149. Some (8) problems with collinearity or concurrence.

by Virgil Nicula, Oct 7, 2010, 8:42 PM

PP1. Denote the tangent $TT$ to the circle $w$ in the point $T\in w$ . Let $ABC$ be a triangle with the circumcircle $w$ . For an interior point $X$ w.r.t. $\triangle ABC$ denote

the second intersections $R$ , $Q$ , $S$ of $AX$ , $BX$ , $CX$ with the circle $w$ and $M\in RR\cap BC$ , $N\in QQ\cap CA$ , $P\in SS\cap AB$ . Prove that $P\in MN$ .


Proof. Denote $\left\{\begin{array}{c}
D\in AX\cap BC\\\
E\in BX\cap CA\\\
F\in CX\cap AB\end{array}\right\|$ . From the well-known relations $\frac {MB}{MC}=\left(\frac {RB}{RC}\right)^2$ and $\frac {DB}{DC}= \frac {BA\cdot BR}{CA\cdot CR}$ obtain

$\frac {MB}{MC}=\left(\frac {DB}{DC}\cdot\frac bc\right)^2$ . Show analogously $\frac {NC}{NA}=\left(\frac {EC}{EA}\cdot\frac ca\right)^2$ and $\frac {PA}{PB}=\left(\frac {FA}{FB}\cdot\frac ab\right)^2$ . Apply the Menelaus' theorem :

$\frac {MB}{MC}\cdot\frac {NC}{NA}\cdot\frac {PA}{PB}=\left(\frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}\right)^2=1$ because $AD\cap BE\cap CF\ne\emptyset$ . In conclusion, $P\in MN$ .



PP2 (Матматика в школе, nr.4/1984, pr. 2760). Let $\triangle ABC$ with circumcirle $w=C(O,R)$ . Denote $\left\|\begin{array}{ccc}
M\in AA & ; & OM\parallel BC\\\
N\in BB & ; & ON\parallel CA\\\
P\in CC & ; & OP\parallel AB\end{array}\right\|$ . Prove that $P\in MN$ .

Proof. Denote the orthocenter $H$ of $\triangle ABC$ and $\left\|\begin{array}{c}
M_1\in OM\cap AH\\\
N_1\in ON\cap BH\\\
P_1\in OP\cap CH\end{array}\right\|$ . Observe that the circumcircle of $\triangle M_1N_1P_1$ is the circle with diameter $[OH]$

and $OM_1\cdot OM=ON_1\cdot ON=OP_1\cdot OP=R^2$ .Therefore, the points $M$ , $N$ , $P$ are inversely to the points $M_1$ , $N_1$ , $P_1$ respectively in the inversion

with the modulus $R^2$ and the pole $O$ which belongs to the circumcircle of $\triangle M_1N_1P_1$ . In conclusion, $P\in MN$ and $\overline{MNP}\perp OH$ .



PP3. Let $ABCDEF$ be a hexagon which is inscribed in a circle $w$ . For a point $L\in w$ define the points $M\in LD\cap BC$ ,

$N\in LE\cap CA$ , $P\in LF\cap AB$ . Prove that $\boxed{AD\cap BE\cap CF\ne\emptyset\ \implies\ P\in MN\ \ \wedge\ \ I\in \overline{MNP}}$ .


Proof. Apply the Pascal's theorem to the following cyclical hexagons : $\left|\begin{array}{cccc}
ABCFLD\ : & \left|\begin{array}{c}
P\in AB\cap FL\\\
M\in BC\cap LD\\\
I\in CF\cap DA\end{array}\right| & \implies & I\in PM\\\\
BCADLE\ : & \left|\begin{array}{c}
M\in BC\cap DL\\\
N\in CA\cap LE\\\
I\in AD\cap EB\end{array}\right| & \implies & I\in MN\\\\
CABELF\ : & \left|\begin{array}{c}
N\in CA\cap EL\\\
P\in AB\cap LF\\\
I\in BE\cap FC\end{array}\right| & \implies & I\in PM\end{array}\right|$ .


PP4. Consider $A\not\in BC$ , $\{D,E,F\}\subset (BC)$ so that $D\in (BF)$ and $E\in (FC)$ . For $M\in AF$ define $U\in BM\cap AD$ , $V\in CM\cap AE$ ,

$X\in FU\cap AB$ , $Y\in FV\cap AC$ . Prove that $UV$ , $XY$ , $BC$ are concurrently in $S$ for which $\frac {SB}{SC}=\frac {BD}{CE}\cdot\frac {FE}{FD}$ and $\frac {SD}{SE}=\frac {BD}{CE}\cdot\frac {FC}{FB}$ (V.N.).


Proof. Denote $S\in UV\cap BC$ , $T\in XY\cap BC$ . Apply the Menelaus' theorem to the transversals :

$\left\{\begin{array}{cc}
\overline{USV}/ADE\ : & \frac {SD}{SE}\cdot \frac {VE}{VA}\cdot\frac {UA}{UD}=1\\\\
 \overline{MVC}/AFE\ : & \frac {VA}{VE}\cdot \frac {CE}{CF}\cdot\frac {MF}{MA}=1\\\\
\overline{MUB}/AFD\ : & \frac {UD}{UA}\cdot \frac {MA}{MF}\cdot\frac {BF}{BD}=1\end{array}\right\|\ \begin{array}{c}
(1)\\\\
\bigodot\\\\
*\end{array}$ $\implies$ $\frac {SD}{SE}=\frac {BD}{BF}\cdot \frac {CF}{CE}\ \ (2)$ .

$\left\{\begin{array}{cc}
\overline{SUV}/MBC\ : & \frac {SB}{SC}\cdot \frac {VC}{VM}\cdot\frac {UM}{UB}=1\\\\
 \overline{VEA}/MFC\ : & \frac {VM}{VC}\cdot \frac {EC}{EF}\cdot\frac {AF}{AM}=1\\\\
\overline{UAD}/MFB\ : & \frac {UB}{UM}\cdot \frac {AM}{AF}\cdot\frac {DF}{DB}=1\end{array}\right\|\ \begin{array}{c}
*\\\\
\bigodot\\\\
*\end{array}$ $\implies$ $\frac {SB}{SC}=\frac {DB}{DF}\cdot \frac {EF}{EC}\ \ (3)$ .

$\left\{\begin{array}{cc}
\overline{TXY}/ABC\ : & \frac {TB}{TC}\cdot \frac {YC}{YA}\cdot\frac {XA}{XB}=1\ \\\\
 \overline{FUX}/ABD\ : & \frac {XB}{XA}\cdot \frac {UA}{UD}\cdot\frac {FD}{FB}=1\ \\\\
\overline{FVY}/ACE\ : & \frac {YA}{YC}\cdot \frac {FC}{FE}\cdot\frac {VE}{VA}=1\ \end{array}\right\|\ \begin{array}{c}
*\\\\
\bigodot\\\\
*\end{array}$ $\implies$ $\frac {TB}{TC}\cdot\frac {FD}{FB}\cdot \left(\frac {UA}{UD}\cdot\frac {VE}{VA}\right)\cdot\frac  {FC}{FE}=1$ . From the relation $(1)$ obtain $\frac {UA}{UD}\cdot\frac {VE}{VA}=\frac {SE}{SD}$ .

Thus, $\frac {TB}{TC}=\frac {FB}{FD}\cdot \frac {FE}{FC}\cdot\frac {SD}{SE}$ . From $(2)$ obtain $\frac {TB}{TC}=\frac {BD}{CE}\cdot\frac {FE}{FD}$ and from $(3)$ obtain $\frac {TB}{TC}=\frac {SB}{SC}$ , i.e. $T\equiv S$ . In conclusion, $UV\cap XY\cap BC\ne\emptyset$ .

Remark. Can prove that the points $T$ coincides with $S$ only with the relation $(3)$ which is independently by the relation $(2)$ . Indeed, apply the Ceva's' theorem to :

$\left\{\begin{array}{cc}
\triangle ABF : & \frac {DB}{DF}\cdot\frac {MF}{MA}\cdot\frac {XA}{XB}=1\\\\
 \triangle ACF : & \frac {EF}{EC}\cdot\frac {YC}{YA}\cdot\frac {MA}{MF}=1\end{array}\right\|\ \bigodot\ \implies$ $\frac {DB}{DF}\cdot\frac {XA}{XB}\cdot \frac {EF}{EC}\cdot\frac {YC}{YA}=1$ . From the definition of the point $T\in XY\cap BC$

obtain $\frac {TB}{TC}\cdot\frac {YC}{YA}\cdot\frac {XA}{XB}=1$ . Therefore, $\frac {DB}{DF}\cdot \frac {EF}{EC}\cdot\frac {TC}{TB}=1$ , i.e. $\frac {TB}{TC}=\frac {DB}{DF}\cdot\frac {EF}{EC}\stackrel{(3)}{=}\frac {SB}{SC}$ $\iff$ $T\equiv S$ . The position of the fixed point $T(S)$

is independently by the choosing of the points $A$ , $M$ for which $F\in AM$ and the slope of the line $AM$ , i.e. this problem has three degrees of freedom.



PP5. Let $ABC$ be a triangle. Consider the pairs of isotomic points $\{D,D'\}\subset [BC]$ , $\{E,E'\}\subset [CA]$ , $\{F,F'\}\subset [AB]$ . Prove that

$AD\cap BE\cap CF\ne\emptyset\ \iff$ the parallels through the points $D'$ , $E'$ , $F'$ to the lines $AD$ , $BE$ , $CF$ respectively are concurrently (V.N.).


Proof.


PP6. Let $ABC$ be a triangle with the incircle $w=C(I,r)$ which touches its sides in $D\in BC$ , $E\in CA$ , $F\in AB$ . Denote the midpoints $M$ , $N$ , $P$ of the sides

$[BC]$ , $[CA]$ , $[AB]$ respectively. Prove that the lines which pass through $D$ , $E$ , $F$ and are parallelly with $IM$ , $IN$ , $IP$ respectively are concurrently (Toshio Seimiya).


Proof. This problem is a particular case of PP4 when $D$ , $E$ , $F$ are the tangent points of the incircle with the sides of $\triangle ABC$ and $D'$ , $E'$ , $F'$ are the

tangent points of $A$-exincircle , $B$-exincircle, $C$-exincircle with the sides $[BC]$ , $[CA]$ , $[AB]$ respectively because $IM\parallel AD'$ , $IN\parallel BE'$ , $IP\parallel CF'$ .



PP7. Let $ABC$ be a triangle with the orthocenter $H$ and the circumcircle $w=C(O)$ . Denote $\left\|\begin{array}{c} E\in BH\cap AC \\\
\ F\in CH\cap AB\end{array}\right\|$ ,

$\left\|\begin{array}{c} X\in EF\cap AH \\\
\ Y\in AO\cap BC\end{array}\right\|$ and $\left\|\begin{array}{ccc} M\in BC & , & MB = MC \\\
\ N\in XY & , & NX = NY\end{array}\right\|$ . Prove that $A\in MN$ .


Proof 1 (metric). Denote the diameter $[AA']$ in $w$ . Since $A'CHB$ is a parallelogram obtain that $M$ is the midpoint of $HA'$ . In the cyclical quadrilateral $ABA'C$ exists

relation $\frac {YA}{YA'}=\frac {AB\cdot AC}{A'B\cdot A'C}=$ $\frac {bc}{2R\cos C\cdot 2R\cos B}$ $\implies$ $\frac {YA}{YA'}=\tan B\tan C\ (1)$ . Since $(A,X,H,D)$ is an harmonical division obtain $\frac {XA}{XH}=\frac {DA}{DH}=$

$\frac {BA\cdot\sin \widehat{DBA}}{BH\cdot\sin\widehat{DBH}}=$ $\frac {c\cdot\sin B}{2R\cos B\cdot \cos C}$ $\implies$ $\frac {XA}{XH}=\tan B\tan C\ (2)$ . From the relations $(1)$ , $(2)$ obtain $\frac {XA} {XH}=\frac {YA} {YA'}$ $\implies$ $XY\parallel HA'$ $\implies$ $A\in MN$ .


Proof 2 (synthetic). Denote the diameter $[AA']$ in $w$ . Since $A'CHB$ is a parallelogram obtain that the point $M$ is the midpoint of $HA'$ .

Denote the second intersection $L$ of $AD$ with $w$ . Observe that $\widehat {BAH}\equiv\widehat {CAO}$ $\iff$ $LA'\parallel BC$ . Since $DL=DH$ , $DY\parallel LA'$

and $(A,X,H,D)$ is an harmonical division obtain $\frac {XA}{XH}=\frac {DA}{DH}=$ $\frac {DA}{DL}=$ $\frac {YA}{YA'}$ $\implies$ $\frac {XA} {XH}=\frac {YA} {YA'}$ $\implies$ $XY\parallel HA'$ $\implies$ $A\in MN$ .



Proposed problem (extension). Let $ABC$ be a triangle. For a point $D\in (BC)$ denote the second intersection $L$ of $AD$ with $w$ ,

the point $H\in (AD)$ for which $DH=DL$ and the intersections $E\in BH\cap AC$ , $F\in CH\cap AB$ , $X\cap EF\cap AD$ .

Consider the point $Y\in (BC)$ so that $\widehat {BAH}\equiv\widehat{CAY}$ and the second intersection $A'$ of $AY$ with $w$ . Prove that $XY\parallel HA'$ .


Proof. Denote the second intersection $L$ of $AH$ with $w$ . Observe that $\widehat {BAH}\equiv\widehat {CAY}$ $\iff$ $LA'\parallel BC$ . Since $DL=DH$ , $DY\parallel LA'$

and $(A,X,H,D)$ is an harmonical division obtain $\frac {XA}{XH}=\frac {DA}{DH}=$ $\frac {DA}{DL}=$ $\frac {YA}{YA'}$ $\implies$ $\frac {XA} {XH}=\frac {YA} {YA'}$ $\implies$ $XY\parallel HA'$ .


Proposed problem. Let $ABCD$ be a trapezoid, where $AD\parallel BC$ and $BC<AD$ . For a point $M\in (AB)$ denote $N\in (CD)$

for which $MN\parallel AD$ , $I\in MC\cap NB$ and $F\in AB$ for which $FI\parallel AD$ . Prove that $MF=MA\ \iff\ BN\parallel FD$ .


Proof. Denote $K\in AB\cap CD$ . Thus, $MN\parallel AD\implies$ $\frac {MA}{MK}=\frac {ND}{NK}$ . The division $(K,B,F,M)$ is harmonically,

i.e. $\frac {BF}{BK}=\frac {MF}{MK}$ . Therefore, $MF=MA\iff$ $\frac {BF}{BK}=\frac {MA}{MK}$ $\iff$ $\frac {BF}{BK}=\frac {ND}{NK}$ $\iff$ $BN\parallel FD$ .
This post has been edited 90 times. Last edited by Virgil Nicula, Dec 1, 2015, 10:43 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a