171. Another "slicing" proposed problems (middle school).

by Virgil Nicula, Nov 17, 2010, 7:14 PM

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=378371

PP1. Let $ABC$ be an $A$-isosceles triangle with $A=100^{\circ}$ . Consider the point $D$ which belongs to the ray $(AB$ so that $AD=BC$ . Ascertain $m\left(\widehat{ADC}\right)$ .

Proof 1 (trigonometric). Denote $m\left(\widehat{ADC}\right)=x$ . Apply the Sinus' theorem in the triangles $ADC$ , $ABC$ . Therefore, $AD=BC\iff$ $\frac {AD}{AC}=\frac {BC}{AC}$ $\iff$

$\frac {\sin (80^{\circ}-x)}{\sin x}=\frac {\sin 100^{\circ}}{\sin 40^{\circ}}$ $\iff$ $\sin (80^{\circ}-x)=2\sin x\cos 40^{\circ}$ $\iff$ $\sin (80^{\circ}-x)=\sin (40^{\circ}+x)-\sin (40^{\circ}-x)$ $\iff$

$\sin (40^{\circ}+x)-\sin (80^{\circ}-x)=\sin (40^{\circ}-x)$ $\iff$ $2\sin (x-20^{\circ})\cos 60^{\circ}=\sin (40^{\circ}-x)$ $\iff$

$\sin (x-20^{\circ})=\sin (40^{\circ}-x)$ $\iff$ $x-20^{\circ}=40^{\circ}-x$ $\iff$ $x=30^{\circ}$ $\iff$ $m\left(\widehat{ADC}\right)=30^{\circ}$ .


Proof 2 (metric). Denote $BC=a\ ,\ AB=AC=b$ and the point $E\in (BC)$ so that $CE=CA$ . Observe that $AD=BC\iff$

$BD=BE=a-b$ . Therefore, $a=2b\cdot\cos 40^{\circ}$ and $DE=EC\iff 2(a-b)\cdot\cos 20^{\circ}=b\iff$ $2\cdot\left(2\cdot\cos 40^{\circ}-1\right)\cdot\cos 20^{\circ}=1$ $\iff$

$2\cdot\left(\cos 60^{\circ}+\cos 20^{\circ}-\cos 20^{\circ}\right)=1$ , O.K. Thus, $DE=EC\iff\triangle DEC$ is $E$-isosceles, i.e. $m(\angle EDC)=10^{\circ}\iff$ $m(\angle ADC)=30^{\circ}$ .


Lemma. Let $ABC$ be a triangle with $B=30^{\circ}$ and $C=20^{\circ}$ . Consider a point $D\in (BC)$ . Prove that $\boxed{BD=AC\ \iff\ DA=DC}$ .

Proof 1 (yetti). Take regular 18-gon $P_1P_2...P_{18}$ with side $p_1$ and diagonals $p_2 < p_3 < ... < p_9$ . From equilateral triangle with base $P_1P_8= p_7,$ $p_1 + p_5 = p_7$ .

Let $X \equiv P_1P_6 \cap P_4P_{11}$ $\Longrightarrow$ $\triangle XP_1P_4$ is isosceles with base $XP_4$ and base angles $80^\circ$ $\Longrightarrow$ $\triangle XP_6P_{11}$ is isosceles with $XP_{11} = P_6P_{11} = p_5$ $\Longrightarrow$

$XP_4 = p_1 = P_3P_4$ $\Longrightarrow$ $\triangle XP_3P_4$ is isosceles with base $XP_3$ and base angles $40^\circ$ $\Longrightarrow$ $X \equiv P_4P_{11} \cap P_3P_{8}\implies X\in P_1P_6\cap P_3P_8\cap P_4P_{11}$ . By

symmetry $XP_3 = XP_6$ . Put $B \equiv P_1, C \equiv  P_6, A \equiv P_3.$ Then $DA \equiv DP_3 = DP_6 \equiv DC$ $\Longleftrightarrow$ $D \equiv X$ $\Longleftrightarrow$ $BD \equiv P_1D = P_1P_4 = P_3P_6 \equiv AC$ .

Proof 2 (trigonometric). Denote $m(\angle DAC)=x$ . Thus, $\boxed{BD=AC}\iff$ $\frac {BD}{DA}=\frac {AC}{DA}$ $\iff$ $\frac {\sin (50^{\circ}+x)}{\sin 30^{\circ}}=$ $\frac {\sin (20^{\circ}+x)}{\sin 20^{\circ}}$ $\iff$

$\sin (20^{\circ}+x)=$ $2\sin 20^{\circ}\sin (50^{\circ}+x)$ $\iff$ $\sin (20^{\circ}+x)=$ $\cos (30^{\circ}+x)-\cos (70^{\circ}+x)$ $\iff$ $\sin (60^{\circ}-x)-$

$\sin (20^{\circ}+x)=$ $\sin (20^{\circ}-x)$ $\iff$ $2\sin (20^{\circ}-x)\cos 40^{\circ}=$ $\sin (20^{\circ}-x)$ $\iff$ $x=20^{\circ}$ $\iff$ $\boxed{DA=DC}$ .

Proof 3. Construct the circumcircle $(O)$ of the $\triangle ABC$ . Suppose $\boxed{BD=AC}$ . Therefore, $m(\angle AOB)=40^\circ\Longrightarrow m(\angle OBA)=70^\circ\Longrightarrow$

$m(\angle OBD)=40^\circ$ $\stackrel{OB=BD}{\Longrightarrow}m(\angle BOD)=70^\circ\Longrightarrow m(\angle AOD)=30^\circ\Longrightarrow$ $\triangle AOD\stackrel{(LUL)}{\equiv}\triangle COD\Longrightarrow \boxed{AD=CD}$ .

Suppose $\boxed{DA=DC}$ . Therefore obtain that $\triangle AOD\stackrel{(LLL)}{\equiv}\triangle COD\Longrightarrow$ $m(\angle COD)=m(\angle DBA)=30^{\circ}$ and

$m(\angle OCD)=m(\angle BDA)=40^{\circ}$ . From $AD=DC$ $\stackrel{(ULU)}{\Longrightarrow}\triangle ABD\equiv\triangle DOC\Longrightarrow BD=OC=AC\implies \boxed {BD=AC}$ .


Proof 3 (synthetic). Denote $BC=a\ ,\ AB=AC=b$ and the point $E\in (BC)$ so that $CE=CA$ . Observe that $AD=BC\iff$

$BD=BE=a-b$ and $m(\angle DAE)=30^{\circ}\ ,\ m(\angle ADE)=20^{\circ}$ . Apply the above lemma to $\triangle EAD$ and the point $B\in (AD)$

for which $BD=BE$ and obtain that $DE=AB$ , i.e. $DE=EC$ $\implies$ $m(\angle EDC)=m(\angle ECD)=10^{\circ}$ , i.e. $m(\angle ADC)=30^{\circ}$ .



PP2 (Nicolae Coculescu's Contest juniors 2010). Let $ABC$ be a triangle with $B=60^{\circ}$ and $C=40^{\circ}$ .

Consider the point $D\in (BC$ for which $CD=2s$ , where $2s=a+b+c$ . Ascertain $m(\angle ADB)$ .


Proof 1 (synthetic). Denote $E\in (CD)$ so that $CE=b$ . Then $m(\angle CAE)=m(\angle CEA)=20^{\circ}$ . Denote $G\in(AE)$ so that $AG=c$ . Thus, $m(\angle ABG)=$

$m(\angle AGB)=40^{\circ}$ . Observe that the quadrilateral $AGCB$ is cyclically, i.e. $m(\angle BGC)=m(\angle BAC)=m(\angle GCB)=80^{\circ}$ $\implies$ $GB=a$ $\implies$

$\triangle GBE$ is isosceles $\implies$ $GE=GB=a$ . Therefore, $AE=a+c=ED$ , i.e. $\triangle AED$ is isosceles $\implies$ $m(\angle EDA)=m(\angle EAD)=10^{\circ}$ .
This post has been edited 47 times. Last edited by Virgil Nicula, Dec 1, 2015, 11:18 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a