2+bx+c=0\ ,\ a\ne 0$ fata de $\alpha\in\mathbb R$

impune studiul semnului pentru expresiile $\Delta$ (discriminant) , $af(\alpha )$ si $S-2\alpha$ , unde $S=x_1+x_2=-\frac ba\ .$

$\boxed{\begin{array}{cccc}
 \Delta & af(\alpha ) & S-2\alpha & \mathrm{Pozitia\ radacinilor\ reale\ fata\ de}\ \alpha\in\mathbb R\\
 == & === & ==== & ======================\\
 + & + & + & \alpha\ <\ x_1\ <\ x_2\\\\
+ & + & - & x_1\ <\ x_2\ <\ \alpha\\\\
+ & 0 & + & \alpha\ =\ x_1\ <\ x_2\\\\
+ & 0 & - & \ x_1\ <\ x_2\ =\ \alpha\\\\
+ & - & \Box & x_1\ <\ \alpha\ <\ x_2\\\\
0 & + & + & \alpha \ <\ x_1\ =\ x_2\\\\
0 & + & - & x_1\ =\ x_2\ <\ \alpha\\\\
0 & 0 & 0 & x_1\ =\ x_2\ =\ \alpha\\\\
- & \Box & \Box & x_1\ ,\ x_2\ \not\in\ \mathbb R\end{array}}\ .$


P0.17. Let the equation $t^3-28t+48=0\implies\odot \begin{array}{ccc}
\nearrow & a & \searrow\\\\
\rightarrow & b & \rightarrow\\\\
\searrow & c & \nearrow\end{array}\odot$ Solve the equation $\frac {x-(b+c)}a+\frac {x-(c+a)}b+\frac {x-(a+b)}c=10\ .$

P0.18. Sa se arate ca in orice $\triangle\ ABC$ avem $\begin{array}{ccccc}
 \nearrow & 1. & A=30^{\circ} & \Longleftrightarrow & b^2+c^2=a^2+4S\sqrt 3.\\\\
 \searrow & 2. & A\in\left(\ 0\ ,\ \frac {\pi}{6}\ \right] & \Longrightarrow & b^2+c^2\ \ge\ a^2+4S\sqrt 3.\end{array}\ .$ Se stie ca in orice $\triangle ABC$ avem $\boxed{a^2+b^2+c^2\ge 4S\sqrt 3}\ .$

Demonstratie. Se stie ca $2bc\cdot\cos A=b^2+c^2-a^2=4S\cot A\ .$ Asadar, $b^2+c^2=a^2+4S\sqrt 3\iff$ $2bc\cos A=2bc\sin A\sqrt{3}$ $\Longleftrightarrow$

$\tan A=\frac{1}{\sqrt{3}}$ $\Longleftrightarrow$ $A=30^{\circ}\ .$ Se arata usor ca $A\in\left(\ 0\ ,\ \frac {\pi}{6}\ \right]$ $\Longrightarrow$ $\tan A\le\frac{1}{\sqrt{3}}$ $\Longrightarrow$ $\cot A\ge \sqrt 3$ $\implies$ $b^2+c^2-a^2\ge 4S\sqrt 3\implies$ $b^2+c^2\ \ge\ a^2+4S\sqrt 3\ .$


P0.19. Sa se arate ca in orice $\triangle ABC$ exista $9r\le l_a+l_b+l_c\le s\sqrt 3\ ,$ unde $l_a$ este lungimea bisectoarei interioare din $A\ .$

Demonstratie. $\sum l_a=$ $\sum \frac{2\sqrt{bcs(s-a)}}{b+c}\le \sum\sqrt{s(s-a)}=\sqrt s\cdot\sum\sqrt{s-a}\le$ $\sqrt s\cdot\sqrt{3\sum(s-a)}=$ $\sqrt s\cdot\sqrt {3s}=s\sqrt 3$ $\implies$ $l_a+l_b+l_c\le s\sqrt 3\ .$

$h_a=\frac {2rs}{a}\implies$ $\sum l_a\ge \sum h_a=$ $r\sum a\sum \frac 1a\ge 9r\implies$ $\sum l_a\ge 9r\ .$ In concluzie, $\boxed{9r\le\sum l_a\le s\sqrt 3}\ .$ Se obtine astfel inegalitatea cunoscuta $\boxed{3r\sqrt 3\le s}\ .$


P0.20. Prove that for any $x\in\mathbb R$ there is the inequality $\boxed{\ f(x)\equiv 1+(x+1)(x+2)(x+3)(x+4)\ \ge 0\ }\ .$

Proof. $f(x)=1+(x+1)(x+2)(x+3)(x+4)=1+(x+1)(x+4)\cdot (x+2)(x+3)=1+(x^2+5x+4)(x^2+5x+6)=1+(t-1)(t+1)=t^2\ge 0\ ,$ where

$x^2+5x+5=t\ge -\frac 54$ for any $x\in\mathbb R$ because the equation $g(x)=x^2+5x+(5-t)=0$ has real roots, i.e. $\Delta (t)\equiv 5^2-4(5-t)\ge 0\iff 4t+5\ge 0\iff t\ge -\frac 54\ .$


P0.21. Let $ABCD$ be a trapezoid with $AB\parallel CD,$ $O\in AC\cap BD$ and the area $S.$ Denote $\left\{\begin{array}{ccc}
a=[AOB] & ; & b=[COD]\\\\
c=[AOD] & ; & d=[BOC]\end{array}\right\|.$ Prove that $c=d=2\sqrt{ab}$ and $\sqrt S=\sqrt a+\sqrt b.$



=================================================================================================================================================

P1 (Mathtime). Let an $A$-right $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R)$ and the Nagel's point $\mathcal N$ . Let $\left\{\begin{array}{ccc}
D & \in & BC\cap A\mathcal N\\\
E & \in & CA\cap B\mathcal N\\\
F & \in & AB\cap C\mathcal N\end{array}\right\|$ .

Prove that the circumcenter of $\triangle DEF$ is $S\in w$ for which $SO\perp BC$ and $BC$ doesn't separate $S$ and $A$ .


Proof 1. $\left\{\begin{array}{ccc}
FB=EC=s-a\\\\
DB+c=DC+b=s\end{array}\right\|\ ,\ DO=\frac {|b-c|}2$ . Let $\{X,Y\}\subset BC$ and $\{U,V\}\subset SO$ so that $EX$ , $FY$ are perpendicular on $BC$ and $EU$ , $FV$ are perpendicular

on $SO$ . Thus, $\triangle FBY\equiv\triangle CEX\implies$ $\left\{\begin{array}{ccccc}
BY & = & EX & = & \frac ca\cdot (s-a)\\\\
FY & = & CX & = & \frac ba\cdot (s-a)\end{array}\right\|$ and $\left\{\begin{array}{ccccc}
EX+CX & = & BY+FY & = & \frac 1a\cdot (s-a)(b+c)\\\\
EX^2+CX^2 & = & BY^2+FY^2 & = & (s-a)^2\end{array}\right\|\ (*)\ .$ Observe that

$SD^2=OS^2+OD^2=$ $\left(\frac a2\right)^2+\left(\frac {b-c}2\right)^2=$ $\frac {2a^2-2bc}4=$ $\frac {a^2-bc}2\implies$ $\boxed{SD^2=\frac {a^2-bc}2}\ (1)\ .$ Now we"ll prove easily that and $SE^2=SF^2=SD^2=\frac {a^2-bc}2\ .$ Indeed $:$

$\begin{array}{cc}
SE^2=US^2+UE^2=\left(\frac a2-EX\right)^2+\left(\frac a2-CX\right)^2=\frac {a^2}2-a(EX+CX)+\left(EX^2+CX^2\right) & \searrow\\\\
SF^2=VS^2+VF^2=\left(\frac a2-FY\right)^2+\left(\frac a2-BY\right)^2=\frac {a^2}2-a(FY+BY)+\left(FY^2+BY^2\right) & \nearrow\end{array}\odot\stackrel{(*)}{=}\ \frac {a^2}2-(b+c)(s-a)+(s-a)^2=$ $\frac {a^2}2-s(s-a)=SD^2\ .$



P2 (Canadian Mathematical Olympiad, 2015) Let $ABC$ be an acute-angled triangle with the orthocenter $H$ . Prove that $\frac{ab+bc+ca}{h_a\cdot AH+h_b\cdot BH+h_c\cdot CH}\le 2$ (standard notations)

Proof. I"ll use two well known and usual identities $\boxed{AH=2R\cos A}\ (1)\ ,\ \boxed{2Rh_a=bc}\ (2)$ and one simple inequality $\sum a^2\ge\sum (bc)\ (3)\ .$ Therefore, $\frac{\sum (bc)}{\sum \left(h_a\cdot AH\right)}\ \stackrel{(1)}{=}$

$\frac{\sum (bc)}{\sum \left(h_a\cdot 2R\cos A\right)}=$ $\frac {\sum (bc)}{\sum (2Rh_a\cdot\cos A)}\ \stackrel{(2)}{=}$ $\frac {\sum (bc)}{\sum (bc\cdot\cos A)}=$ $\frac {2\cdot\sum (bc)}{\sum (2bc\cdot\cos A)}=$ $\frac {2\cdot\sum (bc)}{\sum \left(b^2+c^2-a^2\right)}=$ $2\cdot\frac {\sum (bc)}{\sum a^2}\ \stackrel{(3)}\le\ 2\implies$ $\frac{ab+bc+ca}{h_a\cdot AH+h_b\cdot BH+h_c\cdot CH}\le 2\ .$



P3. Let an acute $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R)$ , the midpoints $M$ , $N$ of $[AC]$ , $[AB]$ and $\left\{\begin{array}{ccc}
P\in AA\cap BC\\\\
E\in AC\cap PO\\\\
F\in AB\cap PO\end{array}\right\|$ . Prove that $AO\cap EN\cap FM\ne\emptyset\ .$

Proof. Suppose $b>c$ and denote $S\in BC\cap AO\ .$ Prove easily that $\frac {SB}{SC}=\frac {AB}{AC}\cdot\frac {\sin\widehat{SAB}}{\sin\widehat{SAC}}$ , i.e. $\frac {SB}{c\cdot \cos C}=\frac {SC}{b\cdot\cos B}=\frac ak\ ,$ where $k=b\cdot\cos B+c\cdot \cos C\ .$ Denote $\left\{\begin{array}{ccc}
\frac {EC}x=\frac {EA}1=\frac b{x+1} & \implies & ME=\frac {b(1-x)}{2(x+1)}\\\\
\frac {FB}y=\frac {FA}1=\frac c{y+1} & \implies & NF=\frac {c(1-y)}{2(y+1)}\end{array}\right\|\ .$ Apply the Menelaus' theorem to the transversal $\overline{PEF}/\triangle ABC\ :\ \frac {PB}{PC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=1\iff$ $\boxed{\frac {c^2}{b^2}\cdot \frac xy=1}$ , i.e.

$\boxed{\frac {cx}b=\frac {by}c}\ (1)\ .$ Prove easily that $\frac {OS}{OA}=\frac {BS}{BA}\cdot\frac {\sin\widehat{OBS}}{\sin\widehat{OBA}}=$ $\frac {ac\cdot\cos C}{kc}\cdot\frac {\cos A}{\cos C}=\frac {a\cdot\cos A}k$ , i.e. $\boxed{\frac {OS}{OA}=\frac {a\cdot\cos A}k}\ (2)\ .$ Apply the Cristea's theorem to the cevian $[AO$

in $\triangle ABC\ :\ \frac {FB}{FA}\cdot SC+\frac {EC}{EA}\cdot SB=\frac {OS}{OA}\cdot BC$ $\iff$ $\boxed{yb\cdot\cos B+xc\cdot\cos C=a\cdot\cos A}\ (3)\ .$ From $(1)$ and $(3)$ obtain that $\boxed{\frac {cx}b=\frac {by}c=\cos A}\ (4)\ .$ Indeed, the

relation $c\cdot \cos B+b\cdot\cos C=a$ is true. Apply the remarkable relation $\frac {OF}{OE}=\frac {SB}{SC}\cdot \frac {AF}{AB}\cdot\frac {AC}{AE}\implies$ $\boxed{\frac {OF}{OE}=\frac {c\cdot\cos C}{b\cdot\cos B}\cdot \frac {x+1}{y+1}}\ (5)\ .$ In conclusion, $\frac {OF}{OE}\cdot\frac {ME}{MA}\cdot\frac {NA}{NF}=$

$\frac {c\cdot\cos C}{b\cdot\cos B}\cdot \frac {x+1}{y+1}\cdot \frac {1-x}{1+x}\cdot \frac {1+y}{1-y}=$ $\frac {\cos C}{\cos B}\cdot\frac {c-cx}{b-by}=$ $\frac {\cos C}{\cos B}\cdot\frac {c-b\cdot\cos A}{b-c\cdot\cos A}=$ $\frac {\cos C}{\cos B}\cdot\frac {a\cdot\cos B}{a\cdot\cos C}=1\implies$ $\frac {OF}{OE}\cdot\frac {ME}{MA}\cdot\frac {NA}{NF}=1\implies$ $AO\cap EN\cap FM\ne\emptyset\ .$



P4. Let the bisectors $[BE$ , $[CF$ in $\triangle ABC$ , where $E\in (AC)$ and $F\in (AB)\ .$ For $M\in [EF]$ denote the distancies $x$ , $y$ , $z$ from $M$ to $BC$ , $CA$ , $AB$ . Prove that $x = y + z\ .$

Extension. Let $\triangle ABC$ and two positive numbers $\beta$ , $\gamma$ so that exist $\left\|\ \begin{array}{c}
 F\in (AB)\ ,\ \frac {FA}{FB} = \beta\\\\
 E\in (AC)\ ,\ \frac {EA}{EC} = \gamma\end{array}\ \right\|\ .$ For $M\in [EF]$ denote the

projections $X$ , $Y$ , $Z$ of $M$ on $BC$ , $CA$ , $AB$ respectively and $MX=x$ , $MY=y$ , $MZ=z\ .$ Prove that $\boxed{ax =\frac {by}{\beta} + \frac {cz}{\gamma}}\ .$


Proof. Denote $:$ the projections $U$ , $P$ of $E$ on $BC$ , $AB$ and $EU=u$ , $EP=p\ ;$ the projections $V$ , $N$ of $F$ on $BC$ , $AC$ and $FV=v$ , $FN=n\ .$ I"ll use an well

known relation $\frac {EM}{EF}\cdot FV+\frac {FM}{FE}\cdot EU=MX\ ,$ i.e. $\boxed{v\cdot\frac {EM}{EF}+u\cdot \frac {FM}{FE}=x}\ (*)\ .$ Therefore, $\left\{\begin{array}{ccccc}
MY\parallel FN & \implies & \frac {EM}{EF}=\frac {MY}{FN} & \implies & \frac {EM}{EF}=\frac yn\\\\
MZ\parallel EP & \implies & \frac {FM}{FE}=\frac {MZ}{EP} & \implies & \frac {FM}{FE}=\frac zp\end{array}\right\|$ $\stackrel{(*)}{\implies}$

$v\cdot \frac yn+u\cdot \frac zp=x$ $\implies$ $\boxed{y\cdot \frac vn+z\cdot \frac up=x}\ (1)\ .$ On other hand $\left\{\begin{array}{ccc}
\beta =\frac {FA}{FB}=\frac {[FAC]}{[FBC]}=\frac {bn}{av} & \implies & \frac vn=\frac b{a\beta}\\\\
\gamma =\frac {EA}{EC}=\frac {[EAB]}{[ACB]}=\frac {cp}{au} & \implies & \frac up=\frac c{a\gamma}\end{array}\right\|$ $\stackrel{(1)}{\implies}$ $y\cdot \frac {b}{a\beta} + z\cdot \frac {c}{a\gamma}=x\implies$ $ax=\frac {by}{\beta} + \frac {cz}{\gamma}\ .$



P5 Let $\triangle ABC$ and the points $\left\|\ \begin{array}{ccc}
 E\in (AC) & , & \widehat {EBA}\equiv\widehat {EBC}\\\\
 F\in (AB) & , & \widehat {FCA}\equiv\widehat {FCB}\end{array}\ \right\|\ .$ Prove that there is the inequality $\frac {2\cdot EF}{a\sqrt {bc}}\ \le\  \frac {1}{a+b}+\frac {1}{a+c}$ with equality when $b=c\ .$

Proof. Observe that $\left\{\begin{array}{ccc}
\frac {EA}c=\frac {EC}a=\frac b{a+c} & \implies & AE=\frac {bc}{a+c}\\\\
\frac {FA}b=\frac {FB}a=\frac c{a+b} & \implies & AF=\frac {bc}{a+b}\end{array}\right\|\ .$ Apply the theorem of Cosines $EF^2=AE^2+AF^2-2\cdot AE\cdot AF\cdot \cos A$ , where $\cos A=\frac{b^2+c^2-a^2}{2bc}\ .$

The required inequality becomes $2\sqrt{bc[(a+b)^2+(a+c)^2]-(a+b)(a+c)(b^2+c^2-a^2)}\le a(2a+b+c)\implies$ $0\le a(b-c)^2(5a+4b+4c)\ ,$ what is true.


P6. Let acute $\triangle ABC$ with bisectors $BE$, $CF$ where $E\in AC$, $F\in AB$ and the projections $X$, $Y$ of $E$, $F$ on $BC.$ Prove that $\boxed{\begin{array}{cccc}
EF^2 & \le & BF\cdot CE & (1)\\\\
XY & \le & \frac a2\left(\frac b{a+b}+\frac c{a+c}\right) & (2)\end{array}}\ \bf\color{red}Wonderful !$

Proof. Apply the Stewart's relation to the cevian $EF$ in $\triangle AEF\ :\ AB\cdot EF^2=EB^2\cdot FA+EA^2\cdot FB-FA\cdot FB\cdot AB\iff$ $c\cdot EF^2=\frac {ac\left[(a+c)^2-b^2\right]}{(a+c)^2}\cdot \frac {bc}{a+b}+$

$\left(\frac {bc}{a+c}\right)^2\cdot \frac {ac}{a+b}-c\cdot \frac {bc}{a+b}\cdot\frac {ac}{a+b}\iff$ $\frac {(a+c)^2(a+b)^2}{abc}\cdot EF^2=(a+b)\left[(a+c)^2-b^2\right]+bc(a+b)-c(a+c)^2\equiv \Delta\ .$ Thus, $\boxed{EF^2\le BF\cdot CE}\iff$

$\frac {abc}{(a+b)^2(a+c)^2}\cdot\Delta\le $ $\frac {ac}{a+b}\cdot\frac {ab}{a+c}\iff$ $\Delta\le a(a+b)(a+c)\iff$ $(a+b)(a+c)^2+bc(a+b)\le b^2(a+b)+c(a+c)^2+a(a+b)(a+c)\iff$

$(a+b)(a+c)^2-a(a+b)(a+c)\le b^2(a+b)-bc(a+b)+c(a+c)^2\iff$ $c(a+b)(a+c)\le b(a+b)(b-c)+c(a+c)^2\iff$ $c(a+b)(a+c)-c(a+c)^2\le$

$b(a+b)(b-c)\iff$ $c(a+c)(b-c)\le b(a+b)(b-c)\iff$ $(b-c)\left[b(a+b)-c(a+c)\right]\ge 0\iff$ $(b-c)\left[\left(b^2-c^2\right)+a(b-c)\right]\ge 0$

$\iff$ $\boxed{(b-c)^2(b+c+a)\ge 0}$ what is true. We have equality iff $b=c\ .$ The segment $[XY]$ is the projection of $[EF]$ on $BC\implies XY\le EF\ .$

$\blacktriangleright\ \left\{\begin{array}{ccc}
BX & = & \frac {ac}{a+b}\cdot\cos B\\\\
CY & = & \frac {ab}{a+c}\cdot\cos C\end{array}\right\|\implies$ $(a+b)(a+c)\left(BX+CY\right)=$ $a\left[c(a+c)\cos B+b(a+b)\cos C\right]=$ $a\left[a(c\cdot\cos B+b\cdot\cos C)+c^2\cos B+b^2\cos C\right]=$

$a\left(a^2+c^2\cos B+b^2\cos C\right)=$ $a^3+c\cdot ac\cos B+b\cdot ab\cos C=$ $a^3+\frac 12\cdot c\left(a^2+c^2-b^2\right)+\frac 12\cdot b\left(a^2+b^2-c^2\right)=$ $a^3+\frac 12\cdot a^2(b+c)+\frac 12\cdot\left(b^2-c^2\right)(b-c)=$

$\frac 12\cdot a^2(2a+b+c)
+\frac 12\cdot (b+c)(b-c)^2\ge \frac 12\cdot a^2(2a+b+c)\ .$ Therefore, $\boxed{BX+CY\ge \frac {a^2(2a+b+c)}{2(a+b)(a+c)}}\implies$ $XY=a-(BX+CY)\le a-\frac {a^2(2a+b+c)}{2(a+b)(a+c)}=$

$\frac {a[2bc+a(b+c)]}{2(a+b)(a+c)} =$ $\frac a2\left(\frac b{a+b}+\frac c{a+c}\right)\ .$ In conclusion, $\boxed{XY\ \le\frac a2\left(\frac b{a+b}+\frac c{a+c}\right)}\ .$

Remark. This inequality $(1)$ is stronger than $\frac {2\cdot EF}{a\sqrt {bc}}\ \le\  \frac {1}{a+b}+\frac {1}{a+c}$ from P5. Indeed, $EF^2\le BF\cdot CE$ $\iff$ $EF^2\le \frac {ac}{a+b}\cdot\frac {ab}{a+c}\iff$ $EF\le \frac {a\sqrt{bc}}{\sqrt{(a+b)(a+c)}}$ $\iff$

$\frac {2\cdot EF}{a\sqrt{bc}}\le\frac 2{\sqrt{(a+b)(a+c)}}=$ $2\cdot\sqrt{\frac 1{a+b}}\cdot\sqrt{\frac 1{a+c}}\le$ $\frac 1{a+b}+\frac 1{a+c}\ .$ With other words, the inequality $EF^2\le BF\cdot CE$ $\implies$ the inequality $\frac {2\cdot EF}{a\sqrt {bc}}\ \le\  \frac {1}{a+b}+\frac {1}{a+c}\ .$



P7 (Stefan Smarandache). Let semiperimeter $p$ of trapezoid $ABCD$, $AB\parallel CD$ what is inscribed in circle $w=C(O,1).$ Is known $AD=\sqrt 3.$ Prove that $p\le 1+\sqrt{3}$ (clasa a VII - a).

Proof. Let $AB=2x\ ,\ CD=2y$ so that $x<y$ and $AD=BC=\sqrt 3\ .$ Observe that $p=(x+y)+\sqrt 3$ and must prove the maximum of $p$ is equal with $1+\sqrt 3$ , i.e. the maximum

of the sum $x+y$ is equal to $1\ .$ Prove easily that in the extremum situation the center $O$ is interior for the trapezoid with the maximum perimeter. I"ll find the relation between $x$ and $y$ so that

the trapezoid is inscribed in a circle with the length of its radius is equal to $1\ .$ Prove easily that it is $\left(\sqrt 3\right)^2=(x-y)^2+\left(\sqrt {1-x^2}+\sqrt {1-y^2}\right)^2$ , i.e. $x^2+xy+y^2=\frac 34$ , what

means $(x+y)^2=xy+\frac 34\ .$ Thus the sum $(x+y)$ is maximum $\iff$ $(x+y)^2$ is maximum $\iff$ the product $xy$ is maximum $\iff$ $(xy)^3=x^2\cdot {xy}\cdot y^2$ is maximum. But the sum

$x^2+xy+y^2=\frac 34$ is constant. Hence $xy$ is maximum $\iff$ $x^2=xy=y^2=\frac 14$ , i.e. $x=y=\frac 12$ and in this case $p\ \le\ 1+\sqrt 3\ .$


Comentariu. Am evitat trigonometria, desi era mai simplu si redactarea mai scurta. Intr-adevar, notand mijloacele $M$ , $N$ ale bazelor $[AB]$ si $[CD]$ respectiv

si $m(\angle AOM)=\alpha$ , $m(\angle DON) =\beta$ se obtine $\alpha +\beta =60^{\circ}$ si $x=\sin\alpha$ , $y=\sin\beta\ .$ Deci suma $x+y$ este maxima $\iff$ $\sin\alpha +\sin\beta=$

$\frac 12\cdot\sin\frac {\alpha +\beta}{2}\cdot\cos\frac {\alpha -\beta}{2}=$ $\cos\frac {\alpha -\beta}{2}$ este maxim $\Longleftrightarrow\ \alpha =\beta =30^{\circ}\ \Longleftrightarrow\ x=y=\frac 12\ .$ Daca $AB=l$ , unde $l\ <\ 2$ , atunci notam cercul circumscris $w=C(O,1)$ ,

$I\in AC\ \cap\ BD$ si $\phi =m(\angle AC .$ Se observa c$\frac {BC}{BI}=\frac {AD}{ID}=k=$ $\frac {BC+AD}{BI+ID}=$ $\frac {BC+AD}{BD}$ , unde $k=2\cos\phi$ (constant). Deci $BC+AD$ este maxim daca si numai daca $BD$

este maxim, adica $I\equiv O\ .$ In concluzie, $\boxed{\ p\ \le\ l\ +\ 2\cdot\cos\phi\ }\ .$



P8. Fie un paralelogram $ABCD$ si un punct $E\in BD\ .$ Construim simetricul $S$ al lui $C$ fata de $E\ .$

si paralelogramul $SGAF$ , unde $F \in AB$ si $G\in AD\ .$ Aratati ca $EF\ ||\ AC$ si $GE\in FG\ .$


Demonstratie (vectorial). Fixam originea sistemului de vectori in $O\in AC\cap BD$ , adica $\vec{OX}=X$ si $\vec{XY}=Y-X\ .$ Deci

$C=-A$ , $D=-B$ , exista $m\in\mathbb R$ astfel incat $\boxed{E=mB}$ si $S=2E-C$ , adica $\boxed{S=A+2mB}\ .$

$\blacktriangleright\ \left|\begin{array}{ccccc}
 SF\ \parallel\ AD & \iff & F=S+u(A-D) & \iff & F=(1+u)A+(2m+u)B\\\\
 F\in AB & \iff & F=A+v(A-B) & \iff & F=(1+v)A-vB\end{array}\ \right|\ \iff\ \left|\begin{array}{c}
 1+u=1+v\\\\
 2m+u=-v\end{array}\right|\ .$

Deci $u=v=-m$ , adica $\boxed{F=(1-m)A+mB}\ .$ Am folosit ca $F\in AB\ \Longleftrightarrow\ AF\ \parallel\ AB\ .$

$\blacktriangleright\ \ S+A=F+G\ \Longleftrightarrow\ G=S+A-F=A+2mB+A-(1-m)A-mB$ , adica $\boxed{G=(1+m)A+mB}\ .$

Se observa ca $\left|\begin{array}{c}
 \overrightarrow{EF}=F-E=(1-m)A\\\\
 \overrightarrow{EG}=G-E=(1+m)A\end{array}\right|$ , adica $EF\ \parallel\ AC$ si $(1+m)\cdot \overrightarrow{EF}=(1-m)\cdot\overrightarrow{EG} \iff\ E\in FG\ .$


P9. Let an acute $\triangle ABC$ and an its interior $D$ so that $\frac {DA}{DB}=\frac {CA}{CB}$ and $m\left(\angle ADB\right)=C+\phi\ <\ 180^{\circ}\ .$ Prove that $\frac {AB}{AC}\cdot\frac{DC}{DB}=2\cdot \sin\frac {\phi}{2}\ .$

Proof. Let the interior $E$ of $\widehat{ADB}$ so that $m(\angle ADE)=C$ and $DE=DB\ .$ Thus, $m(\angle BDE)=\phi$ , $\frac {EB}{DB}=2\cdot \sin\frac {\phi}{2}$ and $\triangle ACB\sim\triangle ADE$

because $\widehat{ACB}\equiv\widehat{ADE}$ and $\frac {CA}{CB}=\frac {DA}{DB}\ .$ Obtain $\widehat{BAC}\equiv\widehat{EAD}$ , $\widehat{BAE}\equiv\widehat{CAD}$ and $\frac {AB}{AE}=\frac {AC}{AD}. $ So $\triangle BAE\sim\triangle CAD\implies$

$\frac {AB}{AC}=\frac {EB}{DC}$ , $\frac {AB}{AC}\cdot\frac{DC}{DB}=$ $\frac {EB}{DC}\cdot\frac {DC}{DB}=$ $\frac {EB}{DB}=2\cdot \sin\frac {\phi}{2}$ , i.e. $\frac {AB}{AC}\cdot\frac{DC}{DB}=2\cdot \sin\frac {\phi}{2}\ .$



P10. Fie $\triangle\ ABC$ cu $AB=AC$ si $D\in [AC]$ astfel incat $CD=2DA\ .$ Fie $M\in [BD]\ .$ Sa se arate ca $\widehat{MCB}\equiv\widehat{MBA}\ \Longleftrightarrow\ AM\perp MC$ (Marcel Chirita, GM 9/2008).

Dem. Pentru $E\in (BD$ pentru care $AE\ \parallel\ BC$ avem $2\cdot AE=BC\ ,$ adica $EA\ \perp\ EC$ si $\widehat {CAE}\ \equiv\ \widehat {ACB}\ \equiv\ \widehat {CME}\ .$ Asadar $AMCE$ este inscriptibil, i.e.

$AM\ \perp\ MC\ .$ Astfel $\frac {MB}{MD}=\frac {3a^2}{4b^2}\ \ \wedge\ \ \tan\ \left(\widehat{MCB}\right)=\frac {4S}{a^2+4b^2}\ ,$ unde $S=[ABC]$ si daca $F$ este simetricul lui $C$ in raport cu $A\ ,$ atunci $\widehat{AMF}\equiv\widehat{AMD}\ .$



P11. Let acute $\triangle ABC$ , $D\in (AC)$ so that $\frac {DC}{DA}=m$ and $M\in (BD)$ so that $\widehat{MCA}\equiv\widehat{DBC}\ .$

Prove that $\tan\widehat{AMC}=\frac {m\tan B\tan C}{(m-1)\tan B-\tan C}\ .$ For example, if $m=1+\frac {\tan C}{\tan B}$ then $MA\perp MC\ .$


Proof. Let $m\left(\widehat{AMC}\right)=\phi$ and $E\in BD$ so that $AE\parallel BC\ .$ Observe that $m\left(\widehat {CME}\right)=m\left(\widehat {ACB}\right)=m\left(\widehat {CAE}\right)\implies$ $\widehat {CME}\equiv\widehat {CAE}$ , i.e. $AMCE$ is a cyclic

quadrilateral. Thus, $m=\frac {DC}{DA}=\frac a{AE}\implies$ $\boxed{AE=\frac am}\ (1)\ .$ Apply the theorem of Sines in the triangle $ACE\ :\ \frac {AE}{\sin(\phi -C)}=\frac b{\sin\phi}\ \stackrel{(1)}{\iff}\ a\sin\phi =$ $mb\sin (\phi -C)\iff$

$\sin (B+C)\sin\phi =m\sin B\sin (\phi -C)\iff$ $\left(\tan B+\tan C\right)\tan\phi =m\tan B\left(\tan \phi -\tan C\right)\iff$ $\boxed{\tan\phi =\tan\widehat{AMC}=\frac {m\tan B\tan C}{(m-1)\tan B-\tan C}}\ (*)\ .$



P12. Let an acute $\triangle ABC$ with crcumcircle $w=\mathbb C(O,R)$ and $D\in (BC),$ $\{A,H\}=\{A,D\}\cap w,$ $\left\{\begin{array}{ccc}
E\in AC & ; & DE\perp AC\\\\
F\in AB & ; & DF\perp AB\end{array}\right\|$ and $G\in EF\cap AD.$ Prove that $\boxed{AG\cdot AH=AD^2}\ (*).$
$$\mathrm{END}$$
This post has been edited 458 times. Last edited by Virgil Nicula, Aug 6, 2017, 8:34 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a