88. A nice geometric locus conditioned metrically.

by Virgil Nicula, Aug 19, 2010, 1:07 AM

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=46&t=362607
Quote:
Let $ ABC $ be a triangle with $AB=AC=b$ and $BC=a$ . Let mobile $M\in (AC)$ , $N\in (AB)$ such that

$\boxed{a^2\cdot AM\cdot AN=b^2\cdot BN\cdot CM}\ (*)$ and denote $P\in BM\cap CN$ . Find the locus of the point $P$ .

Preliminary.. Denote $AN=x$ , $AM=y$ . Thus, $BN=b-x$ , $CM=b-y$ . The relation $(*)$ becomes $\boxed{a^2xy=b^2(b-x)(b-y)}\ (1)$ .

Let $m\left(\widehat{CBM}\right)=\alpha$ , $m\left(\widehat{BCN}\right)=\beta$ . Thus, $m\left(\widehat{ABM}\right)=B-\alpha$ , $m\left(\widehat{ACN}\right)=B-\beta$ . Here are down some proofs.

Proof 1 (synthetic).Let $Q\in AC$ for which $\widehat{QBC}=\widehat{MBA}$ . Using Steiner's theorem obtain $\frac{y}{b-y}\cdot\frac {QA}{QC}\stackrel{(St.)}{=}$ $\left(\frac ba\right)^2\stackrel{(1)}{=}$ $\frac{xy}{(b-x)(b-y)}$ $\implies$ $\frac{QA}{QC}=\frac {x}{b-x}=\frac {NA}{NC}$ $\implies$

$NQ\parallel BC$ , i.e. $BCQN$ ia an isosceles trapezoid. Observe that $\widehat{NCM}\equiv$ $\widehat {NBQ}$ $\equiv\widehat{MBC}$ , i.e. $\widehat{NCM}\equiv\widehat{MBC}$ . Therefore, $m\left(\widehat {BPC}\right)=$ $m\left(\widehat{PMC}\right)+m\left(\widehat{PCM}\right)=$

$m\left(\widehat{BMC}\right)+m\left(\widehat{MBC}\right)=180^{\circ}-B$ , i.e. $\boxed {m\left(\widehat {BPC}\right)=A+B}$ (constant).

Proof 2 (metric). Apply an well-known relation to assess a ratio : $\left\|\begin{array}{c}
\frac {x}{b-x}=\frac {NA}{NB}=\frac {CA}{CB}\cdot\frac {\sin\widehat{NCA}}{\sin\widehat{NCB}}=\frac ba\cdot\frac {\sin (B-\beta )}{\sin \beta}\\\\
\frac {y}{b-y}=\frac {MA}{MB}=\frac {BA}{BC}\cdot\frac {\sin\widehat{MBA}}{\sin\widehat{MBC}}=\frac ba\cdot\frac {\sin (B-\alpha )}{\sin \alpha}\end{array}\right\|$ $\bigodot\ \stackrel{(1)}{\implies}$ $\sin(B-\alpha )\sin (B-\beta )=\sin \alpha\sin\beta$ $\iff$

$\cos (\alpha -\beta )-\cos [2B-(\alpha +\beta )]=\cos (\alpha -\beta )-\cos (\alpha +\beta )$ $\iff$ $\cos [2B-(\alpha +\beta )]=\cos (\alpha +\beta )$ $\iff$ $\alpha +\beta =B$ . Thus, $\boxed {m\left(\widehat{BPC}\right)=A+B}$ (constant).

Proof 3 (trigonometric). Apply theorem of Sinus in triangles : $\left\|\begin{array}{cccc}
\triangle\ ABM\ : & \frac {y}{\sin (B-\alpha )}=\frac {b}{\sin (B+\alpha )} & \implies & y=\frac {b\cdot\sin (B-\alpha )}{\sin (B+\alpha )}\\\\
\triangle\ ACN\ : & \frac {x}{\sin (B-\beta )}=\frac {b}{\sin (B+\beta )} & \implies & x=\frac {b\cdot\sin (B-\beta )}{\sin (B+\beta )}\\\\
\triangle\ BCM\ : & \frac {b-y}{\sin\alpha }=\frac {a}{\sin (B+\alpha )} & \implies & b-y=\frac {a\cdot\sin\alpha }{\sin (B+\alpha )}\\\\
\triangle\ BCN\ : & \frac {b-x}{\sin \beta }=\frac {a}{\sin (B+\beta )} & \implies & b-x=\frac {a\cdot\sin \beta }{\sin (B+\beta )}\end{array}\right\|$ .

The relation $(1)$ becomes $\frac {a^2b^2\sin (B-\alpha )\sin (B-\beta )}{\sin (B+\alpha )\sin (B+\beta )}=\frac {b^2a^2\sin \alpha \sin\beta }{\sin (B+\alpha )\sin (B+\beta )}$ $\iff$ $\sin (B-\alpha )\sin (B-\beta )=\sin\alpha\sin\beta$ $\iff$

$\cos (\alpha -\beta )-\cos [2B-(\alpha +\beta )]=\cos (\alpha -\beta )-\cos (\alpha +\beta )$ $\iff$ $\cos [2B-(\alpha +\beta )]=\cos (\alpha +\beta )$ $\iff$ $\alpha +\beta =B$ .

Thus, $\boxed {m\left(\widehat{BPC}\right)=A+B}$ (constant).

Proof 4 (metric). Apply an well-known area relation $[PBN]\cdot [PCM]=[PMN]\cdot [BPC]$ . Thus $PB\cdot (b-x)\cdot \sin (B-\alpha )\cdot PC\cdot (b-y)\cdot\sin (C-\beta )=$

$\frac {a^2\sin \alpha\sin\beta}{\sin (\alpha +\beta )}\cdot PN\cdot PM\cdot \sin (\alpha +\beta )$ $\iff$ $\frac {\sin (B-\alpha )\sin (B-\beta )}{\sin\alpha\sin \beta}=\frac {a^2}{(b-x)(b-y)}\cdot\frac {PM\cdot PN}{PB\cdot PC}\ (2)$ . Apply the Menelaus' theorem to $:$

$\left\|\begin{array}{cc}
\overline {CPN}/ \triangle ABM \ : & \frac {b-y}{b}\cdot \frac {x}{b-x}\cdot \frac {PB}{PM}=1\\\\
\overline{BPM}/ \triangle ACN\ : & \frac {b-x}{b}\cdot\frac {y}{b-y}\cdot\frac {PC}{PN}=1\end{array}\right\|$ $\bigodot\implies$ $\frac {xy}{b^2}\cdot\frac {PB\cdot PC}{PM\cdot PN}=1\ (3)$ . Therefore, $\left\|\begin{array}{cc}
(1) & a^2xy=b^2(b-x)(b-y)\\\\
(2) & \frac {\sin (B-\alpha )\sin (B-\beta )}{\sin\alpha\sin \beta}=\frac {a^2}{(b-x)(b-y)}\cdot\frac {PM\cdot PN}{PB\cdot PC}\\\\
(3) & 1=\frac {xy}{b^2}\cdot\frac {PB\cdot PC}{PM\cdot PN}\end{array}\right\|\ \bigodot $ $\implies$

$\sin (B-\alpha )\sin (B-\beta)=\sin \alpha\sin\beta$ $\iff$ $\cos (\alpha -\beta )-\cos [2B-(\alpha +\beta )]=\cos (\alpha -\beta )-\cos (\alpha +\beta )$ $\iff$

$\cos [2B-(\alpha +\beta )]=\cos (\alpha +\beta )$ $\iff$ $\alpha +\beta =B$ . Thus, $\boxed {m\left(\widehat{BPC}\right)=A+B}$ (constant).

Conclusion. Construct the rombus $ABDC$ . Observe that $D$ is $A$-exincenter $I_a$ and $m\left(\widehat{BDC}\right)=B$ . In conclusion,

the point $P$ belongs to the circle with diameter $[II_a]$ (where $I$ is incenter) so that the sideline $BC$ separates $P$ , $I_a$.

Very nice your proof without words (see lower), Sunken Rock ! Thank you. Here is what means $\alpha +\beta =B$ $\Longleftrightarrow$ $AR=CQ\ \wedge\ AQ=BR$ ,

i.e. $AR\parallel BQ\ \wedge\ AQ\parallel CR$ . Observe that $\left\|\begin{array}{c}
\frac {x}{b-x}=\frac {b\cdot AR}{a\cdot BR}\\\\
\frac {y}{b-y}=\frac {b\cdot AQ}{a\cdot CQ}\end{array}\right\|\ \bigodot\ \implies\ \frac {xy}{(b-x)(b-y)}=\left(\frac ba\right)^2$ , i.e. $a^2xy=b^2(b-x)(b-y)$ .
This post has been edited 32 times. Last edited by Virgil Nicula, Nov 27, 2015, 7:00 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a