346. Some easy integrals.

by Virgil Nicula, Jun 20, 2012, 1:10 AM

PP1. Ascertain in the beginning three simple indefinite trigonometric integrals (with integration by parts or by substitutions):

$\left\{\begin{array}{cc}
H=\int\sin 2x\ln\cos x\ \mathrm{dx} & (1)\ .\\\\
I=\int (\cos 2x + \sin 2x) \ln (\cos x+\sin x)\ \mathrm{dx} & (2)\ .\\\\
K=\int \cos 2x\ln \cos x\ \mathrm{dx} & (3)\ .\end{array}\right\|$


Proof.

$1\blacktriangleright\ H=\int\sin 2x\ln\cos x\ \mathrm{dx}=-2\cdot \int\cos x\ln\cos x(\cos x)'\ \mathrm{dx}\implies$ $\boxed{H=-2\cdot G\circ \phi}$ , where $\boxed{t=\phi (x)=\cos x}$ and $G=\int t\ln t\ \mathrm{dt}$ . Apply the integration by parts

$\boxed{\begin{array}{ccc}
u(x)=\ln t & \implies & u'(x)=\frac it\\\\
v'(x)=t & \implies & v(x)=\frac {t^2}{2}\end{array}}$ and obtain that $G=\frac 12\cdot t^2\ln t-\frac 14\cdot t^2+\mathbb C$ . In conclusion, $\boxed{\int\sin 2x\ln\cos x\ \mathrm{dx}=\frac 12\cdot \cos^2x\ln\cos x-\frac 14\cdot\cos^2x+\mathbb C}$ .

$2\blacktriangleright\ I=\int (\cos 2x + \sin 2x) \ln (\cos x+\sin x)\ \mathrm{dx}$ . Apply down integration by parts $\boxed{\begin{array}{ccc}
u(x)=\ln (\cos x+\sin x ) & \implies & u'(x)=\frac {\cos x-\sin x}{\cos x+\sin x}\\\\
v'(x)=\cos 2x+\sin 2x & \implies & v(x)=\frac 12\cdot\left(\sin 2x-\cos 2x\right)\end{array}}$ and obtain

$I=\frac 12\cdot (\sin 2x-\cos 2x)\ln (\cos x+\sin x)+\frac 12\cdot J$ , where $J=\int\frac {(\cos x-\sin x)(\cos 2x-\sin 2x)}{\cos x+\sin x}\ \mathrm{dx}=$

$\int\frac {(\cos x-\sin x)\left[(\cos x-\sin x)(\cos x+\sin x)-(\cos x+\sin x)^2+1\right]}{\cos x+\sin x}\ \mathrm{dx}=$ $\int\left[(\cos x-\sin x)^2-\cos 2x+\frac {\cos x-\sin x}{\cos x+\sin x}\right]\ \mathrm{dx}=$

$\int\left[1-\sin 2x-\cos 2x+\frac {\cos x-\sin x}{\cos x+\sin x}\right]\ \mathrm{dx}\implies$ $J=x+\frac 12\cdot (\cos 2x-\sin 2x)+\ln(\cos x+\sin x)+\mathbb C$ .

In conclusion, $I=\frac 12\cdot (\sin 2x+1-\cos 2x)\ln (\cos x+\sin x)+\frac 12x+\frac 14\cdot (\cos 2x-\sin 2x)+\mathbb C\implies$

$\boxed{\int (\cos 2x + \sin 2x) \ln (\cos x+\sin x)\ \mathrm{dx}=\sin x(\sin x+\cos x)\ln (\cos x+\sin x)+\frac x2+\frac 14\cdot (\cos 2x-\sin 2x)+\mathbb C}$ .

$3\blacktriangleright\ K=\int \cos 2x\ln \cos x\ \mathrm{dx}$ . Apply down integration by parts $\boxed{\begin{array}{ccc}
u(x)=\ln \cos x & \implies & u'(x)=-\frac {\sin x}{\cos x}\\\\
v'(x)=\cos 2x & \implies & v(x)=\frac 12\cdot\sin 2x\end{array}}$ and obtain

$K=\frac 12\cdot \sin 2x\ln\cos x+\int\sin^2x\ \mathrm{dx}$ . In conclusion, $\boxed{\int \cos 2x\ln \cos x\ \mathrm{dx}=\frac 12\cdot \sin 2x\ln\cos x+\frac 12\cdot\left(x-\frac 12\cdot\sin 2x\right)+\mathbb C}$ .



PP2. Ascertain the definite integral $\int^{12}_0\frac{1}{\sqrt{4x+1}+\sqrt{x+4}}\ \mathrm{dx}$ .

Proof. $I=\frac 13\cdot \int^{12}_0\frac{\sqrt{4x+1}-\sqrt{x+4}}{x-1}\ \mathrm{dx}\implies$ $\boxed{\ I=\frac 13\cdot (U-V)\ }$ , where $U=\int^{12}_0\frac{\sqrt{4x+1}}{x-1}\ \mathrm{dx}$ and $V=\frac{\sqrt{x+4}}{x-1}\ \mathrm{dx}$ .

Method 1.

$\blacktriangleright\ U=\int^{12}_0\frac{\sqrt{4x+1}}{x-1}\ \mathrm{dx}\stackrel{(x=t^2+t)}{\ \ =\ \ }$ $\int_0^3\frac {(2t+1)^2}{t^2+t-1}\ \mathrm{dt}=$ $\int_0^3\left(4+\frac {5}{t^2+t-1}\right)\ \mathrm{dt}=$ $12+5\cdot \int_0^3\frac {\left(t+\frac 12\right)'}{\left(t+\frac 12\right)^2-\frac 54}\ \mathrm{dt}=$

$12+\sqrt 5\cdot\left|\ln\frac {2t+1-\sqrt 5}{2t+1+\sqrt 5}\right|_0^3=$ $12+\sqrt 5\cdot\ln\frac {\left(7-\sqrt 5\right)\left(\sqrt 5+1\right)}{\left(7+\sqrt 5\right)\left(\sqrt 5-1\right)}\implies$ $\boxed{U=12+2\sqrt 5\cdot\ln\frac {1+3\sqrt 5}{2}-\sqrt 5\cdot\ln 11}$ .

$\blacktriangleright\ V=\int^{12}_0\frac{\sqrt{x+4}}{x-1}\ \mathrm{dx}\stackrel{(x=t^2+4t)}{\ \ =\ \ }$ $\int_0^2\frac {2(t+2)^2}{t^2+4t-1}\ \mathrm{dt}=$ $2\cdot \int_0^2\left(1+\frac {5}{t^2+4t-1}\right)\ \mathrm{dt}=$ $4+10\cdot \int_0^2\frac {\left(t+2\right)'}{\left(t+2\right)^2-5}\ \mathrm{dt}=$

$4+\sqrt 5\cdot\left|\ln\frac {t+2-\sqrt 5}{t+2+\sqrt 5}\right|_0^2=$ $4+\sqrt 5\cdot\ln\frac {\left(4-\sqrt 5\right)\left(\sqrt 5+2\right)}{\left(4+\sqrt 5\right)\left(\sqrt 5-2\right)}\implies$ $\boxed{V=4+2\sqrt 5\cdot\ln (3+2\sqrt 5)-\sqrt 5\cdot\ln 11}$ .

Method 2.

$\blacktriangleright\ U=\int^{12}_0\frac{\sqrt{4x+1}}{x-1}\ \mathrm{dx}\stackrel{(4x+1=t^2)}{\ \ =\ \ }$ $2\cdot \int_1^7\frac {t^2}{t^2-5}\ \mathrm{dt}=$ $2\cdot \int_1^7\left(1+\frac {5}{t^2-5}\right)\ \mathrm{dt}=$ $12+\sqrt 5\cdot\left|\ln\frac {t-\sqrt 5}{t+\sqrt 5}\right|_1^7=$

$12+\sqrt 5\cdot\ln\frac {\left(7-\sqrt 5\right)\left(\sqrt 5+1\right)}{\left(7+\sqrt 5\right)\left(\sqrt 5-1\right)}\implies$ $\boxed{U=12+2\sqrt 5\cdot\ln\frac {1+3\sqrt 5}{2}-\sqrt 5\cdot\ln 11}$ .

$\blacktriangleright\ V=\int^{12}_0\frac{\sqrt{x+4}}{x-1}\ \mathrm{dx}\stackrel{(x+4=t^2)}{\ \ =\ \ }$ $2\cdot \int_2^4\frac {t^2}{t^2-5}\ \mathrm{dt}=$ $2\cdot \int_2^4\left(1+\frac {5}{t^2-5}\right)\ \mathrm{dt}=$ $4+\sqrt 5\cdot\left|\ln\frac {t-\sqrt 5}{t+\sqrt 5}\right|_2^4=$

$4+\sqrt 5\cdot\ln\frac {\left(4-\sqrt 5\right)\left(\sqrt 5+2\right)}{\left(4+\sqrt 5\right)\left(\sqrt 5-2\right)}\implies$ $\boxed{V=4+2\sqrt 5\cdot\ln (3+2\sqrt 5)-\sqrt 5\cdot\ln 11}$ .

In conclusion, $I=\frac 13\cdot\left[8+2\sqrt 5\cdot \ln\frac {1+3\sqrt 5}{2\left(3+2\sqrt 5\right)}\right]\implies$ $\boxed{I=\frac 83+\frac {2\sqrt 5}{3}\cdot\left(2\cdot\ln\frac {7-\sqrt 5}{2}-\ln 11\right)}$ .
This post has been edited 12 times. Last edited by Virgil Nicula, Nov 18, 2015, 5:55 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a