167. Nice problems - OIM, 1995 and ... Toshio Seimyia.

by Virgil Nicula, Oct 26, 2010, 2:39 PM

OIM - 1997. Given are two parallel lines $d_1$ , $d_2$ , a circle $w=C(O,r)$ which is tangent to these lines, a circle $w_1=C(O_1,r_1)$ which is exterior tangent to $w$ and is

tangent to $d_1$ , a circle $w_2=C(O_2,r_2)$ which is exterior tangent to $w$ and is tangent to $d_2$ so that the circles $w_1$ , $w_2$ are exterior tangent one to other. Denote

$A\in d_1\cap w_1$ , $B\in d_2\cap w_2$ , $E\in w_1\cap w_2$ , $C\in w\cap w_1$ , $D\in w\cap w_2$ and $Q\in AD\cap BC$ . Prove that the point $Q$ is the circumcenter of the triangle $CDE$ .

Proof 1 (synthetic).

Lemma 1 (PLC). Let $w_1$ , $w_2$ be the circles which are exterior tangent in $A$ and let $t$ be a exterior common tangent line of these in $A_1\in w_1$ and $A_2\in w_2$ . Let the diameters $[A_1B_1]$ and

$[A_2B_2]$ of $w_1$ , $w_2$ respectively. Prove that $A\in A_1B_2\cap A_2B_1$ (construct of a circle which pass through a given point $P$ , is tangent to a given line $L$ and is tangent to a given circle $C$).


Lemma 2 (PCC). Let $w_1=(O_1)$ , $w_2=(O_2)$ be two exterior circles and let $t$ be a exterior common tangent line of $w_1$ , $w_2$ in $A_1\in w_1$ , $A_2\in w_2$ . Denote $S\in O_1O_2\cap t$ .

Let a circle $w$ which is exterior tangent to $w_1$ , $w_2$ in $B_1\in w\cap w_1$ , $B_2\in w\cap w_2$ . Prove that $S\in B_1B_2$ and $A_1A_2B_2B_1$ is cyclically (construct of a circle which pass

through a given point $P$ and is tangent to $C_1$ and $C_2$). See the
XCIII-message of my blog.

From lemma 1 results that $A\in BE\cap CF_2$ and $B\in AE\cap DF_1$ . From lemma 2 obtain that the quadrilaterals $AF_1DE$ and $BF_2CE$ are cyclically. Thus,

$AF_1DE$ is cyclically and $B\in AE\cap  DF_1$ $\implies$ $BD\cdot BF_1=BA\cdot BE$ $\implies$ the point $B$ has same power w.r.t. $w$ , $w_1$ $\implies$ the points $B$ , $C$ belong

to the radical axis of $w$ , $w_1$ $\implies$ the line $BC$ is common tangent of $w$ , $w_1$ in $C$ . Prove analogously that the line $AD$ is common tangent of $w$ , $w_2$ in $D$ .

In conclusion, the point $Q$ is radical center of $w$ , $w_1$ , $w_2$ and $QC=QD=QE$ , i.e. the point $Q$ is circumcenter of $\triangle CDE$ .



Proof 2 (of one from my students). Denote $F_1\in w\cap d_1$ , $F_2\in w\cap d_2$ and $K\in F_1F_2$ for which $DK\perp d_1$ . Consider the line $d\parallel d_1$ for which $O_2\in d$ .

Denote the projections $G$ , $N$ , $H$ on the line $d$ of $O$ , $D$ , $A$ respectively and $L\in DN\cap d_1$ , $M\in DN\cap d_2$ . Therefore, $GO=r-r_2$ , $GH=AF_1=2\sqrt {rr_1}$ ,

$GO_2=BF_2=2\sqrt {rr_2}$ , $F_1L=F_2M=GN=KD$ , $HO_1=2r-r_1-r_2$ , $HO_2=$ $\left|2\sqrt {rr_1}-2\sqrt {rr_2}\right|$ and $HO_1\perp HO_2\implies$

$HO_1^2+HO_2^2=O_1O_2^2\implies$ $(2r-r_1-r_2)^2+$ $4r\left(\sqrt {r_1}-\sqrt {r_2}\right)^2=$ $\left(r_1+r_2\right)^2$ $\implies$ $r=2\sqrt {r_1r_2}\ (*)$ . Thus, $\frac {GN}{GO_2}=\frac {KD}{GO_2}=\frac {r}{r+r_2}$ $\iff$

$F_1L=GN=\frac {2r\sqrt {rr_2}}{r+r_2}$ . Therefore, $AL=AF_1-F_1L=$ $2\sqrt {rr_1}-\frac {2r\sqrt {rr_2}}{r+r_2}$ and $\frac {DN}{GO}=\frac {r_2}{r+r_2}\implies$ $DN=\frac {r_2(r-r_2)}{r+r_2}$ . From where obtain

$DL=2r-r_2-DN=$ $2r-r_2-\frac {r_2(r-r_2)}{r+r_2}$ $\implies$ $DL=\frac {2r^2}{r_1+r_2}$ $\implies$ $AD^2=DL^2+AL^2=$ $\left(\frac {2r^2}{r+r_2}\right)^2+$ $\left(2\sqrt {rr_1}-\frac {2r\sqrt {rr_2}}{r+r_2}\right)^2=$

$\frac {4r}{(r_1+r_2)^2}\cdot \left\{r^3+\left[\sqrt {r_1}(r+r_2)-r\sqrt {r_2}\right]^2\right\}=$ $\frac {4r}{(r_1+r_2)^2}\cdot \left[r^3+r_1(r+r_2)^2+r^2r_2-2r(r+r_2)\sqrt {r_1r_2}\right]$ . Using the relation $(*)$ obtain

$AD^2=\frac {4r}{(r_1+r_2)^2}\cdot \left[r^3+r_1(r+r_2)^2+r^2r_2-r^2(r+r_2)\right]=4rr_1=AF_1^2$ . In conclusion, $AD=AF_1$ , i.e. the line $AD$ is a common tangent

for $w$ , $w_2$ . Prove analogously that the line $BC$ is a common tangent for $w$ , $w_1$ . Thus, $Q\in AD\cap BC$ is the radical center for the circles $w$ , $w_1$ , $w_2$

and in this case $QC=QD=QE$ , i.e. the point $Q$ is the circumcenter of the triangle $CDE$ .



Generalization. Let $ABC$ be a triangle. Consider three circles $w_k=C(O_k,r_k)\ ,\ k\in\overline{1,3}$ which are situated inside of $\triangle ABC$ so that each from them is exterior tangent to others two

and is tangent to only two sides of given triangle. More exactly : $w_1$ is tangent to $AB$ , $AC$ in $C_1$ , $B_2$ respectively ; $w_2$ is tangent to $BC$ , $BA$ in $A_1$ , $C_2$ respectively ; $w_3$ is tangent to $CA$ ,

$CB$ in $B_1$ , $A_2$ respectively. Denote $M\in w_2\cap w_3$ , $N\in w_3\cap w_1$ , $P\in w_1\cap w_2$ and the diameters $[A_1A_1']$ , $[A_2A_2']$ , $[B_1B_1']$ , $[B_2B_2']$ , $[C_1C_1']$ , $[C_2C_2']$ in the corresponding circles.

Define the intersections $X\in A_1P\cap A_2N$ , $Y\in B_1M\cap B_2P$ , $Z\in C_1N\cap C_2M$ . Prove that :

$\blacktriangleright\ M\in A_1A_2'\cap A_2A_1'$ , $N\in B_1B_2'\cap B_2B_1'$ ,$P\in  C_1C_2'\cap C_2C_1'$ .

$\blacktriangleright$ The quadrilaterals $A_1A_2NP$ , $B_1B_2PM$ , $C_1C_2MN$ are cyclically.

$\blacktriangleright$ The lines $MX$ , $NY$ , $PZ$ are concurrently in the circumcenter of the triangle $MNP$ .



Toshio Seimyia. Let $ABC$ be a triangle with the incircle $w=C(I,r)$ , with the Lemoine's point $S$ and $b\ne c$ . Denote $D\in BC\cap w$ .

Prove that $\boxed{IO\perp AD\ \iff\ AD\ \mathrm{is\ A-symmedian\ of\ }\triangle ABC\ \iff\ a(b+c)=b^2+c^2\ \iff\ SI\parallel BC}$ .


Proof 1 (synthetic). Denote $E\in AC\cap w$ , $F\in AB\cap w$ , $P\in EF\cap BC$ . From the well-known property $PI\perp AD$ obtain $OI\perp AD$ $\iff$ $PO\perp AD$ .

Since $P$ , $D$ are conjugate harmonical w.r.t. $B$ , $C$ obtain that $PO\perp AD\iff$ $AD$ is the polar line of $P$ w.r.t. the circumcircle $C(O)$ of $\triangle ABC$ $\iff$ $PA\perp OA$ ,

i.e. $PA$ is tangent line to $C(O)$ in $A$ . From another well-known property obtain that $PA\perp AD$ $\iff$ the point $D$ is the foot of the $A$-symmedian in $\triangle ABC$ .


Proof 2 (metric). Recall the relations $DB=s-b$ , $DC=s-c$ and $s\cdot IA^2=bc(s-a)$ , where $2s=a+b+c$ . The line $AD$ is $A$-symmedian $\iff$

$\frac {DB}{DC}=\frac {c^2}{b^2}\iff$ $\frac {s-b}{s-c}=\frac {c^2}{b^2}\iff$ $s\left(b^2-c^2\right)=b^3-c^3\iff$ $s(b+c)=$ $b^2+c^2+bc\iff$ $a(b+c)+(b+c)^2=$ $2\left(b^2+c^2\right)+2bc\iff$

$\boxed{a(b+c)=b^2+c^2}\ (*)$ . Therefore, $IO\perp AD$ $\iff$ $IA^2-ID^2=OA^2-OD^2\iff$ $\frac {bc(s-a)}{s}-r^2=R^2-OD^2$ . Since

$OD^2=(R\cos A)^2+MD^2$ , where $M$ is the midpoint of $[BC]$ and $MD=\frac {|b-c|}{2}$ . Thus, $IO\perp AD\iff$ $\frac {bc(s-a)}{s}-r^2=$

$R^2\sin^2A-\frac 14\cdot (b-c)^2\iff$ $bc(s-a)=$ $sr^2+s(s-b)(s-c)$ $\iff$ $bc(s-a)=$ $(s-a)(s-b)(s-c)+$ $s(s-b)(s-c)$ $\iff$ $bc(s-a)=$

$(b+c)(s-b)(s-c)\iff$ $sbc-abc=s^2(b+c)-s(b+c)^2+bc(b+c)$ $\iff$ $sbc=s^2(b+c)-s(b+c)^2+2sbc$ $\iff$ $(b+c)^2=$

$s(b+c)+bc$ $\iff$ $b^2+c^2+bc=s(b+c)$ $\iff$ $a(b+c)+(b+c)^2=$ $2(b^2+c^2)+2bc$ $\iff$ $a(b+c)=b^2+c^2$ , i.e. the relation $(*)$ .

In conclusion, $IO\perp AD\iff$ $AD$ is the $A$-symmedian in $\triangle ABC$ .

Remark. $IO\perp AD\iff a(b+c)=b^2+c^2\iff$ $\frac {b+c}{a}=\frac {b^2+c^2}{a^2}\iff$ $\frac {IA}{IK}=\frac {SA}{SL}$ $\iff$ $SI\parallel BC$ , where $L\in AS\cap BC$ and $K\in AI\cap BC$ .
This post has been edited 55 times. Last edited by Virgil Nicula, Dec 1, 2015, 9:45 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a