121. Viete's relations with cos A , cos B , cos C.

by Virgil Nicula, Sep 13, 2010, 1:01 AM

Quote:
Let $ABC$ be a triangle. Prove that $\cos A\cos B+\cos B\cos C+\cos C\cos A = \frac{p^2-4R^{2}+r^{2}}{4R^2}$ .
Proof. $\sum\cos A=1+\frac{r}{R}\ \ \ ,\ \ \sum\cos^{2}A=\frac{1}{2}\cdot\sum\left(1+\cos 2A\right)$ $\mathrm{\ \ \ ,\ \ \ }\sum\cos 2A=-1-4\cos A\cos B\cos C$ . The power $p_{w}H$ of the orthocenter $H$

w.r.t. the circumcircle $w=C(O,R)$ is given by the relation $p_{w}H=-8R^{2}\cos A\cos B\cos C$. The power $p_{w}G$ of the centroid $G$ w.r.t. the circle $w$ is given by

the relation $p_{w}G=-\frac{a^{2}+b^{2}+c^{2}}{9}$ . $HO^{2}=R^{2}+p_{w}H=R^{2}-8R^{2}\cos A\cos B\cos C$ and $GO^{2}=R^{2}+p_{w}(G)=R^{2}-\frac{a^{2}+b^{2}+c^{2}}{9}$. Therefore,

$HO=3\cdot GO$ $\implies$ $HO^{2}=9\cdot GO^{2}$ $\implies$ $R^{2}-8R^{2}\prod\cos A=9\left(R^{2}-\frac{a^{2}+b^{2}+c^{2}}{9}\right)$ $\implies$ $\boxed{\ 8R^{2}\cos A\cos B\cos C=a^{2}+b^{2}+c^{2}-8R^{2}\ }$

and $ab+bc+ca=p^{2}+r^{2}+4Rr$ . Observe that $\left\{\begin{array}{c}\cos A+\cos B+\cos C=1+\frac{r}{R}\\\\ \cos A\cos B+\cos B\cos C+\cos C\cos A=\frac{p^{2}++r^{2}-4R^{2}}{4R^{2}}\\\\ \cos A\cos B\cos C=\frac{p^{2}-\left(2R+r\right)^{2}}{4R^{2}}\end{array}\right\|\ \ \Longleftrightarrow$

the equation $4R^{2}\cdot x^{3}-4R(R+r)\cdot x^{2}+\left(p^{2}+r^{2}-4R^{2}\right)\cdot x+(2R+r)^{2}-p^{2}=0$ has the roots $\left\{\cos A,\cos B,\cos C\right\}$ .


The shortest method. $\left\{\begin{array}{c}ab+bc+ca=p^{2}+r^{2}+4Rr\\\\ \cos A=-\cos (B+C)=-\cos B\cos C+\sin B\sin C\\\\ \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\\\\ \cos A+\cos B+\cos C=1+\frac{r}{R}\end{array}\right\|$ $\implies$ $\sum\cos B\cos C=$ $\sum\sin B\sin C-\sum\cos A=$

$\sum\frac{bc}{4R^{2}}-\left(1+\frac{r}{R}\right)=$ $\frac{p^{2}+r^{2}+4Rr}{4R^{2}}-\frac{R+r}{R}$ $\implies$ $\boxed{\mathcal \sum\cos B\cos C=\frac{p^{2}+r^{2}-4R^{2}}{4R^{2}}}$ .

Consequence. $\frac{(R-2r)(7R+2r)}{4R^{2}}+\frac{3}{4}\le \cos A\cos B+\cos B\cos C+\cos C\cos A\le\left(\frac{R+r}{r\sqrt 3}\right)^{2}$.

You can use above identity and the remarkable chain of inequalities $3r(4R+r)\le p^{2}\le\frac{(4R+r)^{2}}{3}$ .


Another short proof. $\cos B\cos C+\cos A=\sin B\sin C=\frac{S}{aR}$ $\implies$ $\sum\cos B\cos C=\frac{S}{R}\cdot\sum \frac{1}{a}-\left(1+\frac{r}{R}\right)$ $\implies$

$\sum\cos B\cos C=\frac{S}{R}\cdot \frac{ab+bc+ca}{4RS}-\frac{R+r}{R}$ $=$ $\frac{p^{2}+r^{2}+4Rr}{4R^{2}}-\frac{R+r}{R}$ $\implies$ $\sum\cos B\cos C=\frac{p^{2}-4R^{2}+r^{2}}{4R^{2}}$ .


Examples. $\left\{\begin{array}{c}
\tan\frac{A}{2}+\tan\frac{B}{2}+\tan\frac{C}{2}=\frac{r_{a}+r_{b}+r_{c}}{p}=\frac{4R+r}{p}\\\\
\tan\frac{A}{2}\tan\frac{B}{2}+\tan\frac{B}{2}\tan\frac{C}{2}+\tan\frac{C}{2}\tan\frac{A}{2}=\frac{r_{a}r_{b}+r_{b}r_{c}+r_{c}r_{a}}{p^{2}}=1\\\\
\tan\frac{A}{2}\tan\frac{B}{2}\tan\frac{C}{2}=\frac{r}{p-a}\cdot\frac{r}{p-b}\cdot\frac{r}{p-c}=\frac{r^{3}}{pr^{2}}=\frac{r}{p}\end{array}\right\|$ .

Therefore, the equation $f(X)\equiv pX^{3}-(4R+r)X^{2}+pX-r=0$ has the roots $\left\{\ \tan\frac{A}{2}\ ,\ \tan\frac{B}{2}\ ,\ \tan\frac{C}{2}\ \right\}$ .

For example, $\left\{\begin{array}{ccccc}
90^{\circ}\in \left\{\ A\ ,\ B\ ,\ C\right\} & \iff & f(1)=0 & \iff  & p=2R+r\\\\
60^{\circ}\in\left\{\ A\ ,\ B\ ,\ C\ \right\} & \iff & f\left(\frac{\sqrt 3}{3}\right)=0 & \iff &  p=(R+r)\sqrt 3\\\\ 
30^{\circ}\in\left\{\ A\ ,\ B\ ,\ C\ \right\} & \iff &  f\left(2-\sqrt 3\right)=0 & \iff &  p=R+r(2+\sqrt 3)\end{array}\right\|$ .

From $\left\{\begin{array}{c}
 r_{a}+r_{b}+r_{c}=4R+r\\\\ 
r_{a}r_{b}+r_{b}r_{c}+r_{c}r_{a}=p^{2}\\\\ 
r_{a}r_{b}r_{c}=p^{2}r\end{array}\right\|$ obtain that the equation $r(X)=X^{3}-(4R+r)X^{2}+p^{2}X-p^{2}r=0$ has the roots $\left\{\ r_{a}\ ,\ r_{b}\ ,\ r_{c}\right\}$ .



Piece of poetry :

\[ \underline {\overline {\left| \ cos A,\ \cos B,\ \cos C\ ...\ \right| }}  \]
\[ \blacksquare  \]
\[ 2\cos \frac{A+B}{2}\cos \frac{A-B}{2}+\cos C  \]\[ 2\sin \frac C2\cos \frac{A-B}{2}+1-2\sin ^2\frac C2  \]\[ 1+2\sin \frac C2\left( \cos \frac{A-B}{2}-\cos \frac{A+B}{2}\right) \]\[ 1+4\sin \frac A2\sin \frac B2\sin \frac C2  \]\[ 1+4\sqrt{\frac{(s-b)(s-c)}{bc}\cdot \frac{(s-c)(s-a)}{ca}\cdot \frac{(s-a)(s-b)}{ab}} \]\[ 1+\frac{4(s-a)(s-b)(s-c)}{abc}  \]\[ 1+\frac{4sr^2}{4Rrs} \]\[ 1+\frac rR.  \]
\[ \blacksquare  \]
Exercise (practice). Let $ABC$ be a acute triangle, its circumcircle $w=C(O,R)$ and the middlepoints $D\in [BC]$,

$E\in [CA]$, $F\in [AB]$ of the sides of $\triangle ABC$. Then $OD+OE+OF=R+r$ (the Euler's relation).

1. A trigonometrical solution. Add the relations $OD=R\cos A\ \ \wedge\ \ OE=R\cos B\ \ \wedge\ \ OF=R\cos C$

$\implies$ $OD+OE+OF=R(\cos A+\cos B+\cos C)=R\left(1+\frac rR\right)=R+r$ .

2. A solution without the previous trigonometrical relation. We apply the Ptolemeu's theorem in the cyclic quadrilaterals $AEOF$, $BFOD$, $CDOE$ :

$b\cdot OF+c\cdot OE=$ $a\cdot R\ \ \wedge\ \ c\cdot OD+$ $a\cdot OF=b\cdot R\ \ \wedge\ \ a\cdot OE+$ $b\cdot OD=c\cdot R$. We add these relations to the wellknown relation

$a\cdot OD+b\cdot OE+c\cdot OF=2sr$ $\implies$ $(a+b+c)\cdot (OD+OE+OF)=(a+b+c)\cdot (R+r)$, i.e. $OD+OE+OF=R+r$ .
This post has been edited 32 times. Last edited by Virgil Nicula, Nov 23, 2015, 7:41 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a