409. Geometry 2.

by Virgil Nicula, Mar 20, 2015, 1:40 PM

P1. Let $\triangle ABC$ with $A_k\in [BC]\ ,\ k\in \overline {0,n}$ , where $A_0\equiv B$ and $A_n\equiv C$ so that $A_k\in \left(A_{k-1}A_{k+1}\right)$ for any $k\in\overline{1,n-1}$ .

For any $\triangle A_{k-1}AA_k$ , where $k\in\overline{1,n}$ denote the length $r_k$ of its inradius and the length $R_k$ of its $A$-exradius. Prove that $\prod_{k=1}^n\frac {r_k}{R_k}=\frac r{r_a}$ .


Proof. In any $\triangle ABC$ there is the relation $\frac r{r_a}=\tan\frac B2\tan\frac C2$ . Indeed, let the tangent points $D$ and $D'$ of $w=C(I,r)$ and $A$-excircle $w_a=C\left(I_a,r_a\right)$ with $BC$ .

Then $BD=CD'=s-b$ and $\frac r{r_a}=\frac {ID}{I_aD'}=$ $\frac {BD\cdot\frac {ID}{BD}}{CD'\cdot\frac {I_aD'}{CD'}}=$ $\frac {\tan\widehat{IBD}}{\tan\widehat {I_aCD'}}=$ $\frac {\tan\frac B2}{\tan\left(90^{\circ}-\frac C2\right)}\implies$ $\boxed{\frac r{r_a}=\tan\frac B2\tan\frac C2}\ (*)$ . Let $m\left(\widehat{AA_kA_{k-1}}\right)=2x_k$ ,

where $k\in\overline{0,n}\ ,\ B\in\left(A_{-1},A_0\right)$ and $x_0=90^{\circ}-\frac B2\ ,\ x_n=\frac C2$ . Hence $(\forall )\ k\in\overline{1,n}\ ,\ \frac {r_k}{R_k}=\tan\left(90^{\circ}-x_{k-1}\right)\tan x_k=$ $\cot x_{k-1}\tan x_k=$ $\frac {\tan x_k}{\tan x_{k-1}}\implies$

$\prod_{k=1}^n\frac {r_k}{R_k}=\frac {\tan x_n}{\tan x_0}=\tan\frac C2\tan\frac B2\stackrel{(*)}{\implies}$ $\boxed{\prod_{k=1}^n\frac {r_k}{R_k}=\frac r{r_a}}$ .


P2 (Miguel Ochoa Sanchez). For $\triangle ABC$ denote the lengths $(m,n,p)$ of the inradii for $BI_aC\ ,\ CI_bA\ ,\ AI_cB$ respectively. Prove that $\sqrt{\frac am+\frac bn+\frac cp}=\sqrt{\frac a{r_a}}+\sqrt{\frac b{r_b}}+\sqrt{\frac c{r_c}}$ .

Proof.

PP3 (metric). Let $\triangle ABC$ with $\{D,E\}\subset (BC)$ so that $\left\{\begin{array}{c}
m\left(\widehat{DAB}\right)=m\left(\widehat{DBA}\right)=40^{\circ}\\\\
m\left(\widehat{EAC}\right)=m\left(\widehat{ECA}\right)=30^{\circ}\end{array}\right\|$ . Let $G\in (AC)\ ,\ DG\parallel AB$ and $J\in BG\cap AE$ . Prove that $JB=JC$ .

Proof (own). Denote $DE=n$ and $\left\{\begin{array}{c}
DA=DB=m\\\\
EA=EC=p\end{array}\right\|$ . Thus, $\triangle EAD\sim\triangle EBA\implies$ $\frac {EA}{EB}=\frac {ED}{EA}\iff$ $\boxed{n(m+n)=p^2}\ (*)$ . Observe that $DG\parallel AB\iff$

$\frac {GA}{GC}=\frac m{n+p}$ . Apply the Menelaus' theorem to the transversal $\overline {BJG}/\triangle ACE\ :\ \frac {BE}{BC}$ $\cdot\frac {GC}{GA}\cdot\frac{JA}{JE}=1\iff$ $\frac {m+n}{m+n+p}\cdot\frac {n+p}{m}\cdot\frac{JA}{JE}=1\iff$

$\frac{JA}{JE}=\left(1+\frac p{m+n}\right)\cdot\frac m{n+p}\stackrel{(*)}{=}$ $\left(1+\frac np\right)\cdot\frac m{n+p}=$ $\frac mp\iff$ $\boxed{\frac {JA}{m}=\frac {JE}p=\frac p{m+p}}\ (1)$ . With $m\left(\widehat{AEB}\right)=60^{\circ}$ apply the generalized Pythagoras' theorem in triangles $:$

$\left\{\begin{array}{ccc}
JB/\triangle BJE\ : & JB^2=JE^2+BE^2-JE\cdot BE\\\\
JC/\triangle CJE\ : & JC^2=JE^2+CE^2+JE\cdot CE\end{array}\right\|\implies$ $JB^2-JC^2=\left(BE^2-CE^2\right)-JE(BE+CE)=$ $(BE+CE)(BE-CE-JE)$ .

Therefore, $JB=JC\iff$ $BE=CE+JE\stackrel{(1)}{\iff}$ $m+n=p+\frac {p^2}{m+p}\stackrel{(*)}{\iff}$ $\frac {p^2}n=p+\frac {p^2}{\frac {p^2-n^2}{n}+p}\iff$ $p^3+n^3=3n^2p\stackrel{\left(t=\frac pn\right)}{\iff}$ $t^3+1=3t$ , where

$t=\frac pn=\frac {AE}{DE}=\frac {\sin\widehat{ADE}}{\sin\widehat{DAE}}=\frac {\sin 80^{\circ}}{\sin 40^{\circ}}\implies$ $\boxed{t=2\cos40^{\circ}}\ (2)$ , i.e. $\cos 40^{\circ}=\frac t2$ . Can prove easily that $t=2\cos 40^{\circ}$ verifies the equation $t^3+1=3t$ .

Indeed, $-\frac 12=\cos 120^{\circ}=$ $\cos 40^{\circ}\left(4\cos^240^{\circ}-3\right)=$ $\frac t2\left(4\cdot\frac {t^2}4-3\right)\implies$ $-1=t\left(t^2-3\right)\implies$ $t^3+1=3t$ . In conclusion, $t^3+1=3t\iff JB=JC$ .



P4 (M.O.Sanchez). Let an $A$-isosceles $\triangle BAD$ with the circumcircle $w$ . For $M\in (BD)$ denote its symmetrical

$F$ w.r.t. $D$ and $\left\{\begin{array}{c}
\{A,C\}=\{A,M\}\cap w\\\\
\{A,F\}=\{A,E\}\cap w\end{array}\right\|$ . Prove that $\frac {MB}{MN}=\frac {FB}{FN}$ , i.e. the division $(B,N;M,F)$ is harmonically.


Proof. $NE\cdot NC=ND\cdot NB\ (*)$ and $\widehat{ADB}\equiv\widehat{ABD}\implies$ $\widehat{EFM}\equiv\widehat{ECM}\iff$ $EFCM$ is cyclic $\iff$

$NF\cdot NM=NE\cdot NC\stackrel{(*)}{\iff}$ $NF\cdot NM=ND\cdot NB\iff$ $(B,N;M,F)$ is harmonic.



P5 (BMO, 2013). The $A$-exincircle $w_a$ of $\triangle ABC$ is tangent to $AB$ , $AC$ in $P$ , $Q$ respectively. The $B$-exincircle $w_b$

is tangent to $BA$ , $BC$ in $M$ , $N$ respectively. Let $\left\{\begin{array}{c}
K\in MN\ ,\ CK\perp MN\\\\
L\in PQ\ ,\ CL\perp PQ\end{array}\right\|$ . Prove that $MKLP$ is cyclic.


Proof. Denote $S\in KM\cap LP$ . Observe that $AM=BP=s-c$ , $MP=a+b$ and $\left\{\begin{array}{c}
m\left(\widehat{PMS}\right)=90^{\circ}-\frac B2\\\\
m\left(\widehat{MPS}\right)=90^{\circ}-\frac A2\\\\
m\left(\widehat{MSP}\right)=90^{\circ}-\frac C2\end{array}\right\|$ . Apply the theorem of Sines in $\triangle MPS\ :\ \frac {a+b}{\cos\frac C2}=$

$\frac {SM}{\cos \frac A2}=\frac {SP}{\cos \frac B2}\implies$ $SM^2-SP^2=\frac {(a+b)^2}{\cos^2\frac C2}\cdot\left(\cos ^2\frac A2-\cos^2\frac B2\right)=$ $\frac {ab(a+b)^2}{2s(s-c)}\cdot(\cos A-\cos B)=$ $\frac {ab(a+b)^2}{2s(s-c)}\cdot\frac {2(b-a)s(s-c)}{abc}\implies$

$\boxed{SM^2-SP^2=\frac {(a+b)(b^2-a^2)}{c}}$ . Apply the theorem of Cosines in the triangles $CAM$ and $CBM\ :\ \left\{\begin{array}{c}
CM^2=(s-c)^2+b^2+2b(s-c)\cos A\\\\
CP^2=(s-c)^2+a^2+2a(s-c)\cos B\end{array}\right\|\implies$

$CM^2-CP^2=b^2-a^2+2(s-c)(b\cos A-a\cos B)$ . Observe that $b\cos A-a\cos B=$ $\frac {b^2-a^2}{c}$ and $CM^2-CP^2=$ $b^2-a^2+2(s-c)\cdot \frac {b^2-a^2}{c}=$

$\left(b^2-a^2\right)\cdot\left(1+\frac {a+b-c}{c}\right)\implies$ $\boxed{CM^2-CP^2=\frac {(a+b)(b^2-a^2)}{c}}$ . Thus, $SM^2-SP^2=CM^2-CP^2=\frac {(b-a)(a+b)^2}{c}\implies$ $SC\perp AB$ .

Denote $R\in SC\cap AB$ . Since $RMKC$ and $RPLC$ are cyclically obtain that $\left\{\begin{array}{c}
SC\cdot SR=SK\cdot SM\\\\
SC\cdot SR=SL\cdot SP\end{array}\right\|\implies$ $SK\cdot SM=SL\cdot SP\implies$ $MKLP$ is cyclically.



P6. Let $A$-right-angled $\triangle ABC$ with incircle $w=\mathbb C(I,r)$ which touches $BC$ , $CA$ , $AB$ at $D$ , $E$ , $F$ respectively. Let $\{M,E\}=BE\cap w$ . Prove that $EM=MB+BF$ .

Proof. Denote $BM=x$ , $ME=y$ and $L\in DF\cap AC$ . Thus, $\frac {LA}{EA}=\frac {LC}{EC}\implies$ $\frac {LA}{s-a}=\frac {LC}{s-c}=\frac b{a-c}\implies$ $LA=\frac {b(s-a)}{a-c}=$ $\frac {b(b+c-a)}{2(a-c)}=\frac {b^2-b(a-c)}{2(a-c)}=$

$\frac {\left(a^2-c^2\right)-b(a-c)}{2(a-c)}=\frac {a+c-b}2\implies$ $\boxed{LA=s-b}$ and $LE=LA+AE=(s-b)+(s-a)\implies$ $\boxed{LE=c}$ . From the well-known property $LI\perp BE$ obtain that $LM$ is

tangent to $w$ and $LM=LE=c$ . Since $(A,C;E,L)$ is an harmonical division and $MA\perp MC$ obtain that the ray $[MA$ is the bisector of the angle $\widehat{EML}$ , i.e. $\frac {ME}{ML}=\frac {AE}{AL}\iff$

$\frac yc=\frac {s-a}{s-b}\iff$ $\boxed{y=\frac {c(s-a)}{s-b}}\ (*)$ . Observe that $1+\frac yx=\frac {x+y}x=\frac {(x+y)^2}{x(x+y)}=$ $\frac {c^2+(s-a)^2}{(s-b)^2}\implies$ $\frac yx=\frac {c^2+(s-a)^2-(s-b)^2}{(s-b)^2}=$ $\frac {c^2-c(a-b)}{(s-b)^2}\implies$

$\boxed{\frac yx=\frac {2c(s-a)}{(s-b)^2}}\ \stackrel{(*)}{\implies}\ \boxed{x=\frac {s-b}2}$ . In conclusion, $x(x+y)=(s-b)^2\implies$ $x+y=\frac {(s-b)^2}x=\frac {(s-b)^2}{\frac {s-b}2}=2(s-b)=2\cdot 2x\implies x+y=4x\implies$

$\boxed{y=3x}\implies$ $y-x=2x=s-b\implies$ $y=x+(s-b)\implies$ $EM=MB+BF$ .



P7 (Ruben Auqui). Let an $A$-rightangled $\triangle ABC$ . Denote the points $\left\{\begin{array}{ccc}
H\in (BC) & ; & AH\perp BC\\\\
E\in (AC) & ; & CE=AB\\\\
A\in (BF) & ; & BF=AC\end{array}\right\|$ and $\left\{\begin{array}{c}
G\in AH\cap BE\\\\
D\in AH\cap CF\end{array}\right\|$ . Prove that $\frac {AD}{AG}=\frac {AC}{AB}$ .

Proof 1 (metric). Denote $\left\{\begin{array}{ccc}
BC & = & a\\\
CA & = & b\\\
AB & = & c\end{array}\right\|$ and $AH=h$ . Thus, $ah=bc$ and $AE=AF=b-c$ . Apply the Menelaus' theorem to the transversals $\begin{array}{cc}
\nearrow & \overline{BGE}/\triangle ACH\ :\\\\
\searrow & \overline{CDF}/\triangle ABH\ :\end{array}$

$\left\{\begin{array}{ccccccc}
\frac {BH}{BC}\cdot\frac {EC}{EA}\cdot\frac {GA}{GH}=1 & \implies& \frac {c^2}{a^2}\cdot\frac {c}{b-c}\cdot \frac {GA}{GH}=1 & \implies & \frac {GA}{a^2(b-c)}=\frac {GH}{c^3}=\frac h{a^2b-c\left(a^2-c^2\right)}=\frac {h}{a^2b-b^2c}=\frac {bc}{ab\left(a^2-bc\right)}=\frac c{a\left(a^2-bc\right)} & \implies & AG=\frac{ac(b-c)}{a^2-bc}\\\\
\frac {CH}{CB}\cdot\frac {FB}{FA}\cdot\frac {DA}{DH}=1 & \implies& \frac {b^2}{a^2}\cdot\frac {b}{b-c}\cdot \frac {DA}{DH}=1 & \implies & \frac {DA}{a^2(b-c)}=\frac {DH}{b^3}=\frac h{b^3-a^2(b-c)}=\frac {h}{a^2c-bc^2}=\frac {bc}{ac\left(a^2-bc\right)}=\frac b{a\left(a^2-bc\right)} & \implies & AD=\frac{ab(b-c)}{a^2-bc}\end{array}\right\|$ $\implies\frac {AD}{AG}=\frac {AC}{AB}$ .

Proof 2 (trigonometric). Denote $\left\{\begin{array}{ccc}
m\left(\widehat{ABE}\right) & = & x\\\
m\left(\widehat{ACD}\right) & = & y\end{array}\right\|$ , where $AE=AF=b-c$ and $\boxed{c\tan x=b\tan y=b-c}\ (*)$ . Apply the theorem of Sines in the triangles $:$

$\left\{\begin{array}{cccccccccc}
\triangle ABG\ : & \frac {AG}{\sin\widehat{ABG}}=\frac {AB}{\sin\widehat{AGB}} & \implies & \frac {AG}{\sin x}=\frac {c}{\sin (x+C)} & \implies & AG=\frac {c\tan x}{\tan x\cos C+\sin C} & \stackrel{(*)}{\implies} & AG=\frac {ac(b-c)}{b(b-c)+c^2} & \implies & AG=\frac {ac(b-c)}{a^2-bc}\\\\
\triangle ACD\ : & \frac {AD}{\sin\widehat{ACD}}=\frac {AC}{\sin\widehat{ADC}} & \implies & \frac {AD}{\sin y}=\frac {b}{\sin (B-y)} & \implies & AD=\frac {b\tan y}{\sin B-\cos B\tan y} & \stackrel{(*)}{\implies}  & AD=\frac {ab(b-c)}{b^2-c(b-c)} & \implies & AD=\frac {ab(b-c)}{a^2-bc}\end{array}\right\|$ $\implies\frac {AD}{AG}=\frac {AC}{AB}$ .

Proof 3 (synthetic).

Remark. $\boxed{\frac {AD}{AC}=\frac {AG}{AB}=\frac {a(b-c)}{a^2-bc}}$ . Prove easily that the following interesting relation $:\ \frac {HD}{HG}=\left(\frac {AD}{AG}\right)^4$ .



P8. Let $\triangle ABC$ with $A>B$ and $D\in (BC)$ so that $\frac {DB}{DC}=m>0$ . Denote the intersection $P$ between the $A$-bisector of $\triangle ABD$

and the $C$-bisector of $\triangle ABC$ . Prove that $PA\perp PC\iff$ $b\sqrt{m+1}=a\sqrt m$ and ascertain the maximum value of the angle $\widehat{ABC}$ .


Proof. Observe that $\frac {DB}m=DC=\frac {a}{m+1}$ . Denote $m\left(\widehat{CAD}\right)=y$ and $m\left(\widehat{PAB}\right)=m\left(\widehat{PAD}\right)=x$ . Thus, $PA\perp PC\iff$ $\left\{\begin{array}{ccc}
2x+y & = & A\\\\
x+y & = & 90^{\circ}-\frac C2\end{array}\right\|$ $\iff$

$\left\{\begin{array}{ccc}
x & = & \frac {A-B}2\\\\
y & = & B\end{array}\right\|$ $\iff \triangle ABC\sim\triangle DAC\iff$ $\frac {CA}{CB}=\frac {CD}{CA}\iff$ $b^2=\frac {ma^2}{m+1}\iff$ $\boxed{b\sqrt {m+1}=a\sqrt m}\ (*)$ . In this case $\cos B=\frac {a^2+c^2-b^2}{2ac}\ \stackrel{(*)}{=}$

$\frac {(m+1)a^2+(m+1)c^2-ma^2}{2(m+1)ac}=$ $\frac {a^2+(m+1)c^2}{2(m+1)ac}\ge$ $\frac {2ac\sqrt{m+1}}{2(m+1)ac}=$ $\frac 1{\sqrt{m+1}}\implies$ $\cos B\ge \frac 1{\sqrt{m+1}}\implies$ $\boxed{B\le\arccos \frac 1{\sqrt{m+1}}}$ .

Two particular cases $:\ \left\{\begin{array}{ccccc}
m=1 & \implies & B & \le & 45^{\circ}\\\\
m=3 & \implies & B & \le & 60^{\circ}\end{array}\right\|$ .



P9. Let the semicircle $\alpha =\mathbb S(O,1)$ with the diameter $[AB]$ and the quadrant $\beta =\mathbb Q(A,1)$ with the arc $\overarc[]{OC}$ ,

where $AC\perp AO\ ,\ E\in \alpha\cap\beta$ so that $AB$ doesn't separate $C$ and $E$ . Prove that $\left[B\overarc[]{OE}B\right]=2\left[A\overarc[]{CE}\overarc[]{EA}\right]$ .


Proof. Denote $\left\{\begin{array}{ccc}
\left[A\overarc[]{CE}\overarc[]{EA}\right] & = & S_1\\\\
\left[B\overarc[]{OE}B\right] & = & S_2\end{array}\right\|\ ,\ y=[AOE]$ and $\left[\overarc[]{AE}A\right]=x=\left[\overarc[]{OE}O\right]$ $\implies$ $\left\{\begin{array}{ccccc}
[OEA]=[OEB] & \implies & y=x+S_2\\\\
\left[A\overarc[]{EO}A\right]=2\left[A\overarc[]{CE}A\right] & \implies & y+x=2\left(S_1+x\right)\end{array}\right\|$ $\implies \boxed{S_2=y-x=2S_1}$ .


P10 (Miguel Ochoa Sanchez). Let $\Delta\equiv ABC$ where denote: the exterior $B$-bisector of $\Delta$ cut $AC$ at $E\ ;$ the exterior $C$-bisector of $\Delta$ cut $AB$

at $F\ ;$ the projections $M$ , $N$ and $Q$ of a mobile point $P\in (EF)$ on the sidelines $AC$ , $AB$ and $BC$ respectively. Prove that $PQ=PM+PN$ .


Proof 1. Denote: the projections $U$ , $X$ of $E$ on $BC$ , $BA$ respectively; the projections $V$ , $Y$ of $F$ on $BC$ , $CA$ respectively $;\ \left\{\begin{array}{ccc}
PM=a\ ,\ PN=b & ; & PE=c\ ,\ PF=d\\\\
EU=EX=n & ; & FV=FY=m\end{array}\right\|$ .

Observe that $\left\{\begin{array}{ccccc}
PM\parallel FY & \implies & \frac am=\frac c{c+d} & \implies & a=\frac {mc}{c+d}\\\\
PN\parallel EX & \implies & \frac bn=\frac d{c+d} & \implies & b=\frac {nd}{c+d}
\end{array}\right\|$ $\bigoplus\implies$ $\boxed{a+b=\frac {mc+nd}{c+d}}\ (*)$ . Prove easily that in the trapezoid $EFVU$ , where $P\in EF$ ,

$Q\in UV$ and $PQ\parallel EU\parallel FV$ there is the well-known relation $PQ=\frac {FV\cdot PE+EU\cdot PF}{EF}=$ $\frac {mc+nd}{c+d}\ \stackrel{(*)}{=}\ PQ=PM+PN$ (J. D. Valdivia Fuentes' proof).

Proof 2 (own). Denote the area $S$ of $\triangle ABC$ and $\left\{\begin{array}{ccc}
PQ & = & x\\\
PM & = & y\\\
PN & = & z\end{array}\right\|$ , Observe that $[BPC]=[ABC]+[PAB]+[PAC]\iff$

$\boxed{ax=2S+by+cz}\ (*)$ . From $\left\{\begin{array}{ccc}
\frac {EA}c=\frac {EC}a=\frac b{a-c} & \implies & \frac {AE}{AC}=\frac c{a-c}\\\\
\frac {FA}b=\frac {FB}a=\frac c{a-b} & \implies & \frac {AF}{AB}=\frac b{a-b}\end{array}\right\|$ $\implies$ $\frac {[EAF]}{[ABC]}=\frac {AE}{AC}\cdot\frac{AF}{AB}\implies$ $\boxed{[EAF]=\frac {bcS}{(a-b)(a-c)}}\ (1)$ .

Since $[EAF]=[PAE]+[PAF]=y\cdot AE+z\cdot AF$ obtain that $\frac {2bcS}{(a-c)(a-b)}=y\cdot\frac {bc}{a-c}+z\cdot\frac {bc}{a-b}\implies$ $\boxed{2S=y(a-b)+z(a-c)}\ (2)$ .

From the sum of the relations $(*)$ and $(2)$ obtain that $ax=by+cz+y(a-b)+z(a-c)=ay+az\implies$ $x=y+z$ .


Lemma 1. Let $ABCD$ be a trapezoid where $AD\parallel BC$ and $M\in (AB)$ , $N\in (CD)$ so that $MN\parallel AD$ . Denote $\left\{\begin{array}{ccc}
AD=a & ; & BC=b\\\\
MA=c & ; & MB=d\end{array}\right\|$ . Then $MN=\frac {cb+da}{c+d}$ .

Lemma 2. Let a quadrilateral $ABCD$ and a point $M\in (AB)$ . Then there is the relation $MA\cdot [BCD]+MB\cdot [ACD]=AB\cdot [MCD]$ , where $[XYZ]$ is the area of $\triangle XYZ$ .



P11 (Sunken Rock). Let $\Delta\equiv ABC$ where denote: the interior $B$-bisector of $\Delta$ cut $AC$ at $E\ ;$ the interior $C$-bisector of $\Delta$ cut $AB$ at $F\ ;$

the projections $M$ , $N$ and $Q$ of a mobile point $P\in (EF)$ on the sidelines $AC$ , $AB$ and $BC$ respectively. Prove that $PQ=PM+PN$ .


Proof (own). Denote the area $S$ of $\triangle ABC$ and $\left\{\begin{array}{ccc}
PQ & = & x\\\
PM & = & y\\\
PN & = & z\end{array}\right\|$ , Observe that $[BPC]=[ABC]-[PAB]-[PAC]\iff$

$\boxed{ax=2S-zc-by}\ (*)$ . From $\left\{\begin{array}{ccc}
\frac {EA}c=\frac {EC}a=\frac b{a+c} & \implies & \frac {AE}{AC}=\frac c{a+c}\\\\
\frac {FA}b=\frac {FB}a=\frac c{a+b} & \implies & \frac {AF}{AB}=\frac b{a+b}\end{array}\right\|$ $\implies$ $\frac {[EAF]}{[ABC]}=\frac {AE}{AC}\cdot\frac{AF}{AB}\implies$ $\boxed{[EAF]=\frac {bcS}{(a+b)(a+c)}}\ (1)$ .

Since $[EAF]=[PAE]+[PAF]=y\cdot AE+z\cdot AF$ obtain that $\frac {2bcS}{(a-c)(a-b)}=y\cdot\frac {bc}{a+c}+z\cdot\frac {bc}{a+b}\implies$ $\boxed{2S=y(a+b)+z(a+c)}\ (2)$ .

From the sum of the relations $(*)$ and $(2)$ obtain that $ax=-by-cz+y(a+b)+z(a+c)=ay+az\implies$ $x=y+z$ .


An easy extension. Let $\triangle ABC$ and $\left\{\begin{array}{ccc}
E\in (AC) & ; & \frac {EA}{EC}=m\\\\
F\in (AB) & ; & \frac {FA}{FB}=n\end{array}\right\|$ . For a point $M\in (EF)$ denote $:$

$\left\{\begin{array}{ccc}
Q\in BC\ ,\ PQ\perp BC & ; & PQ=x\\\\
M\in CA\ ,\ PM\perp CA & ; & PM=y\\\\
N\in AB\ ,\ PN\perp AB & ; & PN=z\end{array}\right\|$ . Prove that $[PBC]=\frac 1n\cdot  [PAC]+\frac 1m\cdot [PAB]$ , i.e. $ax=\frac {by}n+\frac {cz}m$ .



P12. The figure is an equilateral triangle surrounded by $3$ congruent rectangles of width $1$ all inscribed in a circle of radius $3$. Find the length of the side of the equilateral triangle.

Proof. Let $:\ \Omega=\mathbb C(O,R)$ and $w=\mathbb C(O,r)$ , where $r<R\ ;$ equilateral $\triangle ABC$ which is inscribed in $w$ with $AB=x\ ;$ $\{D,E\}\subset \Omega$ so that $ABDE$ is a rectangle with $BD=l\ ;$

the midpoint $M$ of $[DE]\ .$ Prove easily that $OM=l+\frac x{2\sqrt 3}$ . Apply Pythagora's theorem in the $M$-right $\triangle OME\ :$ $ME^2+MO^2=OE^2\iff$ $\left(\frac x2\right)^2+\left(l+\frac x{2\sqrt 3}\right)^2=R^2$

$\iff$ $x^2+xl\sqrt 3-3\left(R^2-l^2\right)=0\iff$ $\boxed { x=\frac {\sqrt 3}2\cdot\left(-l+\sqrt{4R^2-3l^2}\right) }$ . For $R=3\ ,\ l=1$ obtain that $x=\frac {\sqrt 3}2\cdot\left(-1+\sqrt{33}\right)\ ,$ i.e. $\boxed{x=\frac {-\sqrt 3+3\sqrt {11}}{2}}$ .



P13. Let a semicircle $s=\mathbb S(O,R)$ with diameter $[AB]$ and the circles $\left\{\begin{array}{ccc}
\alpha  & = & \mathbb C(X,x)\\\
\beta & = & \mathbb C(Y,y)\\\
\gamma & = & \mathbb C(Z,z)\end{array}\right\|$ what are tangent to $AB$ and interior tangent to the semicircle $s$ so
that $x\ne z\ ,$ i.e. $2y\ne R$ and the circle $\beta$ is exterior tangent to the circles $\alpha$ and $\gamma\ .$ Prove that there is the relation $(x-z)^2y^2-16xz(x+z)y+60x^2z^2=0\ .$


Proof.Denote the tangent points $(U,V,W)$ of the circles $(\alpha ,\beta ,\gamma )$ with the line $AB$ respectively. Apply the Pythagoras' theorem to the triangles $:$

$\left\{\begin{array}{ccccccc}
\triangle OUX\ : & UO^2+UX^2=OX^2 & \iff & UO^2+x^2=(R-x)^2 & \iff & UO=\sqrt {R^2-2xR} & (1)\\\\
\triangle OVY\ : & VO^2+VY^2=OY^2 & \iff & VO^2+y^2=(R-y)^2 & \iff & VO=\sqrt {R^2-2yR} & (2)\end{array}\right\|$ and to the triangle $OWZ\ :\ WO^2+WZ^2=OZ^2\iff$

$\left(OV+VW\right)^2= R^2-2zR\iff$ $\left(\sqrt{R^2-2yR}+2\sqrt{yz}\right)^2=R^2-2zR\iff$ $2yz-yR+2\sqrt{yz\left(R^2-2yR\right)}=-zR\iff$ $\left[(y-z)R-2yz\right]^2=4yz\left(R^2-2yR\right)$

$\iff$ $(y-z)^2R^2+4y^2z^2-4yz(y-z)R-4yzR^2+8y^2zR=0\iff$ $\boxed{\left(y^2-6yz+z^2\right)R^2+4yz(y+z)R+4y^2z^2=0}\ (3)\ .$ Observe that $OU+OV=UV\iff$

$\sqrt{R^2-2xR}+\sqrt{R^2-2yR}=2\sqrt{xy}\iff$ $R^2-R(x+y)+\sqrt{\left(R^2-2xR\right)\left(R^2-2yR\right)}=2xy\iff$ $\left(R^2-2xR\right)\left(R^2-2yR\right)=\left[R(x+y)+2xy-R^2\right]^2\iff$

$\boxed{\left(y^2-6yx+x^2\right)R^2+4yx(y+x)R+4y^2x^2=0}\ (4)\ .$ Let the matrix $\left(\begin{array}{ccc}
y^2-6yz+z^2 & 4yz(y+z) & 4y^2z^2\\\\
 y^2-6yx+x^2 & 4yx(y+x) & 4y^2x^2\end{array}\right)\ .$ The elimination of $R$ between the relations

$(3)$ and $(4)$ becomes the following relation with the determinants $:\ \left|\begin{array}{cc}
y^2-6yz+z^2 & 4y^2z^2\\\\
 y^2-6yx+x^2 & 4y^2x^2\end{array}\right|^2=$ $\left|\begin{array}{cc}
y^2-6yz+z^2 & 4yz(y+z)\\\\
 y^2-6yx+x^2 & 4yx(y+x)\end{array}\right|\cdot\left|\begin{array}{cc}
4yz(y+z) & 4y^2z^2\\\\
4yx(y+x) & 4y^2x^2\end{array}\right|\iff$

$\left|\begin{array}{cc}
y^2-6yz+z^2 & z^2\\\\
y^2-6yx+x^2 & x^2\end{array}\right|^2=$ $4\cdot \left|\begin{array}{cc}
y^2-6yz+z^2 & z(y+z)\\\\
y^2-6yx+x^2 & x(y+x)\end{array}\right|\cdot\left|\begin{array}{cc}
z(y+z) & z^2\\\\
x(y+x) & x^2\end{array}\right|\iff$ $\boxed{(x-z)^2y^2-16xz(x+z)y+60x^2z^2=0}\ .$



P14 (GMB, Batinetu-Giurgiu si Neculai Stanciu). Let $\triangle ABC$ with the area $S\ .$ Prove that $4S=(a+b)\sqrt{ab}\iff$ $a=b\ \wedge\ C=90^{\circ}\ .$

Proof 1. Denote the projection $D$ of $C$ on $AB$ and the midpoint $M$ of the side $[AB]\ .$ Thus, $CD\perp AB\iff$ $CA^2-CB^2=DA^2-DB^2\iff$ $b^2-a^2=(MA-MD)^2-$

$(MB+MD)^2$ $\iff$ $\left|b^2-a^2\right|=2c\cdot MD\iff$ $\boxed{2c\cdot MD=\left|a^2-b^2\right|}\ (1)\ .$ Apply the Pythagoras' theorem in $D$-right-angled $\triangle CDM\ :\ DC^2+DM^2=CM^2\iff$

$h_c^2+DM^2=m_c^2\iff$ $4c^2h_c^2+4c^2\cdot DM^2=4c^2m_c^2\iff$ $\boxed{16S^2+\left|a^2-b^2\right|^2=c^2\left[2\left(a^2+b^2\right)-c^2\right]}\ (2)\ .$ Thus, $4S=(a+b)\sqrt{ab}\iff$ $ab(a+b)^2=16S^2\iff$

$ab(a+b)^2=c^2\left[2\left(a^2+b^2\right)-c^2\right]-$ $\left|a^2-b^2\right|^2$ $\iff$ $c^4-2c^2\left(a^2+b^2\right)+\left(a^2-b^2\right)^2+ab(a+b)^2=0\iff$ $c^4-2c^2\left(a^2+b^2\right)+\left(a^2+b^2\right)^2-4a^2b^2+$

$ab(a+b)^2=0$ $\iff$ $\left[\left(a^2+b^2\right)-c^2\right]^2+ab\left[(a+b)^2-4ab\right]=0\iff$ $\left(a^2+b^2-c^2\right)^2+ab(a-b)^2=0\iff$ $a^2+b^2=c^2\ \wedge\ a=b\ ,$ i.e. $\underline{\underline{CA=CB}}$ and $\underline{\underline{CA\perp CB}}\ .$

Proof 2. I"ll use $S=\frac {ab\cdot\sin C}2\ .$ Thus, $4S=(a+b)\sqrt{ab}\iff$ $2ab\cdot\sin C=(a+b)\sqrt{ab}\iff$ $\boxed{a+b=2\sqrt{ab}\cdot \sin C}\ (1)\ .$ From the previous relation $(1)$ and the inequality

$\mathrm{A.M.\ge G.M.}$ obtain that $a+b\ge 2\sqrt{ab}\ \stackrel{(1)}{\implies}\ 2\sqrt{ab}\cdot\sin C\ge 2\sqrt{ab}$ $\implies$ $\sin C\ge 1\implies$ $\underline{\underline{C=90}}^{\circ}$ and from the relation $(1)$ obtain finally that $a+b=2\sqrt{ab}\ ,$ , i.e. $\underline{\underline{a=b}}\ .$

Proof 3. I"ll use the identity $\boxed{16S^2=2\left(a^2b^2+b^2c^2+c^2a^2\right)-\left(a^4+b^4+c^4\right)}\ (1)\ .$ Therefore, $4S=(a+b)\sqrt{ab}\iff$ $16S^2=(4S)^2=ab(a+b)^2\iff$

$2a^2b^2+2c^2\left(a^2+b^2\right)-$ $\left(a^4+b^4\right)-c^4=$ $ab(a+b)^2\iff$ $ab\left(a^2+b^2+\cancel{2ab}\right)+$ $c^4-2c^2\left(a^2+b^2\right)+$ $\left(a^4+b^4\right)-\cancel{2a^2b^2}=0\iff$ $ab\left(a^2+b^2\right)+$ $c^4-2c^2\left(a^2+b^2\right)+$

$\left(a^4+b^4\right)=0\iff$ $\left[\left(a^2+b^2\right)-c^2\right]^2-$ $2a^2b^2+ab(a-b)^2=0\iff$ $\left(a^2+b^2-c^2\right)^2+ab(a-b)^2=0\iff$ $ a^2+b^2=c^2$ and $a=b\ ,$ i.e. $C=90^{\circ}$ and $a=b\ .$

Proof 4. $(2ab\cos C)^2+ab(a-b)^2=$ $4a^2b^2\left(\cancel 1-\sin^2C\right)+ab\left[(a+b)^2-\cancel{4ab}\right]=$ $-(2ab\sin C)^2+(4S)^2=0$ $\implies$ $(2ab\cos C)^2+ab(a-b)^2=0$ $\implies$ $\begin{array}{cccc}
\nearrow & C=90^{\circ}\\\\
\searrow & a=b\end{array}$



P15 (Miguel Ochoa Sanchez). Let $ABC$ be a triangle with the incircle $w=\mathbb C(I,r)$ what touches $\triangle ABC$ at $E\in (EF),$ $F\in (AB)$

and $D\in BC.$ For the midpoint point $M$ of $\overarc{EF}\subset w$ denote $X\in EF\cap MB$ and $Y\in EF\cap MC.$ Prove that $XF+YE=XY.$


Proof 1. Let $K\in \overline {AMI}\cap EF$ where $KE=KF.$ Prove easily that $[EM$ is the bisector of $\widehat {AEF},$ i.e. $\boxed{\frac {MA}{MK}=\frac {EA}{EK}=\frac {IA}{IE}}\ (*).$ Apply the Menelaus' theorem to the transversals $:$

$\left\{\begin{array}{cccc}
\overline{BXM}/\triangle AFK\ : & \frac {BF}{BA}\cdot\frac {MA}{MK}\cdot\frac {XK}{XF}=1 & \implies & \frac {XF}{XK}=\frac {BF}{BA}\cdot\frac {MA}{MK}\\\\ 
\overline{CYM}/\triangle AEK\ : & \frac {CE}{CA}\cdot\frac {MA}{MK}\cdot\frac {YK}{YE}=1 & \implies & \frac {YE}{YK}=\frac {CE}{CA}\cdot\frac {MA}{MK}\end{array}\right\|$ $\bigodot$ $\implies$ $\frac {XF\cdot YE}{XK\cdot YK}\ \stackrel{(*)}{=}$ $\frac {(s-b)(s-c)}{bc}\cdot\left(\frac {IA}{IE}\right)^2=$ $\frac {(s-b)(s-c)}{bc}\cdot\frac {bc(s-a)}{sr^2}=1.$ Therefore,

$\frac {XF\cdot YE}{XK\cdot YK}=1\implies$ $\frac {XF}{KY}=\frac {XK}{YE}=\frac {XF+XK}{KY+YE}=\frac {KF}{KE}=1,$ i.e. $XF=KY$ and $XK=YE$ $\implies$ $XF+YE=XK+KY\implies XF+YE=XY.$
This post has been edited 247 times. Last edited by Virgil Nicula, Jul 15, 2017, 5:33 PM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Excelent

by viterick, Dec 25, 2017, 5:39 PM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a