306. Some easy and nice "slicing" problems.

by Virgil Nicula, Jul 30, 2011, 2:16 PM

PP1. Let $ABC$ be a triangle with $\left\{\begin{array}{c}
AB=AC\\\
A=80^{\circ}\end{array}\right\|$ . Let $M$ be an interior point for which $\left\{\begin{array}{c}
m(\angle MAC) = 20^{\circ}\\\
m(\angle MCA) = 30^{\circ}\end{array}\right\|$ . Find $m(\angle MBC)$ .

Proof 1 (trigonometric). Denote $x=m\left(\widehat{MBC}\right)$ . Construct the equilateral triangle $ABN$ so that the sideline $BC$ separates $A$ , $N$ . Observe that $AN=AB=AC$ ,

$NM=NC$ and $m(\angle ANC)=80^{\circ}$ , $m(\angle NCM)=m(\angle NMC)=50^{\circ}$ and $m(\angle BMC)=160^{\circ}-x$ . Therefore, $\triangle BAC\sim\triangle CNM\iff$

$\frac {BC}{CM}=\frac {AC}{CN}\iff$ $\frac {\sin\widehat {BMC}}{\sin\widehat{MBC}}=\frac {\sin\widehat{ACN}}{\sin\widehat{CAN}}\iff$ $\frac {sin \left(20^{\circ}+x\right)}{\sin x}=\frac {\sin 80^{\circ}}{\sin 20^{\circ}}\iff$ $\sin 20^{\circ}\sin \left(20^{\circ}+x\right)=\cos 10^{\circ}\sin x\iff$

$2\sin 10^{\circ}\sin \left(20^{\circ}+x\right)=$ $\sin x\iff$ $\cos (10^{\circ}+x)-\cos (30^{\circ}+x)=\sin x\iff$ $\sin x+\sin (60^{\circ}-x)=\cos (10^{\circ}+x)\iff$

$2\sin 30^{\circ}\cos (30^{\circ}-x)=\cos (10^{\circ}+x)\iff$ $\cos (30^{\circ}-x)=\cos (10^{\circ}+x)\iff$ $30^{\circ}-x=10^{\circ}+x\iff$ $x=10^{\circ}$

Proof 2 (synth. and bit trig.). Let $S$ be midpoint of the side $[BC]$ and $D\in AS\cap CM$ . Observe that $\frac {AD}{AC}=\frac {BD}{BC}\iff$ $\frac {DA}{DB}=\frac {CA}{CB}\iff$

$\frac {\sin \widehat{ACD}}{\sin\widehat{CAD}}=$ $\frac {\sin \widehat{ABC}}{\sin\widehat{BAC}}=$ $\frac {\sin 30^{\circ}}{\sin 40^{\circ}}=$ $\frac {\sin 50^{\circ}}{\sin 80^{\circ}}\iff$ $2\sin 40\cos 40=\sin 80$ , what is truly. Therefore, $\boxed{\frac {AD}{AC}=\frac {BD}{BC}}\ (*)$ . Since $AM$ is

the bisector of $\widehat{DAC}$ obtain that $\frac {MD}{MC}=$ $\frac{AD}{AC}\iff$ $\frac {MD}{MC}\stackrel{(*)}{=}$ $\frac {BD}{BC}\iff$ the ray $[BM$ is the bisector of $\widehat{DBC}\iff$ $m(\angle MBC)=10^{\circ}$ .

Proof 3 (synthetic). Let $S$ be midpoint of the side $[BC]$ and $D\in AS\cap CM$ . Denote $X\in BD\cap AM$ and $Y\in AC$ for which $AY\perp AC$ .

Observe that $BD\perp AM$ and $2\cdot AX=AC$ . Thus, $SB\cdot SA=[ABC]=\frac 12\cdot AC\cdot BY=AX\cdot BY\implies$ $\frac {CA}{CB}=\frac {SA}{BY}=\frac {AX}{SB}\ (*)$ .

Since $\triangle DBS\sim\triangle DAX$ $\implies$ $\frac {DA}{DB}=\frac {AX}{BS}$ and using the relations from $(*)$ obtain that $\frac {DA}{DB}=\frac {CA}{CB}$ , i.e. $\boxed{\frac {AD}{AC}=\frac {BD}{BC}}\ (1)$ . Since $AM$

is the bisector of $\widehat{DAC}$ obtain that $\frac {MD}{MC}=$ $\frac{AD}{AC}\iff$ $\frac {MD}{MC}\stackrel{(1)}{=}$ $\frac {BD}{BC}\iff$ the ray $[BM$ is the bisector of $\widehat{DBC}\iff$ $m(\angle MBC)=10^{\circ}$ .



PP2. Let $ABC$ be a triangle . Prove that $b+2m_b=c+2m_c\iff b=c$ .

Proof 1 (metric). Suppose w.l.o.g. $b\ne c$ . Thus, $2(m_b-m_c)=c-b\iff 4(m_b^2-m_c^2)=2(c-b)(m_b+m_c)\iff$ $3(c^2-b^2)=$ $2(c-b)(m_b+m_c)\iff$

$\left\{\begin{array}{c}
2(m_b-m_c)=c-b\\\\
2(m_b+m_c)=3(c+b)\end{array}\right\|\iff 2m_b=2c+b\iff$ $2(a^2+c^2)-b^2=4c^2+b^2+4bc\iff$ $a^2=(b+c)^2\iff a=b+c$ , what is falsely.



An easy extension. Let $ABC$ be a triangle . Prove that $(\forall )\ \lambda\in\left\{\pm 2,\pm\frac 23\right\}$ we have $b+\lambda m_b=c+\lambda m_c\iff b=c$ .


PP3. In $\triangle ABC$ with $3C=2A$ exists $D\in (AC)$ so that $\left\{\begin{array}{c}
DB=DC\\\
AD=BC\end{array}\right\|$ . Find $A$ .

Lemma. In a quadrilateral $ABCD$ given $AD=CD=CB$ and $m(\angle BAD)=\alpha$ , $m(\angle BCD)=2\alpha$ . Find $m(\angle ABC)$ in terms of $\alpha$ .

Proof of the lemma.

Proof 1 (synthetic). Denote $\frac A3=\frac C2=x$ . Let the isosceles triangle $AED$ so that $AD$ doesn't separate $B$ , $E$ and $m(\angle EAD)=m(\angle EDA)=20^{\circ}$ . Thus,

$\triangle AED\stackrel{(S.A.S)}{\cong}\triangle CDB\implies$ $AE=ED=DB=DC\stackrel{(lemma)}{\implies}$ $m(\angle ABD)=120^{\circ}-x\implies$ $3x+4x+120^{\circ}-x=180^{\circ}\implies$ $\boxed{\ x=10^{\circ}\ }$ .

Proof 2 (trigonometric). Using $\frac A3=\frac C2=x$ and the Sinus' theorem in $\triangle ABC$ and $\triangle ABD$ obtain that $\frac {\sin 2x}{\sin 3x}\ \stackrel{\left(\triangle ABC\right)}{=}\ \frac {BA}{BC}\ \stackrel{\left(\triangle ABD\right)}{=}\ \frac {\sin 4x}{\sin 7x}$ .

Therefore, $\sin 2x\ne 0$ and $\sin 2x\sin 7x=\sin 3x\sin 4x\iff$ $\sin 7x=2\sin 3x\cos 2x\iff$ $\sin 7x=\sin 5x+\sin x\iff$

$\sin 7x-\sin 5x=\sin x\iff$ $2\sin x\cos 6x=\sin x\iff$ $\cos 6x=\frac 12\iff$ $6x=60^{\circ}\iff$ $A=30^{\circ}$ . Nice problem !



PP4. the point $P$ is taken inside of$\triangle ABC$ so that $\left|\begin{array}{c}
m\left(\widehat{PAB}\right)=\left(\widehat{PAC}\right)=20^{\circ}\\\\
\left(\widehat{PCB}\right)=30^{\circ}\ ;\ \left(\widehat{PCA}\right)=10^{\circ}\end{array}\right|$ . Find $m\left(\widehat{PBC}\right)$ .

Proof 1 (synthetic). Denote $D\in AP\cap BC$ , $F\in AC$ so that $BF\perp AD$ and $E\in BF\cap CP$ . Since $m(\angle ADB)=60^{\circ}$ (exterior), $m(\angle DBE)=30^{\circ}$

and $m(\angle DPE)=30^{\circ}$ (exterior) obtain that $\angle DBE\equiv\angle DPE$ , i.e. the quadrilateral $BDEP$ is cyclic. Since $\triangle BDF$ is isosceles obtain that the quadrilateral

$CDEF$ is cyclic, so $m(\angle ADF)=$ $m(\angle ADE)+10^\circ=$ $60^\circ$ . Finally $m(\angle ADE)=$ $m(\angle PBE)=50^\circ$ and $x=m(\angle PBC=80^\circ$ .

Proof 2 (trigonometric). Denote $x=m\left(\widehat{PBC}\right)$ . Apply an well-known property $\sin\widehat{PAB}\sin\widehat{PBC}\sin\widehat{PCA}=$

$\sin\widehat{PAC}\sin\widehat{PBA}\sin\widehat{PCB}\iff$ $\sin20^{\circ}\sin x\sin 10^{\circ}=\sin 20^{\circ}\sin (100^{\circ}-x)\sin 30^{\circ}\iff$ $2\sin x\sin 10^{\circ}=\sin (80^{\circ}+x)\iff$

$\cos (10^{\circ}-x)-\cos (10^{\circ}+x)=$ $\cos (10^{\circ}-x)\iff$ $\cos (10^{\circ}+x)=0\iff$ $10^{\circ}+x=90^{\circ}\iff$ $x=80^{\circ}\iff$ $m\left(\widehat{PBC}\right)=80^{\circ}$ .



PP5. Let $ABCD$ be a quadrilateral so that $\triangle ABC$ is $B$-right isosceles, $AD=AB\ ,\ m(\angle DAC)=x$ and $m(\angle DCA)=45^\circ-x$ . Find $x$ .

Proof 1 (synthetic). $\left\{\begin{array}{c}
m(\angle ADC)=135^{\circ}\\\\
m(\angle ABC)=90^{\circ}\end{array}\right|\implies$ $D\in C(B,AB)$ $\implies$ $BD=BA\implies$ $\triangle ABD$ is equilateral $\implies$ $60-x=45\implies \boxed{\ x=15\ }$ .

Proof 2 (trigonometric). Denote $P\in AC\cap BD$ and apply an well-known property $\sin\widehat{PBA}\sin\widehat{PAD}\sin\widehat{PDC}\sin\widehat{PCB}=$

$\sin\widehat{PBC}\sin\widehat{PAB}\sin\widehat{PDA}\sin\widehat{PCD}\iff$ $\sin\frac {135^\circ-x}{2}\sin x\sin \frac {135^\circ+x}{2}\sin 45^\circ=$ $\sin \frac {45^\circ+x}{2}\sin 45^\circ\sin \frac {135^\circ-x}{2}\sin (45^\circ-x)$

$\iff$ $\sin x\cos\frac {45^\circ-x}{2}=$ $\sin\frac {45^\circ+x}{2}\sin (45^\circ-x)\iff$ $\sin x=2\sin\frac {45^\circ+x}{2}\sin\frac {45^\circ-x}{2}\iff$ $\sin x=\cos x-\cos 45^\circ\iff$

$\cos x-\sin x=\frac {\sqrt 2}{2}\iff$ $ \sqrt 2\cos (45^\circ+x)=\frac {\sqrt 2}{2}\iff$ $\cos (45^\circ+x)=\frac 12\iff$ $45^\circ+x=60^\circ\iff$ $\boxed{\ x=15^\circ\ }$ .



PP6. In a $\triangle ABC,$ point $D$ is taken on $\overline{AC}$ so that $\overline{AC}=\overline{BD},$ $\measuredangle\,A=3x,$ $\measuredangle\,C=4x$ and $\measuredangle\,CBD=2x,$ find $x.$

Proof 1 (synthetic). Denote $E\in AC$ so that $C\in (AE)$ and $m(\angle CBE)=x\implies$ $m(\angle BEC)=3x$ and $BA=BE\ (1)$ . Since $m(\angle DBE)=3x$

$\triangle BDE$ is also isosceles, yielding $DE=BD=AC$ . Hence $AD=AC-DC=DE-DC=EC\ (2)$ .From the relations $(1)$ and $(2)$ yield

$\triangle ADB\stackrel{(SAS)}{\cong}\triangle ECB$ . Thus $BD=BC\implies$ $\triangle BDC$ is isosceles. Hence $\angle BDC=4x\implies$ $4x+4x+2x=180^\circ\iff \boxed{\ x=18^{\circ}\ }$ .

Proof 2 (trigonometric). $BD=AC\implies$ $\frac {\sin 4x}{\sin 6x}\stackrel{(\triangle BDC)}{=}\frac {BD}{BC}=\frac {AC}{BC}\stackrel{(\triangle ABC)}{=}\frac {\sin 7x}{\sin 3x}\implies$ $\sin 3x\sin 4x=$

$\sin 6x\sin 7x\ (*)\iff$ $\sin 4x=2\cos 3x\sin 7x\iff$ $\sin 4x=\sin 10x+\sin 4x\iff$ $\sin 10x=0\iff$ $\boxed{\ x=18^{\circ}\ }$ .

Otherwise. $(*)\iff$ $\cos x-\cos 7x=\cos x-\cos 13x\iff$ $\cos 7x=\cos 13x\iff$ $7x+13x=360^{\circ}\iff$ $x=18^{\circ}$ .



PP7. Let $ABC$ be a triangle, where $b>c$ , $A=2x$ and $C=3x$. Suppose that exists $D\in (AC)$ such that $CD=c$ and $m\left(\widehat{ABD}\right)=x$ . Find $x$ .

Proof 1 (synthetic). Draw $BE\perp AC,$ and let $F$ be the midpoint of $AB$ . Then $F$ is circumcenter of $\triangle ABE$ and $E$ is circumcenter

of $\triangle CDF$ . On the other hand, quadrilateral $BCDF$ is cyclic, so $\triangle BCD$ is right angled isosceles, and $6x=90^\circ\implies \boxed{\ x=15^\circ\ }$ .

Proof 2 (trigonometric). Apply theorem of Sinus : $\frac {AB}{BC}=$ $\frac {DC}{BC}\iff\frac {\sin 3x}{\sin 2x}=$ $\frac {\sin 6x}{\sin 3x}\iff 2\cos 3x\sin 2x=\sin 3x\iff$ $\sin 5x-\sin x=$

$\sin 3x\iff\sin 5x-\sin 3x=$ $\sin x\ \iff 2\sin x\cos 4x=$ $\sin x\iff\cos 4x=$ $\frac 12\iff 4x=$ $60^{\circ}\iff\boxed{\ x=15^{\circ}\ }$ .



$\blacktriangleright$ PP8. Let $ABC$ be a triangle with the incenter $I$ . Denote $E\in BI\cap AC$ and $F\in CI\cap AB$ . Prove that if $m(\angle CFE)=30^\circ\iff$ $A=60^\circ\ \ \vee\ \ B=120^\circ$ .

Proof 1 (trigonometric). I"ll apply well-known property in quadrilateral $BCEF \ :\ \sin\widehat{IFB}\sin\widehat{IBC}\sin\widehat{ICE}\sin\widehat{IEF}=$ $\sin\widehat{IBF}\sin\widehat{ICB}\sin\widehat{IEC}\sin\widehat{IFE}\ \iff$

\[\boxed{\ \begin{array}{ccc}
\sin\left(A+\frac C2\right)\sin\frac B2\sin\frac C2\sin\left(60^{\circ}-\frac A2\right) & = & \sin\frac B2\sin\frac C2\sin\left(A+\frac B2\right)\sin 30^{\circ}\\\\
\sin\left(A+\frac C2\right)\sin\left(60^{\circ}-\frac A2\right) & = & \sin\left(A+\frac B2\right)\sin 30^{\circ}\\\\
2\sin\left(A+\frac C2\right)\sin\left(60^{\circ}-\frac A2\right) & = & \sin\left(A+\frac B2\right)\\\\
2\cos\frac {A-B}{2}\cos\left(30^{\circ}+\frac A2\right) & = & \cos\frac {A-C}{2}\\\\
\cos\frac {2A-B+60^{\circ}}{2}+\cos\frac {B+60^{\circ}}{2} & = & \cos\frac {A-C}{2}\\\\
\cos\frac {B+60^{\circ}}{2} & = & \cos\frac {A-C}{2}-\cos\frac {2A-B+60^{\circ}}{2}\\\\
\cos\frac {B+60^{\circ}}{2} & = & 2\sin \frac {3A-B-C+60^{\circ}}{4}\sin\frac {A+C-B+60^{\circ}}{4}\\\\
\cos\frac {B+60^{\circ}}{2} & = & 2\sin \frac {4A-120^{\circ}}{4}\sin\frac {240^{\circ}-2B}{4}\\\\
\sin\left(60^{\circ}-\frac B2\right) & = & 2\sin (A-30^{\circ} )\sin\left(60^{\circ}-\frac B2\right)\end{array}\ }\]
In conclusion, $\sin \left(60^{\circ}-\frac B2\right)=0\ \ \vee\ \ \sin (A-30^{\circ})=\frac 12\iff$ $B=120^{\circ}\ \ \vee\ \ A=60^{\circ}$ .



$\blacktriangleright$ PP9. Let $M$ be an interior point of $\triangle ABC$ for which $\left\{\begin{array}{ccc}
m\left(\widehat{MAB}\right)=10 & ; & m\left(\widehat{MAC}\right)=40\\\\
m\left(\widehat{MBA}\right)=20 & ; & m\left(\widehat{MCA}\right)=30\end{array}\right|$ . Prove that $ABC$ is isosceles.

Proof 1 (trigonometric). Denote $m(\widehat {CBM})=x$. Thus, $m(\widehat {BCM})=80^{\circ}-x$ . I shall aplly the Ceva's theorem (in the trigonometrical form):

$\sin 10^{\circ}\sin x\sin 30^{\circ}=$ $\sin 40^{\circ}\sin 20^{\circ}\sin (80^{\circ}-x)$ $\Longleftrightarrow$ $\sin 10^{\circ}\sin x=$ $2\sin 40^{\circ}\sin 20^{\circ}\cos (10^{\circ}+x)$ $\Longleftrightarrow$ $\sin 10^{\circ}\sin x=$

$\left(\cos 20^{\circ} -\frac 12\right)\cos (10^{\circ}+x)$ $\Longleftrightarrow$ $2\sin 10^{\circ}\sin x=$ $2\cos 20^{\circ}\cos (10^{\circ}+x)-\cos (10^{\circ}+x)$ $\Longleftrightarrow$ $\cos (10^{\circ}-x)-\cos (10^{\circ}+x)=$

$\cos (30^{\circ}+x)+\cos (10^{\circ}-x)-\cos (10^{\circ}+x)$ $\Longleftrightarrow$ $\cos (30^{\circ}+x)=0$ $\Longleftrightarrow$ $x=60^{\circ}$ $\Longleftrightarrow$ $A=C=50^{\circ}$.

Proof 2 (synthetic). Reflect $A$ across $BM$ and name it $D$ . Then $\triangle AMD$ is equilateral and $DB\perp AC$ . Denote $E\in BD\cap CM$ . Prove easily that $AMED$

is cyclically. Therefore $m(\angle DEA) =m(\angle DMA) = 60^{\circ}$ . Note that $m(\angle DEC)=m(\angle DEA)=60^{\circ}$ . Since $AC\perp DE$ obtain that $BA=BC$ .



PP10. Let $ ABC$ be a triangle and $ D\in (AB)$ , $ F\in (AC)$ be two points so that $ m\left(\widehat {BDC}\right)=70^{\circ}$ ,

$ m\left(\widehat {CDF}\right)=40^{\circ}$ , $ m\left(\widehat {BCD}\right)=30^{\circ}$ and $ m\left(\widehat {ACD}\right)=20^{\circ}$ . Find $ m\left(\widehat {DBF}\right)$ .


Proof 1 (trigonometric). Denote $x=m\left(\widehat{ABF}\right)$ . Thus, $\left\{\begin{array}{c}
m\left(\widehat{BFD}\right)=70^{\circ} -x\\\
m\left(\widehat{BFC}\right)=50^{\circ}+x\end{array}\right|$ . Apply in $BDFC$ the trigonometrical form of the Ceva's theorem:

$\sin\widehat{CDB}\sin\widehat{FBC}\sin\widehat{DCF}\sin\widehat{BFD}=\sin\widehat{FDC}\sin\widehat{DBF}\sin\widehat{BCD}\sin\widehat{CFB}\iff$

$\sin 70^{\circ}\sin (80^{\circ}-x)\sin 20^{\circ}\sin (70^{\circ}-x)=\sin 40^{\circ}\sin x\sin 30^{\circ}\sin (50^{\circ}+x)\iff$ $\sin (80^{\circ}-x)\sin (70^{\circ}-x)=\sin x\sin (50^{\circ}+x)\iff$

$\cos (2x+30^{\circ})+\cos 10^{\circ}=\cos 50^{\circ}-\cos (2x+50^{\circ})\iff$ $\cos (2x+30^{\circ})+\cos (2x+50^{\circ})=\cos 50^{\circ}-\cos 10^{\circ}\iff$

$\cos (2x+40^{\circ})\cos 10^{\circ}=-\sin 30^{\circ}\sin 20^{\circ}\iff$ $\cos (2x+40^{\circ})=-\sin 10^{\circ}\iff$ $\cos (2x+40^{\circ})=\cos 100^{\circ}\iff$ $\boxed{\ x=30^{\circ}\ }$ .

Proof 2 (metric). Prove easily that $ \frac {BD}{BC}=\frac {FD}{FC}=\frac {1}{2\cos 20^{\circ}}$ . Hence the $ B$-bisector in $ \triangle CBD$ and the $ F$-bisector in $ \triangle CFD$ are concurrently in

$ K\in (CD)$ . Denote $ L\in CD$ so that $ D\in (CL)$ and $ \frac {LD}{LC}=\frac {KD}{KC}$ . Observe that the points $ B$ , $ F$ belong to the circle with diameter $ [KL]$ .

Denote $ x=m(\angle DBF)$ . Since $ \angle LBF\equiv\angle LKF$ and $ m(\angle LBF)=50^{\circ}+x$ , $ m(\angle LKF)=80^{\circ}$ obtain $ 50^{\circ}+x=80^{\circ}$ , i.e. $ x=30^{\circ}$ .


Extension. Let $\triangle ABC\ ,$ $ F\in (AB)$ , $ E\in (AC)$ so that $ BC\cdot EF=BF\cdot CE\ ,$ $ m\left(\widehat{AFE}\right)=\alpha\ ,$ $ m\left(\widehat{BCF}\right)=\beta\ ,$ $ m\left(\widehat{ACF}\right)=\gamma\ .$ Prove that $ m\left(\widehat{ABE}\right)=\frac {\alpha +\gamma -\beta}{2}$


PP11. Let $D$ and $E$ be points on the sides $CA$ and $AB$ of a triangle $ABC$ such that the lines $BD$ and $CE$ are the interior angle bisectors of the

angles $ABC$ and $BCA$ respectively. Given that $\angle BDE=24^{\circ}$ and $\angle CED=18^{\circ}$ . Determine the angles $\angle A$ , $\angle B$ , $\angle C$ of triangle $ABC$ .


Proof. Prove easily that $m(\angle A) = 96^\circ$ and $m(\angle B)+m(\angle C) = 84^\circ$ . Hence $B$ and $C$ are both acute. By the sine theorem for the $\triangle BD$ ,

$\triangle CED$ obtain that $\left\{\begin{array}{c}
\frac{\sin \frac{B}{2}}{\sin 24^\circ}= \frac{DE}{BE}\\\\
\frac{\sin 18^\circ}{\sin \frac{C}{2}}= \frac{CD}{DE}\end{array}\right|\ \bigodot$ $\implies$ $\frac{\sin \frac{B}{2}}{\sin \frac{C}{2}}\cdot \frac{\sin 18^\circ}{\sin 24^\circ}= $ $\frac{CD}{BE}= \frac{ab}{c+a}\cdot \frac{a+b}{ca}=$ $ \frac{\sin B}{\sin C}\cdot \frac{\sin 96^\circ+\sin B}{\sin 96^\circ+\sin C}$ . Thus, $\frac{\cos \frac{C}{2}\sin 18^\circ}{\cos \frac{B}{2}\sin 24^\circ}=$

$ \frac{\sin \left(48^\circ+\frac{B}{2}\right) \cos \left(48^\circ-\frac{B}{2}\right)}{\sin \left(48^\circ+\frac{C}{2}\right) \cos \left(48^\circ-\frac{C}{2}\right)}= $ $\frac{\cos \left(42^\circ-\frac{B}{2}\right) \cos \left(48^\circ-\frac{B}{2}\right)}{\cos \left(42^\circ-\frac{C}{2}\right) \cos \left(48^\circ-\frac{C}{2}\right)}$ . Using $\frac{\angle B}{2}= 42^\circ-\frac{C}{2}$ obtain that $\frac{\sin 18^\circ}{\sin 24^\circ}=$ $ \frac{\cos \left(48^\circ-\frac{B}{2}\right)}{\cos \left(48^\circ-\frac{C}{2}\right)}= $

$\frac{\cos \left(\frac{C}{2}+6^\circ\right)}{\cos \left(\frac{C}{2}-48^\circ\right)}\iff$ $\sin 18^\circ\cos\left(\frac C2-48\right)=$ $\sin 24^\circ\cos\left(\frac C2+6\right)\iff$ $\sin 18^\circ\left(\cos 48^\circ +\sin 48^\circ\tan\frac C2\right)=$

$\sin 24^\circ\left(\cos 6^\circ-\sin 6^\circ\tan\frac C2\right)\iff$ $\tan\frac C2=\frac {\cos 6^\circ\sin 24^\circ -\in 18^\circ\cos 48^\circ}{\sin 18^\circ\sin 48^\circ+\sin 24^\circ\sin 6^\circ}=$ $\frac {\sin 30^\circ +\sin 18^\circ -\sin 66^\circ +\sin 30^\circ }{\cos 30^\circ -\cos 66^\circ +\cos 18^\circ -\cos 30^\circ}\iff$

$\tan\frac C2=\frac {1+\cos 72^\circ -\cos 24^\circ}{\sin 72^\circ -\sin 24^\circ}\stackrel{(*)}{= }$ $\tan 36^\circ$ . In conclusion, $C = 72^\circ$ and $B = $ $12^\circ$ .

=======================================================================================================

$^{(*)}\ \ \frac {1+\cos 72^\circ -\cos 24^\circ}{\sin 72^\circ -\sin 24^\circ}=$ $\tan 36^\circ\iff$ $\cos 36^\circ (1+\cos 72^\circ -\cos 24^\circ )=$ $\sin 36^\circ (\sin 72^\circ -\sin 24^\circ )\iff$

$\cos 36^\circ +\left(\cos 36^{\circ}\right) \cos 72^\circ -\sin 36^{\circ} \sin 72^\circ )=$ $\cos 24^\circ \cos 36^\circ -\sin 24^\circ \sin 36^\circ \iff$ $\cos 36^\circ +\cos 108^\circ =$ $\cos 60^\circ \iff$

$\cos 36^\circ -\cos 72^\circ =\frac 12\iff$ $2\cos^236^\circ -\cos 36^\circ -\frac 12 =0\iff$ $4\cos^236^\circ -2\cos 36^\circ -1=0\iff$ $\cos 36^\circ =\frac {1+\sqrt 5}{4}$ , what is truly.

Very nice ! Thank you, Yetti.



PP12. Let $ABC$ be a triangle with $A=3C$ . Denote the midpoint $D$ of $[AC]$ and suppose that $m\left(\widehat{BDA}\right)=45^\circ$ . Find $C$ .

Proof 1(trigonometric). Observe that $C<\frac {\pi}{4}$ . Therefore,

\[\boxed{\begin{array}{c}
1=\frac {DA}{DC}=\frac {BA}{BC}\cdot\frac {\sin \widehat{DBA}}{\sin \widehat{DBC}}=\frac {\sin C}{\sin 3C}\cdot\frac {\sin (45^{\circ}+3C)}{\sin (45^{\circ}-C)}\\\\
\sin C\sin (45^{\circ}+3C)=\sin 3C\sin (45^{\circ}-C)\\\\ 
\cos (45^{\circ}+2C)-\cos (45^{\circ}+4C)=\cos (45^{\circ}-4C)-\cos (45^{\circ}+2C)\\\\
2\cos (45^{\circ}+2C)=\cos (45^{\circ}+4C)+\cos (45^{\circ}-4C)\\\\
\sqrt 2\cdot\cos (45^{\circ}+2C)=\cos 4C\\\\
\cos 2C-\sin 2C=\cos 4C=\cos^22C-\sin^22C\\\\
\cos 2C=\sin 2C\ \ \vee\ \ \cos 2C+\sin 2C=1\\\\
C=\frac {\pi}{8}\ \ \vee\ \ C=\frac {\pi}{4}\\\\
C=\frac {\pi}{8}\end{array}}\].

Proof 2 (trigonometric). Denote $C=x$ and $m\left(\widehat{CBD}\right)=y$ . Thus $x+y=\frac {\pi}{4}$ and $A=3x$ , $m\left(\widehat{DBA}\right)=3y$ . Therefore,
$1=\frac {DA}{DC}=\frac {BA}{BC}\cdot\frac {\sin \widehat{DBA}}{\sin \widehat{DBC}}=\frac {\sin x}{\sin 3x}\cdot\frac {\sin 3y}{\sin y}\iff$ $\frac {\sin x}{\sin 3x}=\frac {\sin y}{\sin 3y}\iff$ $3-4\sin^2x=3-4\sin^2y\iff$ $x=y=\frac {\pi}{8}$ .



PP13. Let $\triangle ABC$ and an interior $P$ so that $\left\{\begin{array}{ccc}
m\left(\widehat{PBC}\right)=10 & ; & m\left(\widehat{PCB}\right)=20\\\\
m\left(\widehat{PCA}\right)=30 & ; & m\left(\widehat{PBA}\right)=40\end{array}\right|$ . Find $m\left(\widehat{APB}\right)$ .

Proof 1 (synthetic). Construct the symmetrical point $D$ of $C$ w.r.t. the line $AP$ . Observe that $ABCD$ is

a cyclical quadrilateral, $CDP$ is an equilateral triangle and $AP=AD$ . Finally, $m\left(\widehat{APB}\right)=80^{\circ}$ .

Proof 2 (trigonometric). Denote $m\left(\widehat{APB}\right)=x$ and apply the trigonometric form of the Ceva's theorem for the point $P\ :$

\[\boxed{\begin{array}{c}
\sin (40^{\circ}+x)\sin 10^{\circ}\sin 30^{\circ}=\sin (x-60^{\circ})\sin 40^{\circ}\sin 20^{\circ}\\\\
\sin (40^{\circ}+x)=4\sin (x-60)\sin 40^{\circ}\cos 10^{\circ}\\\\
\sin (40^{\circ}+x)=2\sin (x-60^{\circ})\left(\sin 50^{\circ}+\frac 12\right)\\\\
\sin (40^{\circ}+x)=2\cos 40^{\circ}\sin (x-60^{\circ})+\sin (x-60^{\circ})\\\\
\sin (40^{\circ}+x)=\sin (x-20^{\circ})-\sin (100^{\circ}-x)+\sin (x-60^{\circ})\\\\
\sin (40^{\circ}+x)+\sin (80^{\circ}+x)=\sin (x-20^{\circ})+\sin (x-60^{\circ})\\\\
\sin (60^{\circ}+x)\cos 20^{\circ}=\sin (x-40^{\circ})\cos 20^{\circ}\\\\
\sin (60^{\circ}+x)=\sin (x-40^{\circ})\\\\
(60^{\circ}+x)+(x-40^{\circ})=180^{\circ}\\\\
x=80^{\circ}\end{array}}\]


PP14 (Langley's problem). Let an $A$-isosceles $\triangle ABC$ with $A=20^{\circ}$ and the points $\left\{\begin{array}{ccc}
E\in (AC) & ; & m\left(\widehat{ABE}\right)=30^{\circ}\\\\
F\in (AB) & ; & m\left(\widehat{ACF}\right)=20^{\circ}\end{array}\right\|\ .$ Find the value of the angle $\widehat{AEF}\ .$ See and here.

Proof 1. Let $G\in (AB)$ so that $m\left(\widehat{BCG}\right)=20^{\circ}.$ Hence $BC=CG=GF$ because $m\left(\widehat{GFC}\right)=m\left(\widehat{GCF}\right)=40^{\circ}.$ Since $m\left(\widehat{CBE}\right)=m\left(\widehat{BEC}\right)=50^{\circ}$ obtain $BC=CE.$ From

$CE=GC$ and $m\left(\widehat{GCE}\right)=60^{\circ}$ obtain $GE=GC=GF.$ From $m\left(\widehat{GCE}\right)=60^{\circ}$ obtain $m\left(\widehat{GEF}\right)=m\left(\widehat{GFE}\right)=70^{\circ}.$ In conclusion $m\left(\widehat{AFE}\right)=110^{\circ}$ and $m\left(\widehat{AEF}\right)=50^{\circ}.$


An easy extension.. Let $\triangle ABC$ with $B=60^{\circ}+A$ and the points $\left\{\begin{array}{ccc}
E\in (AC) & ; & m\left(\widehat{ABE}\right)=30^{\circ}\\\\
F\in (AB) & ; & m\left(\widehat{ACF}\right)=\frac C4\end{array}\right\|\ .$ Find the value of the angle $\widehat{AEF}\ .$

Proof. Let $G\in (AB)$ so that $m\left(\widehat{ACG}\right)=60^{\circ}.$ From $B=60^{\circ}+A$ and $C=120^{\circ}-2A$ obtain that $m\left(\widehat{AGC}\right)=120^{\circ}-A$ and $m\left(\widehat{BGC}\right)=m\left(\widehat{GBC}\right)=60^{\circ}+A.$ Hence

$BC=GC.$ From $m\left(\widehat{EBC}\right)=m\left(\widehat{BEC}\right)=30+A$ obtain that $BC=EC.$ Thus, $EC=GC=GE,$ i.e. $\triangle GEC$ is equilateral. From $m\left(\widehat{GCF}\right)=30^{\circ}+\frac A2=m\left(\widehat{GFC}\right)$

obtain that $GC=GF=GE,$ $m\left(\widehat{FGE}\right)=60-A$ and $m\left(\widehat{GFE}\right)=60^{\circ}+\frac A2.$ In conclusion, $m\left(\widehat{GEF}\right)=60^{\circ}+\frac A2$ and $m\left(\widehat{AEF}\right)=60^{\circ}-\frac A2.$
This post has been edited 162 times. Last edited by Virgil Nicula, Apr 13, 2017, 11:03 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a