332. Some metrical problems from the contests I.

by Virgil Nicula, Jan 14, 2012, 9:32 AM

PP1 (2012 Japan Mathematical Olympiad). Given a triangle $ABC$ with the circumcircle $w=(O,7)$ . Let the points $D\in (AB)$ and $E\in (AC)$ such

that $AD=8$ , $BD=3$ and $O$ is the midpoint of $[DE]$ . Denote the diameter $[AS]$ of $w$ and $T\in SS\cap DE$ . Determine $CE$ and the ratio $\frac {TB}{TC}$ .

Remark. I denoted the tangent line $XX$ to the circle $w$ in the point $X\in w$ .


Proof. Denote the power $p_w(X)$ of the point $X$ w.r.t. the circle $w$ , i.e. $p_w(X)=OX^2-R^2$ . Observe that $-DA\cdot DB=p_w(D)=OD^2-R^2\iff$

$ -8\cdot 3=OD^2-7^2\iff OD=5\iff$ $\boxed{DE=10}$ . Apply theorem of median to $[AO]$ in $\triangle ADE\ :\ \  4\cdot AO^2=$ $2\cdot \left(AD^2+AE^2\right)-DE^2\iff$

$4\cdot 49=2\left(64+AE^2\right)-100\iff$ $168=2\cdot AE^2\iff$ $\boxed{AE=2\sqrt {21}}$ . Apply the power of the point $E$ w.r.t. the circle $w\ :\ \ -EA\cdot EC=p_w(E)=$

$OE^2-R^2\iff$ $-2\sqrt 21\cdot EC=25-49\iff$ $\boxed{EC=\frac {12}{\sqrt {21}}}$ . Apply an well-known property (or can prove easily) $T\in DE$ and the

Menelaus theorem to $\overline{TED}/\triangle ABC\ :\ \ \frac {TC}{TB}$ $\cdot \frac {DB}{DA}\cdot\frac {EA}{EC}=1\iff\ \frac {TB}{TC}$ $=\frac {DB}{DA}\cdot\frac {EA}{EC}\iff$ $\frac {TB}{TC}=\frac {3}{8}\cdot\frac {2\sqrt {21}}{\frac {12}{\sqrt {21}}}\iff$ $\boxed{\frac {TB}{TC}=\frac {21}{16}}$ .



PP2. A line drawn from the vertex $A$ of an equilateral triangle $ABC$ meets the side $BC$ at $D$ and circumcircle at $P$ . Show that $\boxed{\frac  {1}{PD}=\frac {1}{PB}+\frac {1}{PC}}$ .

Proof 1 (with areas). $m\left(\widehat{DPB}\right) =$ $m\left(\widehat{DPC}\right)=60^{\circ}\ ,\ m\left(\widehat{BPC}\right)=$ $120^{\circ}\ ,\ \sin 120^{\circ}=\sin 60^{\circ}$ . Thus, $[BPC]=[DPB]+[DPC]\iff$

$PB\cdot PC\cdot\sin\widehat{BPC}=PD\cdot PB\cdot\sin \widehat{DPB}+PD\cdot PC\cdot\sin \widehat{DPC}\iff$ $PB\cdot PC=PD\cdot PB+PD\cdot PC\iff$ $\frac  {1}{PD}=\frac {1}{PB}+\frac {1}{PC}$ .

Proof 2. $\left\{\begin{array}{ccc}
\triangle DBP\sim\triangle {DAC} & \implies & \frac {PD}{PB}=\frac {CD}{CA}\\\\
\triangle DCP\sim\triangle {DAB} & \implies & \frac {PD}{PC}=\frac {BD}{BA}\end{array}\right\|\ \bigoplus\ \implies\ \frac {PD}{PB}+\frac {PD}{PC}=1\implies$ $\frac  {1}{PD}=\frac {1}{PB}+\frac {1}{PC}$ (Virgil Nicula - nice !).

Proof 3. From the Pompeiu's relation obtain that $PA=PB+PC\ (1)$ . Observe that $\triangle PCA\sim\triangle PDB\implies$ $\frac {PA}{PB}=\frac {PC}{PD}\implies$

$PA\cdot PD=PB\cdot PC\ (2)$ . From the relations $(1)$ and $(2)$ obtain that $\frac {PA}{PA\cdot PD}=\frac {PB+PC}{PB\cdot PC}\implies$ $\frac {1}{PD}=\frac {1}{PB}+\frac {1}{PC}$ (Sunken Rock - very nice !).


An easy extension. A line from the vertex $A$ of an $A$-isosceles triangle $ABC$ cut the side $BC$ at $D$ and circumcircle at $P$ . Show that $\boxed{2\sin\frac A2\cdot\frac {1}{PD}=\frac {1}{PB}+\frac {1}{PC}}$ .

Proof. From the Pompeiu's relation obtain that $PA\cdot\frac {BC}{AB}=PB+PC\ (1)$ . Observe that $\triangle PCA\sim\triangle PDB\implies$ $\frac {PA}{PB}=\frac {PC}{PD}\implies$

$PA\cdot PD=PB\cdot PC\ (2)$ . From the relations $(1)$ and $(2)$ obtain that $\frac {BC}{AB}\cdot \frac {PA}{PA\cdot PD}=\frac {PB+PC}{PB\cdot PC}\implies$ $2\sin\frac A2\cdot \frac {1}{PD}=\frac {1}{PB}+\frac {1}{PC}$ .



PP3 (Shortlist IMO - 1984) Let $ABC$ be a triangle with the incicle $w=C(I,r)$ . Consider the circle $w_1(I_1,r_1)$ which is exterior

tangent to $w$ and to the sidelines $AB\ ,\ AC$ . Define analogously the circles $w_2$ and $w_3$ . Prove that $\sqrt{r_1 r_2} + \sqrt{r_1 r_3} + \sqrt{r_2 r_3}=r$ .


Proof. Prove easily that $\frac {r-r_1}{r+r_1}=\sin\frac A2\implies$ $\sqrt {\frac {r_1}{r}}=\sqrt {\frac {1-\sin\frac A2}{1+\sin\frac A2}}=$ $\frac {\cos\frac A2}{1+\sin\frac A2}=$ $\frac {\sin\left(90^{\circ}-\frac A2\right)}{1+\cos\left(90^{\circ}-\frac A2\right)}=$ $\tan\left(45^{\circ}-\frac A4\right)$ . Observe that

$\sum \left(45^{\circ}-\frac A4\right)=90^{\circ}$ . I"ll apply the conditioned identity $x+y+z=90^{\circ}\implies \tan x\tan y+\tan y\tan z+\tan z\tan x=1$ . In conclusion,

$\sum \tan\left(45^{\circ}-\frac B4\right)\tan\left(45^{\circ}-\frac C4\right)=1\iff$ $\sum\sqrt{\frac {r_2}{r}\cdot\frac {r_3}{r}}=1\iff$ $\sqrt{r_1 r_2}+\sqrt{r_2 r_3}+\sqrt{r_3 r_1}=r$ . Remark that $r_1+r_2+r_3\ge 3r$ .



PP4. Denote the area $S=S(a,b,c)$ of the triangle with the sides of lengths $a$ , $b$ , $c$ . Ascertain

$a\ne 7$ , $b\ne 8$ and $c\ne 10$ so that $S(a,b,c)=S(7,b,c)=S(a,8,c)=S(a,b,10)$ .


Proof. Denote $\left\|\begin{array}{ccc}
A\in (CC') & ; & AC=AC'\\\\
B\in (AA') & ; & BA=BA'\\\\
C\in (BB') & ; & CB=CB'\end{array}\right\|$ . Thus, $\left\|\begin{array}{ccc}
BC'=2m_a & ; & [ABC']=S=S(7,b,c)\\\\
CA'=2m_b & ; & [BCA']=S=S(a,8,c)\\\\
AB'=2m_c & ; & [CAB']=S=S(a,b,10)\end{array}\right\|$ .

Therefore, $\left\{\begin{array}{ccc}
2m_a=7 & \implies & 2(b^2+c^2)=a^2+49\\\\
2m_b=8 & \implies & 2(c^2+a^2)=b^2+64\\\\
2m_c=10 &\implies & 2(a^2+b^2)=c^2+100\end{array}\right\|$ $\implies a^2+b^2+c^2=71\implies$ $\left\{\begin{array}{c}
a=\sqrt {31}\\\\
b=\sqrt {26}\\\\
C=\sqrt {14}\end{array}\right\|$



PP5. Let $ABC$ be a triangle with the incircle $w=C(I,r)$ . Denote $\left\{\begin{array}{ccc}
M\in AC\cap w & ; & N\in BC\cap w\\\\
P\in AI\cap MN & ; & Q\in BI\cap MN\end{array}\right\|$ . Prove that $\left\{\begin{array}{c}
MP\cdot IA=BC\cdot IQ\\\\
NQ\cdot IB=AC\cdot IP\end{array}\right\|$ .

Proof 1 (trigonometric). From an well-known property $\left\{\begin{array}{c}
QA\perp QB\\\\
PA\perp PB\end{array}\right\|$ obtain that $AP=AB\cdot \cos \frac A2\ (1)$ . Apply the Sinus' theorem in $\triangle AMP\ :$

$\frac {MP}{\sin \frac A2}=$ $\frac {AP}{\cos\frac C2}\stackrel{(1)}{\implies}$ $MP=AB\cdot \frac{ \cos\frac A2\sin\frac A2}{\cos \frac C2}=$ $AB\cdot \frac {\sin A}{2\cdot\cos \frac C2}=$ $BC\cdot \frac {\sin C}{2\cos\frac C2}=$ $BC\cdot\sin\frac C2\implies $ $\boxed{MP=BC\cdot\sin\frac C2}\ (2)$ .

Since $m\left(\widehat{IAQ}\right)=\frac C2$ obtain that $\sin\frac C2=\frac {IQ}{IA}$ , i.e. $MP\stackrel{(2)}{=}BC\cdot\frac {IQ}{IA}$ $\iff$ $MP\cdot IA=BC\cdot IQ$

Proof 2 (synthetic). From an well-known property $\left\{\begin{array}{c}
QA\perp QB\\\\
PA\perp PB\end{array}\right\|$ obtain that the quadrilateral $AQPB$ is inscribed in the circle $\theta$ with the diameter $[AB]$ .

Prove easily that $\left\{\begin{array}{ccc}
\triangle BIC\sim\triangle PIM & \implies & \frac {BC}{PM}=\frac {IB}{IP}\\\\
\triangle AIC\sim\triangle QIN & \implies & \frac {AC}{QN}=\frac {IA}{IQ}\\\\
p_{\theta}(I)=IA\cdot IP=IO\cdot IB & \implies & \frac {IB}{IP}=\frac {IA}{IQ}\end{array}\right\|$ $\implies \left\{\begin{array}{c}
\frac {BC}{PM}=\frac {IA}{IQ}\\\\
\frac {AC}{QN}=\frac {IB}{IP}\end{array}\right\|$ $\implies$ $\left\{\begin{array}{c}
MP\cdot IA=BC\cdot IQ\\\\
NQ\cdot IB=AC\cdot IP\end{array}\right\|$ .



PP6. Let $ABC$ be an $A$-isosceles triangle. Prove that for any $D\in (BC)$ exists the relation $AB^2-AD^2=DB\cdot DC$ .

Denote the midpoint $M$ of the side $[BC]$ and the second intersection $E$ of the line $AD$ with the circumcircle $w=C(O,R)$ of the triangle $ABC$ .

Proof 1. Observe that $BD$ is an antiparallel to the side $[BE]$ in $\triangle ABE$ , i.e. $\widehat {ABD}\equiv\widehat{AEB}\iff$ $\triangle ABD\sim\triangle AEB\implies$

$\frac {AB}{AE}=\frac {AD}{AB}\implies$ $\boxed{AB^2=AD\cdot AE}\ (1)$ . Using the power $p_w(D)$ of $D$ w.r.t. $w$ obtain that $\boxed{DA\cdot DE=DB\cdot DC}\ (2)$ . Therefore,

$AB^{2}-AD^{2}\stackrel{(1)}{=}AD\cdot AE-AD^{2}=AD\cdot (AE-AD)=AD\cdot DE\stackrel{(2)}{=}DB\cdot DC$ .In conclusion, $AB^2-AD^2=DB\cdot DC$ .

Proof 2.. $AO\perp BD\iff$ $AB^2-AD^2=OB^2-OD^2$ . The power $p_w(D)=OB^2-OD^2=DB\cdot DC$ . In conclusion, $AB^2-AD^2=DB\cdot DC$ .

Proof 3. Suppose w.l.o.g. $M\in(DC)$ . Thus, $AM\perp BD\iff$ $AB^2-AD^2=MB^2-MD^2=$

$(MB-MD)(MB+MD)=$ $BD(MC+MD)=DB\cdot DC\implies$ $AB^2-AD^2=DB\cdot DC$ .

Proof 4. Suppose w.l.o.g. that $M\in (DC)$ . Thus, $AB^2=MA^2+MB^2=MA^2+(MD+DB)^2=$ $MA^2+MD^2+DB^2+2\cdot MD\cdot DB=$

$AD^2+BD\cdot (BD+2\cdot DM)\iff$ $AB^2-AD^2=DB\cdot (BM+MD)=$ $DB\cdot (CM+MD)=DB\cdot DC$ .

Proof 5. Suppose w.l.o.g. that $M\in (DC)$ . Apply the generalized Pythagoras' teorem :

$AB^2=AD^2+BD^2+2\cdot DB\cdot DM\iff$ $AB^2-AD^2=DB(DB+2\cdot DM)=DB\cdot DC$ .

Proof 6. Denote $AB=AC=b$ , $AD=d$ , $DB=x$ , $ DC=y$ and $m\left(\widehat{ADC}\right)=z$ , $m\left(\widehat{DAB}\right)=u$ , $m\left(\widehat{DAC}\right)=v$ .

Thus, $\frac {b}{\sin z}=\frac {d}{\sin B}=\frac {x}{\sin u}=\frac {y}{\sin v}$ . In conclusion, $AB^2-AD^2=DB\cdot DC\iff$ $b^2-d^2=xy\iff$

$\sin^2z-\sin ^2B=\sin u\sin v\iff$ $\sin (z+C)\sin (z-B)=\sin u\sin v\iff$ $\sin (\pi -v)\sin u=\sin u\sin v$ , what is truly.

Proof 7. Stewart relation $AB^2\cdot CD+AC^2\cdot BD=AD^2\cdot BC+BC\cdot BD\cdot CD\iff$ $AB^2\cdot BC=AD^2\cdot BC+BC\cdot BD\cdot CD\iff$ $AB^2-AD^2=DB\cdot DC$ .


An easy extension. Let $ABC$ be an $A$-isosceles triangle. Prove that for any $X\in BC$ exists the relation $AX^2=AB^2+\overline{XB}\cdot\overline{XC}$ .

Proof. Apply Stewart's relation $AB^2\cdot \overline{XC}+AX^2\cdot \overline{CB}+AC^2\cdot \overline{BX}+\overline{XC}\cdot \overline{CB}\cdot\overline{BX}=0\iff$

$AB^2\cdot \left(\overline{BX}+\overline{XC}\right)+AX^2\cdot \overline{CB}+\overline{XC}\cdot \overline{CB}\cdot\overline{BX}=0\iff$ $AX^2=AB^2+\overline{XB}\cdot\overline{XC}$ because $\overline {BX}+\overline{XC}=-\overline {CB}$ .


Proposed problem 1. Let $\triangle ABC$ for which exists $X\in BC$ so that $AX^2=AB\cdot AC+\overline{XB}\cdot\overline{XC}$ . Prove that $\triangle ABC$ is $A$- isosceles or $[AX$ is the bisector of $\widehat{BAC}$ .

Proof. Exists $X\in BC$ so that $AX^2=AB\cdot AC+\overline{XB}\cdot\overline{XC}\ (*)$ . Apply Stewart's relation $AB^2\cdot \overline{XC}+AX^2\cdot \overline{CB}+AC^2\cdot \overline{BX}+\overline{XC}\cdot \overline{CB}\cdot\overline{BX}=0\stackrel{(*)}{\iff}$

$AB^2\cdot \overline{XC}+AB\cdot AC\cdot \overline{CB}+\overline{XB}\cdot\overline{XC}\cdot\overline {CB}+AC^2\cdot \overline{BX}+\overline{XC}\cdot \overline{CB}\cdot\overline{BX}=0\iff$ $AB^2\cdot \overline{XC}+AB\cdot AC\cdot \overline{CB}+AC^2\cdot \overline{BX}=0\iff$

$AB^2\cdot \overline{XC}+AB\cdot AC\cdot (\overline{CX}+\overline{XB})+AC^2\cdot \overline{BX}=0\iff$ $\overline{XC}\cdot (c^2-bc)+\overline{XB}\cdot (bc-b^2)=0\iff$ $(c-b)\cdot (c\cdot\overline{XC}+b\cdot\overline{XB})=0\iff$

$b=c\ \ \vee\ \ c\cdot \overline{XC}+b\cdot\overline{XB}=0$ , i.e. $(AX$ is the bisector of $\widehat{BAC}$ .


Proposed problem 2. Prove that for $\triangle ABC$ exists $X\in BC$ so that $AX^2=-AB\cdot AC+\overline{XB}\cdot\overline{XC}$ and the point $X$ is uniquelly.

Proof. Apply Stewart's relation $AB^2\cdot \overline{XC}+AX^2\cdot \overline{CB}+AC^2\cdot \overline{BX}+\overline{XC}\cdot \overline{CB}\cdot\overline{BX}=0$ . Since find $X\in BC$ so that $AX^2=-AB\cdot AC+\overline{XB}\cdot\overline{XC}$ obtain that

$AB^2\cdot \overline{XC}-AB\cdot AC\cdot \overline{CB}+\overline{XB}\cdot\overline{XC}\cdot\overline{CB}+AC^2\cdot \overline{BX}+\overline{XC}\cdot \overline{CB}\cdot\overline{BX}=0\iff$ $AB^2\cdot \overline{XC}+AB\cdot AC\cdot (\overline{BX}+\overline{XC})+AC^2\cdot \overline{BX}=0\iff$

$c^2\cdot \overline{XC}+bc\cdot (\overline{BX}+\overline{XC})+b^2\cdot \overline{BX}=0\iff$ $c(b+c)\cdot\overline{XC}+b(b+c)\cdot\overline{BX}=0\iff$ $c\cdot\overline{XC}+b\cdot\overline{BX}=0$ , i.e. $X$ is unique and it is the foot of $A$ bisector in $\triangle ABC$ .



PP7. Let $ABCD$ be an trapezoid for which $AB\parallel CD$ , $CB\perp CD$ and $\widehat{BDA}\equiv\widehat{BDC}$ . Suppose that $\tan\widehat{BAC}=\frac 34$ . Find the value of $\sin \widehat{ADB}$ .

Proof. I"ll construct the trapezoid with the mentioned property. Since $\tan\widehat{BAC}=\frac 34$ can suppose w.l.o.g. $AB=4$ and $BC=3$ . Thus, $AC=5$ and since $AD=AB=4<5=AC$ , then $D\in \{D_1,D_2\}$

so that $AD_1=AB=AD_2$ , where $D_2\in (D_1C)$ . Denote the midpoint $M$ of $[D_1D_2]$ , i.e. $AM\perp CD$ . Since $AM=3$ and $AD_1=AD_2=4$ obtain that $MD_1=MD_2=\sqrt 7$ . Therefore,

$\left\{\begin{array}{ccc}
\sin \widehat{AD_1B}=\sin \widehat{BD_1C}=\frac {BC}{BD_1}=\frac {3}{2(\sqrt 7+1)} & \implies & \sin \widehat{AD_1B}=\frac {\sqrt 7-1}{4}\\\\
\sin \widehat{AD_2B}=\sin \widehat{BD_2C}=\frac {BC}{BD_2}=\frac {3}{2(\sqrt 7-1)} & \implies & \sin \widehat{AD_2B}=\frac {\sqrt 7+1}{4}\end{array}\right\|$ $\implies\sin \widehat{ADB}\in\left\{\frac {\sqrt 7\pm 1}{4}\right\}$ .



PP8. Acute $\triangle ABC$ is given. A line $l\parallel AB$ passing through vertex $C$ is drawn. Let the bisectors of $\angle{BAC} $ and $\angle{ABC}$

intersect $BC$ and $AC$ at $D$ and $F$ and line $l$ at points $E$ and $G$ respectively. Prove $DE=GF\iff AC=BC$.


Proof. Define the following relation between any two real numbers $x$ , $y\ :\ x\ \mathrm{.s.s.}\ y\ \iff\ x=y=0\ \ \vee\ \ xy>0$ (same sign) .

Denote the length $l_a$ of the $A$-bisector a.s.o. Prove easily that $\boxed{(l_a-l_b)\ .s.s.\ (b-a)}\ (1)$ and $\boxed{DE=FG\iff bl_a=al_b}\ (2)$ ,

i.e. $(l_a-l_b)\ \mathrm{s.s.}\ (a-b)$ . In conclusion, $(b-a)\ \mathrm{s.s.}\ (l_a-l_b)\ \mathrm{s.s.}\ (a-b)\implies$ $(b-a)\ \mathrm{s.s.}\ (a-b)\iff$ $ a=b$

==================================================================================================

$(1)$ Indeed, $l_a=\frac {2\sqrt{bcs(s-a)}}{b+c}$ a.s.o. and $l_a-l_b\ \mathrm{.s.s.}\ (a+c)\sqrt{b(s-a)}-$ $(b+c)\sqrt{a(s-b)}\ \mathrm{.s.s.}\ b(s-a)(a+c)^2-$

$a(s-b)(b+c)^2=(b-a)\left[s(c^2-ab)+ab(a+b+2c)\right]\equiv (b-a)\cdot E$ . Observe that $(l_a-l_b)\ \mathrm{.s.s.}\ (b-a)$ because

$E\ \mathrm{.s.s.}\ (a+b+c)(c^2-ab)+2ab(a+b+2c)=c^3+c^2(a+b)+3abc+ab(a+b)>0$ .

$(2)\ \left\{\begin{array}{ccccccc}
AB\parallel CG & \iff & \frac {FG}{FB}=\frac {FC}{FA} & \iff & \frac {FG}{l_b}=\frac ac & \iff & FG=\frac {al_b}{c}\\\\
AB\parallel CE & \iff & \frac {DE}{DA}=\frac {DC}{DA} & \iff & \frac {DE}{l_a}=\frac bc & \iff & FG=\frac {bl_a}{c}\end{array}\right\|$ and $FG=DE\iff al_b=bl_a$ .



Lemma (Gergonne). Let $\triangle ABC$ and $D\in BC$ , $E\in CA$ , $F\in AB$ so that $P\in AD\cap BE\cap CF$ . Prove that $\boxed{\frac{AP}{AD}+\frac {BP}{BE}+\frac {CP}{CF}=2}$ .

Proof. From Aubel's relation get $\frac {PA}{PD}=\frac {b+c}{a}$ a.s.o. Thus, $\frac {AP}{AD}=\frac {1}{1+\frac {PD}{PA}}=\frac {1}{1+\frac {a}{b+c}}\implies \frac {AP}{AD}=\frac {b+c}{a+b+c}$ a.s.o. So, $\frac{AP}{AD}+\frac {BP}{BE}+\frac {CP}{CF}=2$ .

PP9. Inside the triangle a point is marked. Three straight lines, which are parallel to the sides of triangle are drawn from that

point. Sections of the lines, which are inside the triangle are the same length $x$ . Find $x$ if triangle side lengths are $\{a,b,c\}$ .


Proof. Let $P$ be that point. It is well-known that if ${D}\in BC\cap AP$, $E$ , $F$ being obtained in a similar way, then $\frac{AP}{AD}+\frac {BP}{BE}+\frac {CP}{CF}=2$ (Gergonne). This implies $\boxed{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{2}{x}}$ .


PP10. Let $ABC$ be a triangle . For $M\in AB$ , $N\in AC$ and $P\in MN$ denote $D\in AP\cap BC$ . Prove that $\boxed{\frac {MB}{AM}\cdot DC +\frac{NC}{AN}\cdot BD=\frac {PD}{AP}\cdot BC}$ both in magnitude and sign.

Proof. Denote $\left\{\begin{array}{c}
X\in MN\cap BC\\\\
Y\in MN\ ,\ AY\parallel BC\end{array}\right\|$ . Therefore, $\left\{\begin{array}{c}
\frac {MB}{AM}=\frac {XB}{AY}\\\\
\frac {NC}{AN}=\frac {XC}{AY}\end{array}\right|$ $\left|\begin{array}{cc}
\ \ \odot\ DC\\\\
\ \ \odot\ BD\end{array}\right\|\bigoplus\ \implies$ $\frac {MB}{AM}\cdot DC +\frac{NC}{AN}\cdot BD=$ $\frac {XB\cdot DC+XC\cdot BD}{AY}=$

$\frac {(XD+DB)\cdot DC+(XD+DC)\cdot BD}{AY}=$ $\frac {XD\cdot(DC+BD)}{AY}=$ $\frac {XD}{AY}\cdot BC=$ $\frac {PD}{PA}\cdot BC$ . Particular cases. $\left\{\begin{array}{cccccccc}
1\blacktriangleright & P:=G & \implies & \frac {MB}{AM} & + & \frac{NC}{AN} & = & 1\ .\\\\
2\blacktriangleright & P:=I & \implies & b\cdot \frac {MB}{AM} & + & c\cdot \frac{NC}{AN} & = & a\ .\end{array}\right\|$

See
here. Remark. $P\in XY$ means that the point $P$ belongs to the line $XY$ and $[XY]$ is the notation of a segment. In upper proof $XY$ means $\overrightarrow{XY}$ .


PP11. Let $\triangle OAC$ so that $OA\perp OC$ and $\left\{\begin{array}{c}
OA=x\le 1\\\\
OC=y\le 1\end{array}\right\|$ . Let equilateral $\triangle ABC$ so that $AC$ separates $O$ and $B\ ,\ OB=1$ and

$m\left(\widehat{BOC}\right)=\phi$ . Then $\boxed{\begin{array}{c}
\frac {\pi}{6}\le \phi\le\frac {\pi}{3}\\\\
\tan\phi\ =\ \frac {x+y\sqrt 3}{y+x\sqrt 3}\\\\
x^2+y^2+xy\sqrt 3=1\end{array}}$ .Particular case. $\phi =\frac {\pi}{4}\ \implies\ x=y=$ $\frac {\sqrt 2\left(\sqrt 3-1\right)}{2}\ \implies\ AC=\sqrt 3-1$ .


Proof. Denote $\theta =m\left(\widehat {OAC}\right)$ . Apply property in $OABC\ :\ \sin\widehat{OAC}\cdot\sin\widehat{COB}\cdot\sin\widehat{BCA}\cdot\sin\widehat{ABO}=$ $\sin\widehat{AOB}\cdot\sin\widehat{OCA}\cdot \sin\widehat{CBO}\cdot\sin\widehat{BAC}\iff$

$\sin \theta\sin \phi\sin 60^{\circ}\sin (30^{\circ}+\phi -\theta )=$ $\sin \left(90^{\circ}-\phi \right)\sin \left(90^{\circ}-\theta \right)\sin \left(30^{\circ}-\phi +\theta \right)\sin 60^{\circ}\iff$ $\tan\phi \tan\theta\left[1+\sqrt 3\cdot\tan (\phi -\theta )\right]=$ $1-\sqrt 3\cdot\tan (\phi -\theta ) \iff$

$\tan (\phi -\theta )=\frac {1-\tan\phi\tan\theta}{\sqrt 3\cdot (1+\tan\phi\tan\theta )}\iff$ $\sqrt 3\cdot (\tan\phi -\tan\theta )=1-\tan\phi\tan\theta\iff$ $\tan\phi =\frac {1+\sqrt 3\cdot \tan\theta}{\sqrt 3+\tan\theta}\iff$ $\boxed{\ \tan\phi =\frac {x+y\cdot \sqrt 3}{y+x\cdot\sqrt 3}\ }$ . Apply generalized

Pytagoras' theorem in $\triangle AOB\ :\ OB^2=AO^2+AB^2-2\cdot AO\cdot AB\cdot\cos (60^{\circ}+\theta )\iff$ $1=x^2+x^2+y^2-2x\left(x\cdot\frac 12-y\cdot\frac {\sqrt 3}{2}\right)\iff$ $\boxed{x^2+xy\sqrt 3+y^2=1}$ . From

$\tan\phi\ =\ \frac {x+y\sqrt 3}{y+x\sqrt 3}$ obtain $\tan\theta =$ $\frac yx=\frac {\sqrt 3\cdot \tan\phi -1}{\sqrt 3-\tan\phi}\ge 0\implies$ $\left(\sqrt 3\cdot \tan\phi -1\right)\cdot\left(\sqrt 3-\tan\phi\right)\ge 0\iff$ $\frac {1}{\sqrt 3}\le\tan\phi\le\sqrt 3\iff$ $\boxed{\frac {\pi}{6}\le \phi\le\frac {\pi}{3}}$ .
This post has been edited 220 times. Last edited by Virgil Nicula, Nov 19, 2015, 1:51 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a