64. Problems of the type "instant" (at most one minute).

by Virgil Nicula, Jul 20, 2010, 4:58 PM

Cezar . 296.060 . GIL

$$\bf\color{red}Problems\ of\ the\ type\ "instant"$$$$\bf\color{black}===================$$
P0.0. $(\forall )\ \{x,y\}\subset\mathbb R\ ,\ x^2+y^2=2\implies -2\le xy(x+y)\le 2\ .$

Proof. $\left\{\begin{array}{ccc}
2|xy|=2|x||y|\le |x|^2+|y|^2=x^2+y^2=2 & \implies & 0\le |xy|\le 1\\\\
|x+y|^2=(x+y)^2\le 2(x^2+y^2)=4 & \implies & 0\le |x+y|\le 2\end{array}\right\|$ $\bigodot\implies$ $|xy(x+y)|\le 2$ , i.e. $-2\le xy(x+y)\le 2\ .$ Remark. $|x|=\max \{x,-x\}\ .$

P0.1. Let $\{a,b\}\subset\mathbb R^*_+$ so that $a^4\le b^3\ .$ Prove that the equation $x^4-ax+b=0$ hasn't real roots, i.e. for any $x\in\mathbb R\ ,\ x^4+b>ax\ .$

Proof 1. $\left\{\begin{array}{cccc}
(\forall ) & x\le \frac ba & \Longrightarrow & x^4-ax+b=x^4+(-ax+b)>0\\\\
(\forall ) & \sqrt[3] a \le x & \Longrightarrow & x^4-ax+b=x\left(x^3-a\right)+b>0\end{array}\right\|\  .$ Thus, $a^4\le b^3\implies \sqrt [3] a\le \frac ba\ .$ In conclusion, $(\forall )\ x\in\mathbb R\ ,\ x^4-ax+b>0\ $

Proof 2. $x^4+b=x^4+\frac b3+\frac b3+\frac b3\ge$ $ 4\cdot \sqrt[4]{\frac {3b^3x^4}{81}}=$ $\frac {4|x|}3\cdot\sqrt[4]{3b^3}\ge $ $\frac {4|x|}3\cdot\sqrt[4]{3a^4}=$ $\frac {4\sqrt[4]3}3\cdot a|x| >a|x|\ge $ $ax\implies$ $x^4-ax+b>0$ for any $x\in\mathbb R\ .$


P0.2.Solve over $\mathbb R$ the equation $x^2+\left(\frac x{x-1}\right)^2=8\ .$
Proof 1. $\left(x^2-8\right)(x-1)^2+x^2=0\iff$ $\left(x^2-8\right)\left(x^2 2x+1\right)+x^2=0\iff $ $x^4-2x^3-6x^2+16x-8=0\ \stackrel{\mathrm{Horner}}{\iff}\ (x-2)^2$ $\left(x^2+2x-2\right)=0$ $\begin{array}{cc}
\nearrow & \ \stackrel{double}{2}\\\\
\rightarrow & -1-\sqrt 3\\\\
\searrow & -1+\sqrt 3\end{array}\ .$
Proof 2. $(x-1)^2+\left(\frac x{x-1}\right)^2=$ $9-2x\iff$ $\left[(x-1)+\frac x{x-1}\right]^2=9$ $\implies$ $\left|\begin{array}{c}
(x-1)+\frac x{x-1}=3\implies x^2-4x+4=0\\\\
(x-1)+\frac x{x-1}=-3\implies x^2+2x-2=0\end{array}\right|\ \stackrel{x\ne 1}{\implies}\ x$ $\in\left\{2\ ;\ -1\pm\sqrt 3\right\}\ .$


P0.3 (Dan Stefan Marinescu & Viorel Cornea, shortlist 2008). Prove that the inequality $x^{n+1}+\frac{1}{x^{n+1}} \geq $ $x^n+\frac{1}{x^n},\ \forall\ x > 0,\ \forall\ n \in  \mathbb{N}\ .$

Proof. Define the relation $X\ \underline{.s.s.}\ Y \ \iff$ $\ X=Y=0\ \vee\ X\cdot Y>0$, i.e. $X$ and $Y$ have "same sign". Therefore, $x^{n+1}+\frac{1}{x^{n+1}} \geq $ $x^n+\frac{1}{x^n}$ $\iff$

$\left(x^{n+1}+\frac 1{x^{n+1}}\right)-\left(x^n+\frac 1{x^n}\right)\ \underline{.s.s.}\ \left(x^{2n+2}+1\right)-x\left(x^{2n}+1\right) \underline{.s.s.}\ x^{2n+1}(x-1)-(x-1)\ \underline{.s.s.}\ (x-1)\left(x^{2n+1}-1\right)\ \underline{.s.s.}\ (x-1)^2\ge 0\ .$


P0.4. Let $\triangle ABC$ with the circumcircle $w=C(O,R)$ . Denote the midpoint $M$ of $[BC]$ , the tangent $AA$ to $w$ at $A\in w$ , $D\in BC$ so that $AD\perp BC$ and $\{A,N\}=\{A,M\}\cap w$.

Prove that $m\left(\widehat { MAC}\right)= 90^{\circ}-B\iff$ $\boxed{O\in AM}\iff\ AB=AC\ \ \vee\ \ AB\perp AC\ \iff\widehat {DAB}\equiv\widehat {MAC}\iff$ $\left\{\begin{array}{ccc}
AA\perp AM & \iff & BN\perp BA\\\\
\sin 2B=\sin 2C & \iff & [OAB]=[OAC]\end{array}\right\|$


P0.5. Let $\triangle ABC$ with the circumcircle $\mathbb C(O,R)\ .$ Solve the geometrical equation $x^2-4Rx+a^2=0 .$ See here.

Proof 1. I"ll show that $x^2-4Rx+a^2=0$ $\begin{array}{ccccc}
\nearrow & r_b+r_c & \searrow\\\\
\searrow & r_a-r & \nearrow\end{array}\odot$ Indeed, $S=\left(r_b+r_c\right)+\left(r_a-r\right)=\left(r_a+r_b+r_c\right)-r=(4R+r)-r=4R\implies$ $\boxed{S=4R}\ .$

$P\equiv x_1x_2=$ $\left(r_b+r_c\right)\cdot\left(r_a-r\right)=$ $\left(\frac S{s-b}+\frac S{s-c}\right)\cdot\left(\frac S{s-a}-\frac Ss\right)=$ $\frac {aS}{(s-b)(s-c)}\cdot\frac {aS}{s(s-a)}=a^2\implies$ $\boxed{P=a^2}$ because $S^2=s(s-a)(s-b)(s-c)\ .$

Proof 2. Let midpoint $M$ of $[BC]$ and diameter $[NS]$ so that $M\in NS$ (south, north), i.e. $MN+MS=2R\ .$ Prove easily that $\left\{\begin{array}{cccc}
\mathrm{If} & A\le 90^{\circ} & \implies & \odot\begin{array}{cc}
\nearrow & MN=\frac {r_b+r_c}2\\\\
\searrow & MS=\frac {r_a-r}2\end{array}\\\\
\mathrm{If} & A>90^{\circ} & \implies & \odot\begin{array}{cc}
\nearrow & MN=\frac {r_a-r}2\\\\
\searrow & MS=\frac {r_b+r_c}2\end{array}\end{array}\right\|$


P0.6. Prove that in any triangle $ABC$ there is the inequality $\frac a{b+c-a}+\frac b{c+a-b}+\frac c{a+b-c}\ge 3\ .$

Proof 1. $\sum\frac a{b+c-a}=\sum\frac a{2(s-a)}=$ $\frac {\sum a(s-b)(s-c)}{2(s-a)(s-b)(s-c)}=$ $\frac {2sr(2R-r)}{2sr^2}=\frac {2R-r}{r}=$ $2\cdot\frac Rr-1\ \stackrel{R\ge 2r}{\ge}\  2\cdot 2-1=3\implies$ $\sum\frac a{b+c-a}\ge 3\ .$

Proof 2. Exist $\{x,y,z\}\subset\mathbb R^*_+$ so that $\left\{\begin{array}{ccc}
a & = & y+z\\\
b & = & z+x\\\
c & = & x+y\end{array}\right\|\ .$ The our inequality becomes $\sum \frac {y+z}{2x}=\frac 12\cdot\sum \left(\frac yz+\frac zy\right)\ge \frac 12\cdot\sum 2=3\implies$ $\sum\frac a{b+c-a}\ge 3\ .$

Proof 3. $\sum\frac a{b+c-a}=$ $\sum\frac {a^2}{a(b+c-a)}\ \stackrel{\mathrm{C.B.S.}}{\ge}\frac {(a+b+c)^2}{2\sum a(s-a)}=\frac {4s^2}{4r(4R+r)}=\frac {s^2}{r(4R+r)}\ge \frac {16Rr-5r^2}{r(4R+r)}=\frac {16R-5r}{4R+r}=4-\frac {9r}{4R+r}\ge 3\ .$

Proof 4. I"ll show that $\boxed{\sum\frac a{b+c-a}\ge 2+\frac {2R}r-\left(\frac {4R+r}s\right)^2}\ (*)\ .$ I found from first proof that $\sum\frac a{b+c-a}=\frac {2R-r}{r}\ .$ Thus, $\frac {2R-r}{r}\ge  2+\frac {2R}r-\left(\frac {4R+r}s\right)^2\iff$

$\left(\frac {4R+r}s\right)^2\ge 3\iff$ $4R+r\ge s\sqrt 3$ what is true. I used $\sum\frac {y+z}x=
\sum\left(\frac yz+\frac zy\right)$ and $\left|\begin{array}{ccc}
\sum a(s-a) & = & 2r(4R+r)\\\\
\sum a(s-b)(s-c) & = & 2sr(2R-r)\\\\  
(s-a)(s-b)(s-c) & = & sr^2\end{array}\right|\ \ \wedge\ \ \left|\begin{array}{ccc}
R & \ge & 2r\\\\
4R+r & \ge & s\sqrt 3\\\\  
16Rr-5r^2 & \le  & s^2\end{array}\right|$


P0.7 (Ruben Dario). Let a rectangle $BCFE$, $A\in (EF)$ so that $AB\perp AC$. The incircles of $ABE$ , $ACF$ touch $AB$, $AC$ at $M$, $N$ respectively. Prove that $[MAN]=[BMNC].$

Proof. Let the incircle $w_1=\mathbb C\left(I_1,r_1\right)$ of $\triangle ABE$ and the incircle $w_2=\mathbb C\left(I_2,r_2\right)$ of $\triangle ACF\ .$ Denote $\left\{\begin{array}{ccccc}
P\in EF\cap w_1 & ; & m\left(\widehat {BAE}\right) & = & \theta\\\\
R\in EF\cap w_2 & ; & m\left(\widehat {CAF}\right) & = & \phi\end{array}\right\|$ . Observe that

$\theta +\phi =\frac {\pi}2$ and $\cot\frac {\theta}2=t\iff \cot\frac {\phi}2=\frac {t+1}{t-1}\ .$ Therefore $\odot$ $\begin{array}{ccccccc}
\nearrow & PM\parallel BE & \implies & \frac {AM}{AB}=\frac {AP}{AE}=\frac {r_1\cot\frac {\theta}2}{r_1\left(1+\cot\frac {\theta}2\right)}=\frac t{1+t} & \implies & \frac {AM}{AB}=\frac t{1+t} & \searrow\\\\
\searrow & RN\parallel CF & \implies & \frac {AN}{AC}=\frac {AR}{AF}=\frac {r_2\cot\frac {\phi}2}{r_1\left(1+\cot\frac {\phi}2\right)}=\frac {\frac {t+1}{t-1}}{1+\frac {t+1}{t-1}} & \implies & \frac {AN}{AC}=\frac {t+1}{2t} & \nearrow\end{array}\odot\implies$

$\frac {[AMN]}{[ABC]}=\frac {AM}{AB}\cdot\frac {AN}{AC}=\frac t{1+t}\cdot\frac {t+1}{2t}=\frac 12\implies$ $[MAN]=[BMNC]$ (Daniel Dan).


P0.8 (Cristinel Mortici, G.M.B. 9/2005). Prove that $(\forall )\ \{x,y,z\}\subset\mathbb R^*_+$ there is the inequality $:\ \frac{9}{x+y+z}-\frac{1}{xyz}\le 2\ .$

Proof 1. Denote $\sqrt[3]{xyz}=t$ and apply $\mathrm{A.M.}\ge \mathrm{G.M.} :\ \   \mathrm{LHS}\le \frac{9}{3\sqrt[3]{xyz}}-\frac 1{xyz}=$ $\frac{3}{t}-\frac{1}{t^3}\le 2$ because $(t-1)^2(2t+1)\ge 0\ .$

Proof 2. $\left\|\ \begin{array}{ccc}
3\cdot\sqrt[3]{1\cdot xyz\cdot xyz} & \le  & 1+2xyz\\\\
3\cdot\sqrt[3]{(xyz)} & \le & x+y+z\end{array}\ \right\|\ \bigodot\ \Longrightarrow\ 9xyz\le (1+2xyz)(x+y+z)\implies$ $\frac 9{x+y+z}\le \frac 1{xyz}+2\implies$ $\frac{9}{x+y+z}-\frac{1}{xyz}\le 2\ .$ Vezi si
aici.

P0.9 (Luis Saavedra). Let an $A$-right $\triangle ABC\ .$ Denote the bisector $BE$ where $E\in (AC)\ .$ Prove that $2\cdot AB=BC+CE\iff$ $AB=AC\ .$

Proof 1. $\frac {EA}{c}=\frac {EC}a=\frac b{a+c}\implies \boxed{EC=\frac {ab}{a+c}}\ (*)\ .$ Thus, $2\cdot AB=BC+CE\ \stackrel{(*)}{\iff}\ 2c=$ $a+\frac {ab}{a+c}\iff$ $(2c-a)(a+c)=ab\iff$ $2c^2+ac=a^2+ab\iff$

$2c^2+ac=\left(b^2+c^2\right)+ab\iff$ $c^2+ac=b^2+ab\iff$ $\left(b^2-c^2\right)+a(b-c)=0\iff$ $(b-c)(a+b+c)=0\iff b=c\iff AC=AB\ .$

Proof 2 ("without words"). Construct the points $:\ \left\{\begin{array}{ccccc}
F\in AB & \mathrm{so\ that} & A\in (BF) & \mathrm{and} & AF=AB\\\
G\in BC & \mathrm{so\ that} & C\in (BG) & \mathrm{and} & CG=CE\end{array}\right\|\ .$ Observe that $BF=BG$ and $EB=EF=EG$ , i.e. $\triangle ECG$ is

$C$-isosceles, $\triangle FBG$ is $B$-isosceles and its circumcenter is the point $E\ .$ In conclusion, $C=m\left(\widehat{CEG}\right)+m\left(\widehat{CGE}\right)=$ $2\cdot m\left(\widehat{CGE}\right)=$ $2\cdot m\left(\widehat{CBE}\right)=B\iff B=C\ .$



P0.10. In $\triangle{ABC}$ bisectoarea unghiului $\widehat{BAC}$ intersecteaza latura $(BC)$ in punctul $D\ .$ Aratati ca $AD^2<bc$ si $AM^2\ge s(s-a)\ ,$ unde $M$ este mijlocul lui $[BC]\ .$

Dem. Notam cel de-al doilea punct $S$ unde bisectoarea $[AD$ taie cercul circumscris $w$ al triunghiului dat. Se observa ca $\triangle ABS\sim\triangle ADC\ ,$ adica $\frac {c}{AD}=\frac {AS}{b}$ de unde obtinem

$AS\cdot AD=bc\ ,$ adica $AD\cdot (AD+DS)=bc\ .$ Folosind puterea punctului $D$ in raport cu cercul $w\ ,$ adica $DA\cdot DS=DB\cdot DC\ ,$ obtinem ca $\boxed{AD^2=bc-DB\cdot DC}<bc\ .$

==================================================================================================================================================

P1. Find the value of the sum $S=\frac 1{1+x+xy }+\frac 1{1+y+yz}+\frac 1{1+z+zx}$ where $xyz=1\ .$

Proof. $\left\{\begin{array}{ccccccc}
\frac 1{1+y+yz} & = & \frac x{x(1+y+yz)} & = &\frac x{x+xy+\underbrace{\text{xyz}}_{\text{1}}} & = & \frac x{1+x+xy}\\\\ 
\frac 1{1+z+zx} & = & \frac {xy}{xy(1+z+zx)} & = & \frac {xy}{xy+\underbrace{\text{xyz}}_{\text{1}}+\underbrace{\text{xyz}}_{\text{1}}\cdot x} & = & \frac {xy}{1+x+xy}\end{array}\right\|\bigoplus\implies$ $S=\frac 1{1+x+xy}+\frac x{1+x+xy}+\frac {xy}{1+x+xy}=\frac {1+x+xy}{1+x+xy}\implies S=1\ .$

P2. Prove two implications over $\mathbb R\ :\ \left\{\begin{array}{ccc}
\begin{array}{cccc}
b(a+b)\le c(a+b) & (1) & \searrow\\\\
c(b+c)\le a(b+c) & (2) & \nearrow\end{array} & \implies & a(c+a)\ge b(c+a)\ (3)\\\\
\begin{array}{cccc}
a^2+b^2\le c(a+b) & (5) & \searrow\\\\
a^2+c^2\le b(a+c) & (6) & \nearrow\end{array} & \implies & b^2+c^2\ge a(b+c)\ (7)\end{array}\right\|$

Proof. Suppose a.a.r. (against all reason) $a(c+a)< b(c+a)\ (4)\ .$ Then $\left\{\begin{array}{cccc}
b(a+b) & \le & c(a+b) & (1)\\\\
c(b+c) & \le & a(b+c) & (2)\\\\
a(c+a) & < &  b(c+a) & (4)\end{array}\right\|\ \bigoplus\ \implies a^2+b^2+c^2<ab+bc+ca$ is falsely $\implies (3)$ is truly.

Suppose a.a.r. (against all reason) $b^2+c^2< a(b+c)\ (8)\ .$ Then $\left\{\begin{array}{cccc}
a^2+b^2 & \le &  c(a+b) & (5)\\\\
a^2+c^2 & \le & b(a+c) & (6)\\\\
b^2+c^2 & < & a(b+c) & (8)\end{array}\right\|\ \bigoplus\ \implies a^2+b^2+c^2<ab+bc+ca$ is falsely $\implies (7)$ is truly.


P3. Let numbers $\{a,b,c,d\}\subset\mathbb R^*_+$ so that $ab=1$ and $ac+bd=2\ .$ Prove that $cd\le 1$ (contest in Hungary, 2015).

Proof. $2=ac+bd\ge 2\sqrt{abcd}=2\sqrt {cd}\implies cd\le 1\ .$

P4. Prove that $\{x,y,z\}\subset\mathbb R$ and $\left\{\begin{array}{ccc}
2x+y+z & = & 0\\\\
x(y+z)+y(z-y) & = & 0\end{array}\right\|\ \implies\ x=y=z=0\ .$

Proof. $\left\{\begin{array}{ccc}
x+y+z & = & -x\\\\
xy+yz+zx & = & y^2\end{array}\right\|\ \implies$ $(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)\implies$ $x^2=x^2+y^2+z^2+2y^2\implies$ $3y^2+z^2=0\implies x=y=z=0\ .$

P5. Solve over $\mathbb R$ the inequation $1<\frac {2x+1}{3x-2}<3\ .$

Proof. $x\ne\frac 23$ and $1<\frac {2x+1}{3x-2}<3\iff$ $\left(\frac {2x+1}{3x-2}-1\right)\left(\frac {2x+1}{3x-2}-3\right)<0\iff$ $(-x+3)(-7x+7)<0\iff$ $(x-3)(x-1)<0\iff$ $x\in \left(1,\frac 23\right)\cup\left(\frac 23,3\right)\ .$

P6. Solve over $\mathbb R$ the equations $:\ \left\{\begin{array}{cccccc}
(1) & \left|x^2+x-2\right| & + & \left|x^2+x-6\right| & = & 4\\\\\
(2) & \left|x^2-x-2\right| & - & \left|x^2-9\right| & = & |x-7|\end{array}\right\|\ .$

Proof. $x\in [a,b]\cup [b,a]\iff |x-a|+|x-b|=|a-b|$ and $\left\{\begin{array}{ccccccccccc}
|a|+|b| & = & |a+b| & \iff & ab\ge 0 & ; & |a|+|b| & = & |a-b| & \iff & ab\le 0\\\\
|a|-|b| & = & |a-b| & \iff & b(a-b)\ge 0 & ; & |a|-|b| & = & |a+b|  & \iff & b(a+b)\le 0\end{array}\right\|\ (*)$

$\begin{array}{cccccccccc}
\blacktriangleright\ (1)\ : & \odot\begin{array}{ccccc}
\nearrow & x^2+x-2 & = & a & \searrow\\\\
\searrow & x^2+x-6 & = & b & \nearrow\end{array}\odot & \implies & |a|+|b|=|a-b| & \stackrel{(*)}{\iff} & ab\le 0 & \iff & \left(x^2+x-2\right)\left(x^2+x-6\right)\le 0 & \iff & x\in [-3,-2]\cup [1,2]\ .\\\\
\blacktriangleright\ (2)\ : & \odot\begin{array}{ccccc}
\nearrow & x^2-x-2 & = & a & \searrow\\\\
\searrow & x^2-9 & = & b & \nearrow\end{array}\odot & \implies & |a|-|b|=|a-b| & \stackrel{(*)}{\iff} & b(a-b)\ge 0 & \iff & \left(x^2-9\right)\left(7-x\right)\ge 0 & \iff & x\in (-\infty ,-3]\cup [3,7]\ .\end{array}$


P7. Denote $\triangle ABC$ with $A=120^{\circ}$ and the incircle $w=\mathbb C(I,r)$ . Denote $\left\{\begin{array}{ccc}
D & \in & (BC)\cap AI\\\\
E & \in & (CA)\cap BI\\\\
F & \in & (AB)\cap CI\end{array}\right\|\ .$ Prove that $DE\perp DF$ .

Proof. $\left|\begin{array}{cc}
X\in DF\cap AC\implies & \widehat {BAX}\equiv\widehat {BAD}\implies\mathrm{[AB\ is\ bisector\ of\ \widehat{DAX}}\implies\mathrm{F\ is\ C-excenter\ of\ \triangle ADC}\implies\mathrm{[DF\ is\ bisector\ of\ \widehat{ADB}}\\\\
Y\in DE\cap AB\implies & \widehat {CAY}\equiv\widehat {CAD}\implies\mathrm{[AC\ is\ bisector\ of\ \widehat{DAY}}\implies\mathrm{E\ is\ B-excenter\ of\ \triangle ADB}\implies\mathrm{[DE\ is\ bisector\ of\ \widehat{ADC}}\end{array}\right|$ $\implies DE\perp DF$

P8. Let an $A$-right-angled $\triangle ABC$ with $B=54^{\circ}$ . Denote $\left\{\begin{array}{ccc}
M\in (BC) & ; & MB=MC\\\\
E\in (AM) & ; & \widehat{ECA}\equiv\widehat{ECB}\end{array}\right\|$ . Prove that $CE=AB$ .

Proof 1 (own). Let $N\in (BM)$ so that $AN=AM$ . Prove easily that $\triangle CEM\equiv \triangle ABN$ from where get $CE=AB$ .

Proof 2 (own). Let $P\in (MC)$ so that $AP=AB$ . Prove easily that $\triangle ACE\equiv \triangle CAP$ from where get $CE=AP\implies CE=AB$ .


P9. Let a convex $ABCD$ and the incircles $w_a$ , $w_C$ of $\triangle ABD$ , $\triangle CDB$. Prove that $ABCD$ is circumscribed $\iff BD$ is tangent to $w_a$ , $w_c$ at the same point.

Proof. $\left\{\begin{array}{c}
E\in w_a\cap BD\implies BE=AB+BD-AD\\\\ 
F\in w_c\cap BD\implies BF= CB+BD-CD\end{array}\right\|$ . Thus, $BE=BF\iff AB-AD=CB-CD\iff$ $ AB+CD=AD+BC\iff$ $ABCD$ is tangential
$$\mathrm{END}$$==================================================================================================================================================

P10. Let $ABC$ be a triangle and the tangent points $E$ , $F$ of the incircle $w=C(I,r)$ with $AC$ , $AB$ .

Let the intersections $P$ , $Q$ of the line $EF$ with $BI$ , $CI$. Prove that $PB\perp PC$ si $QC\perp QB$ .


Proof. $m(\widehat{PEC})=m(\widehat{AEF})=$ $90-\frac A2=$ $m(\widehat{PIC}) \implies$ $ m(\widehat{PEC})=$ $m(\widehat{PIC})$ $\implies$ $ ICPE$ is cyclically $\implies$ $m(\widehat{CPI})=$

$m\widehat{<CEI})=90$ $\implies $ $PC\perp PI\implies PC\perp PB$ . Prove analogously $QC\perp QB$ . Observe that $BCPQ$ is inscribed in the circle with the diameter $[BC]$ .


P11. Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)\ .$ Prove that $IB\cdot IC=r\cdot IA \iff b+c=3a\iff IG\perp BC\ .$

Prove easily that the first equivalence. Indeed, $r\cdot BC=2\cdot [BIC]=IB\cdot IC\cdot\sin\left(\frac {\pi}2+\frac A2\right)\iff$ $ar=IB\cdot IC\cdot\cos\frac A2$ . Therefore, $IB\cdot IC=r\cdot IA\iff$ $a=IA\cos\frac A2$

$\iff$ $a=(s-a)\iff $ $2a=b+c-a\iff b+c=3a\ .$ Hence $\boxed{IB\cdot IC=r\cdot IA\iff b+c=3a}\ .$ For the second equivalence I"ll present three proofs.

Proof 1. Let the midpoint $M$ of $[BC]$ , the projections $D$ , $U$ , $V$ of $A$ , $I$ , $G$ respectively on $BC$ and $R\in AD\cap MI$ . Prove easily that $AR=r$ . So $IG\perp BC\iff$ $U\equiv V\iff$

$\frac {MV}{MD}=\frac {MU}{MD}\iff$ $\frac {MG}{MA}=\frac {IU}{RD}\iff$ $\frac 13=\frac r{h_a-r}\iff$ $h_a=4r\iff$ $ah_a=4ar\iff$ $2sr=4ar\iff b+c=3a$ . In conclusion, $\boxed{IG\perp BC\iff b+c=3a}\ .$

Proof 2. $IB^2-IC^2=\frac {ac(s-b)}s-\frac {ab(s-c)}s=a(c-b)$ , i.e. $\boxed{IB^2-IC^2=a(c-b)}$ and $GB^2-GC^2=\frac 49\cdot\left(m_b^2-m_c^2\right)=$ $\frac{c^2-b^2}3\implies$ $\boxed{GB^2-GC^2=\frac {c^2-b^2}3}\ .$

In conclusion, $IG\perp BC\iff$ $IB^2-IC^2=GB^2-GC^2\iff $ $3a(c-b)=c^2-b^2\iff$ $3a=b+c\ .$ Hence $\boxed{IG\perp BC\iff b+c=3a}\ .$

Proof 3. Denote the midpoint $M$ of $[BC]$ , the projection $D$ of $A$ on $BC$ , i.e. $\left\{\begin{array}{ccc}
AD & = & h_a\\\\
MD & = & \frac {\left|b^2-c^2\right|}{2a}\end{array}\right\|$ and the distance $\delta (X)$ of the point $X$ to the $A$-altitude $AD\ .$

Thus, $IG\perp BC\iff$ $IG\parallel AD\iff$ $\delta(I)=\delta (G)\ .$ But the distance $\delta(G)=\frac 23\cdot MD\implies$ $\boxed{\delta (G)=\frac {\left|b^2-c^2\right|}{3a}}$ and the distance $\delta (I)=IA\sin\frac {|B-C|}2=$

$\frac {(s-a)\sin\frac {|B-C|}2}{\cos\frac A2}=$ $\frac {2(s-a)\sin\frac {|B-C|}2\sin\frac A2}{2\cos\frac A2\sin\frac A2}=$ $\frac {(s-a)|\sin B-\sin C|}{\sin A}=$ $\frac {(s-a)|b-c|}a\implies$ $\boxed{\delta (I)=\frac {(s-a)|b-c|}a}\ .$ In conclusion, $IG\perp BC\iff$

$\delta (G)=\delta (I)\iff$ $\frac {\left|b^2-c^2\right|}{3a}=\frac {(s-a)|b-c|}a\iff$ $\frac {b+c}3=s-a\iff$ $b+c=3(s-a)\iff 2(b+c)=3(b+c-a)\iff$ $b+c=3a\ .$

Remark. Prove easily that $\boxed{IG\parallel BC\iff b+c=2a}\ .$ Indeed, $IG\parallel BC\iff \delta_{BC}(G)=\delta_{BC}(I)\iff$ $\frac{h_a}3=r\iff$ $ah_a=3ar\iff$ $2sr=3ar\iff$ $b+c=2a\ .$


P12. Solve the trigonometrical equation $\sin\ \left(\ 45^{\circ}\ +\ x\ \right)\ \cdot\ \sin\ 15^{\circ}=\sin\ x\ \cdot\ \sin\ 30^{\circ}$ , where $x\ \in\ \left(\ 0\ ,\ \frac {\pi}{2}\ \right)$ .

Proof. $\sin\ \left(\ 45^{\circ}\ +\ x\ \right)\ \cdot\ \sin\ 15^{\circ}=\sin\ x\ \cdot\ \sin\ 30^{\circ}\Longleftrightarrow$ $\sin(45+x)=2\sin x\cos 15\Longleftrightarrow$ $\sin(45+x)=\sin (x+15)+\sin (x-15)\Longleftrightarrow$

$\sin(45^{\circ}+x)-\sin (x-15^{\circ})=\sin (x+15^{\circ})\Longleftrightarrow$ $2\sin 30^{\circ}\cos (x+15^{\circ})=\sin (x+15^{\circ})\Longleftrightarrow$ $\tan (x+15^{\circ})=1\Longleftrightarrow x+15^{\circ}=45^{\circ}\Longleftrightarrow x=30^{\circ}$ .


P13. Let $\triangle ABC$ with the area $S=[ABC]$, the incircle $w=\mathbb (I,r)$ and the excircles $w_a=\mathbb C\left(I_a,r_a\right)$, $w_b=\mathbb C\left(I_b,r_b\right)$, $w_c=\mathbb C\left(I_c,r_c\right)$.

Prove that $S=rs=r_a(s-a)=r_b(s-b)=r_c(s-c)$ and $S^2=rr_ar_br_c=s(s-a)(s-b)(s-c)$, where $2s=a+b+c$.


Proof 1. $[ABC]=\left\{\begin{array}{ccccc}
[AIB]+[BIC]+[CIA] & = & \frac 12\cdot (cr+ar+br) & \implies & S=rs\\\\
\left[AI_aB\right]+\left[AI_aC\right]-\left[BI_aC\right] & = & \frac 12\cdot \left(cr_a+br_a-ar_a\right) & \implies & S=r_a(s-a)\end{array}\right\|$ $\implies S^2=rr_as(s-a)\ (*)$. Denote $:$

$\left\{\begin{array}{c}
\begin{array}{cccc} 
U\in AB & \mathrm{and} & IU\perp AB & \searrow\\\\
V\in AB &  \mathrm{and} & I_aV\perp AB & \nearrow\end{array}\odot\implies\triangle BUI\sim\triangle I_aVB\implies\frac {BU}{I_aV}=\frac {UI}{VB}\implies\frac {s-b}{r_a}=\frac {r}{s-c}\implies rr_a=(s-b)(s-c)\end{array}\right\|\stackrel{(*)}{\implies}$ $S^2=s(s-a)(s-b)(s-c)\ .$


Proof 2. $[ABC]=\left\{\begin{array}{ccccc}
\left[BI_bC\right]+\left[BI_bA\right]-\left[CI_bA\right] & = & \frac 12\cdot \left(ar_b+cr_b-br_b\right) & \implies & S=r_b(s-b)\\\\
\left[CI_cA\right]+\left[CI_cB\right]-\left[AI_cB\right] & = & \frac 12\cdot \left(br_c+ar_c-cr_c\right) & \implies & S=r_c(s-c)\end{array}\right\|$ $\implies S^2=r_br_c(s-b)(s-c)\ (*)$. Denote $:$

$\left\{\begin{array}{c}
\begin{array}{cccc} 
X\in BC & \mathrm{and} & I_cX\perp BC & \searrow\\\\
Y\in BC &  \mathrm{and} & I_bY\perp BC & \nearrow\end{array}\odot\implies\triangle BXI_c\sim\triangle I_bYB\implies\frac {BX}{I_bY}=\frac {XI_c}{YB}\implies\frac {s-a}{r_b}=\frac {r_c}{s}\implies r_br_c=s(s-a)\end{array}\right\|\stackrel{(*)}{\implies}$ $S^2=s(s-a)(s-b)(s-c)\ .$

Remark. $A=90^{\circ}\iff$ $\tan\frac A2=1\iff$ $\sqrt{\frac {(s-b)(s-c)}{s(s-a)}}=1\iff$ $S=s(s-a)=(s-b)(s-c)=rr_a=r_br_c\ .$


P14. Prove the trigonometrical identity $\sin (x+y)=\sin x\cos y+\sin y\cos x$ for any $\{x,y\}\subset \left(0,\frac{\pi}2\right)$ using only the Ptolemy's theorem.

Proof. Let a convex $ABCD$ what is inscribed in the circle $w=\mathbb C(O,R)$ with the diameter $[AC]$ for which exist $\{x,y\}\subset \left(0,\frac{\pi}2\right)$ so that $\left\{\begin{array}{ccc}
m\left(\widehat{ABD}\right) & = & x\\\\
m\left(\widehat{CBD}\right) & = & y\end{array}\right\|\ .$

The Ptolemy's theorem is $\boxed{ac+bd=ef}\ (*)\ ,$ where $\left\{\begin{array}{ccccccc}
a=AB=2R\cos x & ; & b=BC=2R\cos y & ; & c=CD=2R\sin y\\\\
d=DA=2R\sin x & ; & e=AC=2R\sin (x+y) & ; & f=BD=2R\end{array}\right\|\ .$ In conclusion,

the relation $(*)$ becomes $4R^2\cos x\sin y+4R^2\cos y\sin x=4R^2\sin (x+y)\ ,$ i.e. the required trigonometrical identity $\sin (x+y)=\sin x\cos y+\sin y\cos x\ .$


P15. Let $\triangle ABC$ with $:\ \left\{\begin{array}{cccc}
\mathrm{incircle} & w & = &\mathbb C\left(I,r\right)\\\\
\mathrm{A-excircle} & w_a & = & \mathbb C\left(I_a,r_a\right)\end{array}\right\|\ ;$ $\left\{\begin{array}{ccc}
M\in (BC) & , & MB=MC\\\\
D\in BC & , & AD\perp BC\end{array}\right\|\ ;$ $\left\{\begin{array}{c}
E\in AD\cap MI\\\\
F\in AD\cap MI_a\end{array}\right\|$ . Prove that $\left\{\begin{array}{ccc}
AE & = & r\\\\
AF & = & r_a\end{array}\right\|\ .$

Proof. Suppose w.l.o.g. $b>c$ . Let $AD=h_a$ and $\left\{\begin{array}{ccc}
S\in BC\cap w & ; & AE=x\\\\
T\in BC\cap w_a & ; & AF=y\end{array}\right\|$ . Is well-known that $MS=MT=\frac {b-c}2$ and $MD=\frac {b^2-c^2}{2a}$ . Therefore $:$

$\blacktriangleright\ DE\parallel IS\iff$ $\frac {DE}{IS}=\frac {MD}{MS}\iff$ $\frac {h_a-x}{r}=\frac {\frac {b^2-c^2}{2a}}{\frac {b-c}2}=\frac {b+c}a\iff$ $ah_a-ax=r(b+c)\iff$ $(b+c+a)r-ax=r(b+c)\iff x=r$ .

$\blacktriangleright\ DF\parallel I_aT\iff$ $\frac {DF}{I_aT}=\frac {MD}{MT}\iff$ $\frac {h_a+y}{r_a}=\frac {\frac {b^2-c^2}{2a}}{\frac {b-c}2}=\frac {b+c}a\iff$ $ah_a+ay=r_a(b+c)\iff$ $(b+c-a)r_a+ay=r_a(b+c)\iff y=r_a$ .


P16. $(\forall )\ \{x,y,z\}\cap \pi \mathbb Z=\emptyset\ ,\  \cot\frac x2\cot\frac y2+\cot\frac y2\cot\frac z2+\cot\frac z2\cot\frac x2=\tan\frac x2\tan\frac y2+\tan\frac y2\tan\frac z2+\tan\frac z2\tan\frac x2$ $\iff \sin (x+y)+\sin (y+z)+\sin (z+x)=0\ .$

Proof. I"ll use an simple and well-known identities $:\ \tan\frac x2=\frac {1-\cos x}{\sin x}$ and $\cot\frac x2=\frac {1+\cos x}{\sin x}\ .$ Therefore, $\cot\frac y2\cot\frac z2-\tan\frac y2\tan\frac z2=$ $\frac {1+\cos y}{\sin y}\cdot \frac {1+\cos z}{\sin z} -$

$\frac {1-\cos y}{\sin y}\cdot \frac {1-\cos z}{\sin z}= $ $ \frac{2(\cos y+\cos z)}{\sin y\sin z}\implies$ $\cot\frac y2\cot\frac z2-\tan\frac y2\tan\frac z2= \frac{2(\cos y+\cos z)}{\sin y\sin z}\implies$ $\sum\left(\cot\frac y2\cot\frac z2-\tan\frac y2\tan\frac z2\right)=2\cdot \sum  \frac{\cos y+\cos z}{\sin y\sin z}=$

$\frac{\sin x(\cos y+\cos z)+\sin y(\cos z+\cos x)+\sin z(\cos x+\cos y)}{\sin x\sin y\sin z}=$ $\frac {(\sin x\cos y+\sin y\cos x)+(\sin y\cos z+\sin z\cos x)+(\sin z\cos x+\sin x\cos z)}{\sin x\sin y\sin z}=$

$\frac {\sin (x+y)+\sin (y+z)+\sin (z+x)}{\sin x\sin y\sin z}\ .$ Hence $\sum\left(\cot\frac y2\cot\frac z2-\tan\frac y2\tan\frac z2\right)=\frac {\sin (x+y)+\sin (y+z)+\sin (z+x)}{\sin x\sin y\sin z}\ . $

In conclusion, $\sum\cot\frac y2\cot\frac z2=\sum\tan\frac y2\tan\frac z2\iff$ $\sin (x+y)+\sin (y+z)+\sin (z+x)=0\ . $


P17. $(\forall )\ \{x,y,z\}\subset\left(0,\frac {\pi}2\right)\ ,\  \tan B\tan C+\tan C\tan A+\tan A\tan B\ \ge\ \frac 1{\cos A}+\frac 1{\cos B}+\frac 1{\cos C}+3\ .$

Proof. $\tan A+\tan B+\tan C=\tan A\tan B\tan C\iff$ $\boxed{\tan B\tan C=1+\frac{\tan B+\tan C}{\tan A}}\ (1)\ .$ Observe that $\frac {\tan B+\tan C}{\tan A}=$ $\frac {\frac {\sin (B+C)}{\cos B\cos C}}{\frac{\sin A}{\cos A}}=$ $\frac {\sin A\cos A}{\cos B\cos C\sin A}=$

$\frac {\cos A}{\cos B\cos C}\implies$ $\boxed{\frac {\tan B+\tan C}{\tan A}=\frac {\cos A}{\cos B\cos C}}\ (2)\ .$ Therefore, $\sum \tan B\tan C\ \stackrel{(1\wedge 2)}{=}\ 3+\sum \frac {\cos A}{\cos B\cos C}=$ $3+ \frac {\sum \cos^2A}{\prod \cos A}\ge$ $3+\frac {\sum\cos B\cos C}{\prod \cos A}=3+\sum \frac 1{\cos A}$


P18. $(\exists )\ \{m,n\}\subset\mathbb C$ so that $a^4+ma^3+na=b^4+mb^3+nb=c^4+mc^3+nc=1\ \implies\ ab+bc+ca=\frac 1{ab}+\frac 1{bc}+\frac 1{ac}\ .$

Proof $\left\{\begin{array}{ccc}
a^4+ma^3+na-1 & = & 0\\\\
b^4+mb^3+nb-1 & = & 0\\\\
c^4+mc^3+nc-1 & = & 0\end{array}\right\|\implies$ $x^4+mx^3+nx-1=0\begin{array}{ccccc}
\nearrow & a & \searrow\\\\
\rightarrow & b & \rightarrow\\\\
\searrow & c & \nearrow\end{array}\odot\implies$ $(\exists )\ d$ so that $\boxed{abcd=-1\ \wedge\ ab+cd+(a+b)(c+d)=0}\implies$

$d=-\frac 1{abc}$ and $ab-c\cdot\frac 1{abc}+(a+b)\left(c-\frac 1{abc}\right)=0\implies$ $ab-\frac 1{ab}+c(a+b)-\frac 1{bc}-\frac 1{ac}=0\implies$ $ab+bc+ca=\frac 1{ab}+\frac 1{bc}+\frac 1{ac}\ .$


P19. Prove that in any triangle $ABC$ there is the inequality $\sum\frac {(a+b)^2}{a+b-c}\le$ $\frac {2R}r\cdot (a+b+c)\ .$ (standard notation).

Proof. I"ll use the well known identities $:\ \left\{\begin{array}{ccc}
a+b=4R\cos\frac C2\cos\frac {A-B}2 & ; & a+b-c=8R\cos\frac C2\sin\frac A2\sin\frac B2\\\\
\sin A+\sin B+\sin C=\frac sR & ; & \sin\frac A2\sin\frac B2\sin\frac C2=\frac r{4R}\end{array}\right\|$ . Thus, $\sum {\frac{(a+b)^2}{a+b-c}}=$

$\sum {\frac{16R^2\cos^2\frac{C}{2}\cos^2\frac{A-B}{2}}{8R\cos\frac{C}{2}\sin\frac{A}{2}\sin\frac{B}{2}}}\le$ $2R\cdot \sum \frac{\cos\frac{C}{2}}{\sin\frac{A}{2}\sin\frac{B}{2}}=$ $2R\cdot \frac{\sum {\sin\frac{A}{2}\cos\frac{A}{2}}}{\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}}=$ $R\cdot \frac{\sin A+\sin B+\sin C}{\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}}=$ $\frac{2R}{r}\cdot(a+b+c)\ .$


P20. Prove that the equivalence $\boxed{1+\cos B+\cos C=\frac {r_a}R\ \iff 2R+r=r_a\ \iff\ r_b+r_c=2R\ \iff\ A=90^{\circ}}\ .$

Proof 1. I"ll use the identities $:\ \left\{\begin{array}{cccc}
\cos A+\cos B+\cos C & = & 1+\frac rR & (1)\\\\
s(s-a)+(s-b)(s-c) & = & bc & (2)\\\\
s(s-a)(s-b)(s-c) & = & S & (3)\end{array}\right\|$ . Thus, $1+\cos B+\cos C=\frac {r_a}R\ \stackrel{(1)}{\iff}\ 1+\left(1+\frac rR\right)-\cos A=\frac {r_a}R\iff$

$1+(1-\cos A)=\frac {r_a-r}R\iff$ $1+2\sin^2\frac A2=\frac {r_a-r}R\iff$ $1+\frac {2(s-b)(s-c)}{bc}=\frac {\frac S{s-a}-\frac Ss}R\iff$ $bc+2(s-b)(s-c)=\frac {abcS}{Rs(s-a)}\ \stackrel{(3)}{\iff}$

$bc+2(s-b)(s-c)=$ $4(s-b)(s-c)\iff$ $\boxed{bc=2(s-b)(s-c)}\ (4)$ $\iff$ $2bc=a^2-(b-c)^2\iff$ $a^2=b^2+c^2\ .$ Otherwise. If I"ll use the

relation $(2)$ , then the relation $(4)$ becomes $:\ s(s-a)+(s-b)(s-c)=2(s-b)(s-c)$ $\iff $ $\tan^2\frac A2=$ $\frac {(s-b)(s-c)}{s(s-a)}=1\iff$ $A=90^{\circ}\ .$

Proof 2. Denote the diameter $[NS]$ of the circumcircle $w=\mathbb C(O,R)$ for which the midpoint $M$ of $[BC]$ belongs to $NS$ and $BC$ separates $A$ , $S$ (N-north, S-south). Are well-known the

relations $\left\{\begin{array}{ccc}
MS & = & \frac {r_a-r}2\\\\
MN & = & \frac {r_b+r_c}2\\\\
2R & = & \frac {r_a-r}2+\frac {r_b+r_c}2\end{array}\right\|\ .$ Thus, $1+\cos B+\cos C=\frac {r_a}R$ $\iff$ $1+\left(1+\frac rR\right)=$ $\frac {r_a}R+\cos A$ $\iff$ $2R+r=$ $r_a+R\cos A\iff$ $2R+r=$ $r_a+R-\frac {r_a-r}2$

$\iff$ $2R+2r=$ $2r_a-r_a+r\iff$ $\boxed{2R+r=r_a}$ $\iff$ $2R-\frac {r_a-r}2=\frac {r_a-r}2$ $\iff$ $NS-MS=MS\iff$ $MN=MS\iff$ $M\equiv O$ $\iff$ $A=90^{\circ}\ .$


P21. Prove that in any triangle $ABC$ there are the inequalities $\boxed{\frac {a}{r_a}+\frac {b}{r_b}+\frac {c}{r_c}\ge \frac {a+b+c}{2R - r}}\ (*)$ and $\boxed{\frac {a}{R+r_a}+\frac {b}{R+r_b}+\frac {c}{R+r_c}\ge \frac {a+b+c}{3R - r}}\ (**)\ ,$ where $a+b+c=2s\ .$

Proof. I"ll use the well known identity $\sum ar_a=2s(2R-r)\ (*)\ .$ Therefore, $\left\{\begin{array}{ccc}
\sum \frac a{r_a}= \sum \frac {a^2}{ar_a}\stackrel{\mathrm{C.B.S.}}{\ge}\frac{(a+b+c)^2}{ar_a+br_b+cr_c}=\frac{2s}{2R-r} & \implies & \boxed{\sum\frac a{r_a}\ge\frac {2s}{2R-r}}\\\\
\sum \frac a{R+r_a}= \sum \frac {a^2}{aR+ar_a}\stackrel{\mathrm{C.B.S.}}{\ge}\frac{4s^2}{2sR+2s(2R-r)}=\frac{2s}{3R-r} & \implies & \boxed{\sum\frac a{R+r_a}\ge\frac {2s}{2R-r}}\end{array}\right\|$

Remark. $\sum\frac a{r_a}=\sum\frac {(s-b)+(s-c)}{r_a}=$ $\sum\left(\tan\frac C2+\tan\frac B2\right)=$ $2\sum\tan\frac A2\ge $ $2\sqrt{3\sum\left(\tan\frac B2\tan\frac C2\right)}=2\sqrt 3$ $\implies$ $\boxed{\sum\frac a{r_a}\ge2\sqrt 3}\ .$

The inequality $s\sqrt 3\le 4R+r$ is well known and $4R+r\le 3(2R-r)\iff$ $R\ge 2r$ what is true. Thus, $s\le \sqrt 3(2R-r)$ $\implies\boxed{\frac {2s}{2R-r}\le 2\sqrt 3\le \sum\frac a{r_a}}\ .$


P22. Let $n\in\mathbb N\ ,\ n\ge 1$ , $a,b\in (0,\infty)$ and $x\in R$ so that $\frac{\sin^4x}{a}+\frac{\cos^4x}{b}=\frac{1}{a+b}$ . Prove that $\boxed{\frac{\sin^{2n}x}{a^{n-1}}+\frac{\cos^{2n}x}{b^{n-1}}=\frac {1}{(a+b)^{n-1}}}\ .$

Proof. I"ll use the identities $\left\{\begin{array}{c}
4\sin^4x=(2\sin^2x)^2=(1-\cos 2x)^2\\\\
4\cos^4x=(2\cos^2x)^2=(1+\cos 2x)^2\end{array}\right\|$ . Thus, $\boxed{\frac{\sin^4x}{a}+\frac{\cos^4x}{b}=\frac{1}{a+b}}$ $\Longleftrightarrow$ $b(a+b)(1-\cos 2x)^2+a(a+b)(1+\cos 2x)^2=4ab$ $\Longleftrightarrow$ $(a+b)^2\cos^22x+2(a^2-b^2)\cos 2x+(a-b)^2=0$ $\Longleftrightarrow $ $|(a+b)\cos 2x+(a-b)|=0$ $\Longleftrightarrow$ $\cos 2x=\frac {b-a}{b+a}$ $\implies$ $\left|\begin{array}{c}
\sin^2x=\frac {a}{a+b}\\\\
\cos^2x=\frac {b}{a+b}\end{array}\right|$ $\Longrightarrow$ $\frac{\sin^{2n}x}{a^{n-1}}+\frac{\cos^{2n}x}{b^{n-1}}=\frac {1}{(a+b)^{n-1}}$

P23. Let an acute $\triangle ABC$ with the medians $BE$ , $CF$ where $E$ , $F$ are the midpoints of $[AC]$ , $[AB]$ respectively and $BE\perp CF$ . Prove that $\boxed{\tan A\le \frac 34}$ with equality iff $b=c$ .

Proof. Prove easily that $BE\perp CF\ \Longleftrightarrow\ b^2+c^2=5a^2$ . Apply the generalized Pythagoras' theorem : $a^2=b^2+c^2-2bc\cdot\cos A$ $\iff$ $a^2=5a^2-2bc\cdot\cos A$ $\iff$

$\boxed{\cos A=\frac {2\left(b^2+c^2\right)}{5bc}}\ .$ Hence $\tan A$ is $\max .\iff$ $\cos A$ is $\min .\iff$ $\frac {\left(b^2+c^2\right)}{bc}$ is $\min .\iff$ $\frac bc+\frac cb$ is $\min .\iff$ $b=c$. In conclusion, $\cos A\ge \frac 45\iff\tan A\le\frac 34$ .


Extension. Let an acute $\triangle ABC$ and $\left\{\begin{array}{cc}
F\in(AB)\ : & \frac {FA}{FB}=n\\\\
E\in (AC)\ : & \frac {EA}{EC}=m\end{array}\right\|$ where $\{m,n\}\subset\mathbb R^*_+$ and $|m-n|<1\ .$ Prove that $BE\perp CF\implies \tan A\le \frac {m+n+1}{2\sqrt{mn(m+1)(n+1)}}\ .$

Proof. Denote $P\in BE\cap CF$ and $D\in AP\cap BC\ .$ Apply the Ceva's theorem $:\ \frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=1\iff$ $\frac {DB}{DC}\cdot \frac nm=1\iff$ $\frac {DB}m=\frac {DC}n=\frac a{m+n}\ .$

Apply the Van Aubel's relation $:\ \left\{\begin{array}{ccccccc}
\frac {PB}{PE}=\frac {DB}{DC}+\frac {FB}{FA}=\frac mn+\frac 1n=\frac {m+1}n & \implies & \frac {PB}{PE}=\frac {m+1}n & \implies & \frac {PB}{m+1}=\frac {PE}n=\frac {BE}{m+n+1} & \implies & \boxed{PB=\frac {m+1}{m+n+1}\cdot BE}\\\\
\frac {PC}{PF}=\frac {DC}{DB}+\frac {EC}{EA}=\frac nm+\frac 1m=\frac {n+1}m & \implies & \frac {PC}{PF}=\frac {n+1}m & \implies & \frac {PC}{n+1}=\frac {PF}m=\frac {CF}{m+n+1} & \implies & \boxed{PC=\frac {n+1}{m+n+1}\cdot CF}\end{array}\right\|\ .$

Apply the Stewart's relation to the cevians $BE$ and $CF\ :\ \left\{\begin{array}{ccc}
BE^2+\frac {mb^2}{(m+1)^2}=\frac {a^2m}{m+1}+\frac {c^2}{m+1} & \implies & (m+1)^2\cdot BE^2=\left(ma^2+c^2\right)(m+1)-mb^2\\\\
CF^2+\frac {nc^2}{(n+1)^2}=\frac {a^2n}{n+1}+\frac {b^2}{n+1} & \implies & (n+1)^2\cdot CF^2=\left(na^2+b^2\right)(n+1)-nc^2\end{array}\right\|\ .$ Therefore,

$PB\perp PC\iff$ $PB^2+PC^2=BC^2\iff$ $(m+1)^2\cdot BE^2+(n+1)^2\cdot CF^2=(m+n+1)^2\cdot a^2\iff$ $\left(ma^2+c^2\right)(m+1)-mb^2+\left(na^2+b^2\right)(n+1)-nc^2=$

$a^2(m+n+1)^2\iff$ $(n-m+1)b^2+(m-n+1)c^2=(2mn+m+n+1)a^2$ , where $-1<m-n<1$ , i.e. $|m-n|<1\ .$ Apply the generalized Pythagoras' theorem $:$

$2bc\cdot\cos A=b^2+c^2-a^2\iff$ $2bc(2mn+m+n+1)\cdot \cos A=$ $(2mn+m+n+1)\left(b^2+c^2\right)-(2mn+m+n+1)a^2=$ $(2mn+m+n+1)\left(b^2+c^2\right)-$

$(n-m+1)b^2-(m-n+1)c^2=$ $2m(n+1)b^2+2n(m+1)c^2\implies$ $\boxed{\cos A=\frac {m(n+1)b^2+n(m+1)c^2}{bc(2mn+m+n+1)}}\ (*)\ .$ Hence $\tan A$ is $\max .\iff$ $\cos A$ is $\min .$ Observe that

$\cos A\ge \frac {2\sqrt{mn(m+1)(n+1)}}{2mn+m+n+1}$ with equality iff $\frac bc=\sqrt{\frac {n(m+1)}{m(n+1)}}\ .$ In conclusion, $\tan A\le \frac {m+n+1}{2\sqrt{mn(m+1)(n+1)}}\ .$


P24. Let $\triangle ABC$ with the circumcircle $\mathbb C(O,R)$ sand the incircle $C(I,r)\ .$ Prove that $a^2=4r(2R-r)\ \iff\ IG\parallel BC\ \iff\ b+c=2a\ \iff\ \cos A=1-\frac rR\ .$

Proof. $\boxed{IG\parallel BC}\iff h_a=3r\iff$ $ah_a=3ar\iff$ $2sr=3ar\iff$ $2s=3a\iff$ $a+b+c=3a\iff$ $\boxed{b+c=2a}\iff$ $\sin B+\sin C=2\sin A\iff$

$2\sin\frac {B+C}2\cos\frac {B-C}2=2\cdot2\sin\frac A2\cos\frac A2\iff$ $\cos\frac {B-C}2=2\sin\frac A2\iff$ $2\cos\frac {B-C}2\cos\frac {B+C}2=2\cdot 2\sin^2\frac A2$ $\iff$ $\cos B+\cos C=2(1-\cos A)\iff$

$\sum\cos A=2-\cos A\iff$ $1+\frac rR=2-\cos A\iff$ $\boxed{\cos B+\cos C=\frac {2r}R\ \ \wedge\ \ \cos A=1-\frac rR}\iff$ $a^2=(2R\sin A)^2=4R^2\left(1-\cos^2A\right)\iff$

$a^2=4R^2\left[1-\left(1-\frac rR\right)^2\right]\iff$ $a^2=4R^2-4(R-r)^2\iff$ $\boxed{a^2=4r(2R-r)}\ .$



Lema. Sa se arate ca in $\triangle ABC$ avem $B=2\cdot C\ \Longleftrightarrow \ a=c\ \ \vee\ \ b^2=c(c+a)\ .$

P25. Fie $\triangle ABC$ si $M\in (BC)$ astfel incat $m\left(\widehat {AMB}\right)=\frac B2\ .$ Sa se arate ca $MB=c$ sau $a\cdot MC+c(a+c)=b^2\ .$ In particular, $MC=\frac a4\implies$ $a=2(b-c)\ .$

Dem. Aplicam relatia Stewart cevienei $[AM$ in $\triangle ABC\ :$ $AM^2\cdot a+MB\cdot MC\cdot a=c^2\cdot MC+b^2\cdot MB\ (*)\ .$ Folosind lema precedenta in $\triangle ABM$ si se obtine

$MB=c\ \ \vee\ \ AM^2=c(c+MB)\ .$ Daca $AM^2=c(c+MB)\ ,$ atunci tinand seama de relatia $(*)$ obtinem $ac^2+ac(a-MC)+a(a-MC)MC=$

$c^2MC+b^2(a-MC)\Longleftrightarrow$ $ a\cdot MC^2+\left[\left(c^2+ac-b^2\right)-a^2\right]$ $\cdot MC-a\left(c^2+ac-b^2\right)=0$ $\Longleftrightarrow$ $\left(MC-a\right)\left[aMC+c(a+c)-b^2\right]=0$ $\Longleftrightarrow$

$MC=a\ \ \vee\ \ a\cdot MC+c(a+c)=b^2\Longleftrightarrow$ $a\cdot MC+c(a+c)=b^2\ .$



P26. Consideram cinci puncte diferite intre ele $\{M,A,I,B,N\}$ astfel incat $\left\|\begin{array}{ccc}
 IA & = & IB\\\\
 AM & \perp & AI\\\\
 BN & \perp & BI\end{array}\right\|\ .$ Sa se arate ca $\boxed{\ IM\perp AN\ \Longleftrightarrow\ AM^2+BN^2=MN^2\ \Longleftrightarrow\ IN\perp BM\ }\ .$

Demonstratie. $\boxed{IM\perp AN}\iff$ $IN^2+AM^2=IA^2+MN^2\iff$ $IN^2-IA^2+AM^2=MN^2\iff$ $IN^2-IB^2+AM^2=MN^2$

$\iff$ $\boxed{AM^2+BN^2=MN^2}\iff$ $IM^2-IA^2+BN^2=MN^2\iff$ $MI^2+BN^2=IB^2+MN^2\iff$ $\boxed{IN\perp BM}\ .$



P27. Sa se rezolve ecuatiile peste $\mathbb R\ :\ 1\ \odot\ \ x^4+4x=1\ \ ;\ \ 2\ \odot\ \ x^4+4x^3+6x^2+8x+4=0\ .$

Proof.

$1\ \odot\ x^4+4x=1\iff x^4+2x^2+1-2x^2+4x-2=0\iff (x^2+1)^2-2(x^2-2x+1)=0\iff (x^2+1)^2-\left( (x-1)\sqrt 2\right)^2=0$

$\iff (x^2+x\sqrt 2+1-\sqrt 2)(x^2-x\sqrt 2+1+\sqrt 2)=0$ cu solutiile reale $\boxed{x_{1,2}=-\frac{1}{\sqrt 2}\ \pm\ \sqrt{\frac 12(2\sqrt 2-1)}}\ .$

$2\ \odot\ x^4+4x^3+6x^2+8x+4=0\iff x^4+4x^2+4+4x^3+4x^2+8x-2x^2=0\iff (x^2+2x+2)^2-2x^2=0$

$\iff (x^2+x(2-\sqrt 2)+2)(x^2+x(2+\sqrt 2)+2)=0$ cu solutiile reale $\boxed{x_{1,2}=-1-\frac{1}{\sqrt 2}\ \pm\ \sqrt{\frac12(2\sqrt 2-1)}}\ .$


$$\mathrm{END}$$
This post has been edited 532 times. Last edited by Virgil Nicula, Jun 18, 2016, 6:46 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a