305. Position of the roots w.r.t. a given real number.

by Virgil Nicula, Jul 29, 2011, 9:39 PM

Let $ax^2+bx+c=0$ be an equation with real coefficients , $a\ne 0$ and with the roots $x_1$ , $x_2$ . Assume is given a real $\alpha$ . Denote the discriminant $\Delta=b^2-4ac$ and the sum of roots

$S=x_1+x_2=-\frac ba$ . I"ll study the positions of real roots $x_1$ , $x_2$ w.r.t. the given real number $\alpha$, i.e. the position of $\alpha$ w.r.t. the interval $\left(x_1,x_2\right)$ . Distinquish the following nine cases :

$\left\{\begin{array}{cccccccc}
\Delta > 0 & \wedge  & af(\alpha )>0 & \wedge  & S-2\alpha >0 & \iff & \alpha <x_1<x_2 & \blacktriangleleft 1\blacktriangleright\\\\
\Delta > 0 & \wedge  & af(\alpha )>0 & \wedge  & S-2\alpha <0 & \iff & x_1<x_2<\alpha & \blacktriangleleft 2\blacktriangleright\\\\
\Delta > 0 & \wedge  & af(\alpha )=0 & \wedge  & S-2\alpha >0 & \iff & \alpha =x_1<x_2 & \blacktriangleleft 3\blacktriangleright\\\\
\Delta > 0 & \wedge  & af(\alpha )=0 & \wedge  & S-2\alpha <0 & \iff & x_1<x_2=\alpha & \blacktriangleleft 4\blacktriangleright\\\\
 &  & af(\alpha )<0 &  & &  \iff & x_1<\alpha <x_2 & \blacktriangleleft 5\blacktriangleright\\\\
\Delta = 0 & \wedge  & af(\alpha )>0 & \wedge  & S-2\alpha >0 & \iff & \alpha <x_1=x_2 & \blacktriangleleft 6\blacktriangleright\\\\
\Delta = 0 & \wedge  & af(\alpha )>0 & \wedge  & S-2\alpha <0 & \iff & x_1=x_2<\alpha & \blacktriangleleft 7\blacktriangleright\\\\
\Delta = 0 & \wedge  & af(\alpha )=0 & \wedge  & S-2\alpha =0 & \iff & x_1=x_2=\alpha & \blacktriangleleft 8\blacktriangleright\\\\
\Delta < 0 &  &  &  & & \iff & x_{1,2}\not\in\mathbb R & \blacktriangleleft 9\blacktriangleright\end{array}\right\|$


Remark. In the particular case $\alpha=0$ we have $af(\alpha )=af(0)=ac\ .s.s.\ P$ (same sign). Thus, our debate becomes the study of the sign for the

roots, i.e. the study of the signs for $\Delta$ , $P$ , $S$ . Observe two interesting properties : $\left\{\begin{array}{ccccc}
(\exists )\ \alpha\in\mathbb R & , & a\cdot f(\alpha )\le 0 & \implies & \Delta \ge 0\\\\
(\exists )\ \{\alpha ,\beta\}\subset\mathbb R & , & f(\alpha )f(\beta )\le 0 & \implies & \Delta\ge 0\end{array}\right\|$ .

Example. Let $a<b<c$ be three real numbers. Consider the equation $f(x)\equiv (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ .

Prove that its roots $x_1$ , $x_2$ is really and $a<x_1<b<x_2<c$ . Indeed, from $f(b)=(b-a)(b-c)<0$ , $f(a)=(a-b)(a-c)>0$ and

$f(c)=(c-a)(c-b)>0$ obtain required conclusion. Similarly the equation $g(x)\equiv\frac {1}{x-a}+\frac {1}{x-b}+\frac {1}{x-c}=0$ has same properties.



Applications.


PP1. Ascertain $m\in\mathbb R$ so that $f(x)\equiv (m-2)\cdot x^2+2(2m-3)\cdot x+(m-2)\ \ge\ 0$ for any $x\in [0,1]$ .

Proof. I"ll debate w.r.t. the parameter $m$ the sign of $f(x,m)$ and the positions of the roots of $f(x)=0$ w.r.t. the numbers $0$ and $1$ . Therefore,

$\left\{\begin{array}{c}
\Delta =(3m-5)(m-1)\\\\
a\cdot f(0)=(m-2)^2\\\\
S-2\cdot 0\ .s.s.\ -(m-2)(2m-3)\\\\
a\cdot f(1)=2(m-2)(3m-5)\\\\
S-2\cdot 1\ .s.s.\ -(3m+5)(m-2)\end{array}\right\|$ $\mathrm{where}$ $\left\{\begin{array}{cccccccc}
m  & \Delta & a & af(0) & S & af(1) & S-2 & \mathrm{Position\ of\  roots\ and\ sign\ of\ f(x)}\\\

==== & == & == & === & === & === & === & ===================\\\\

m\in (-\infty ,1) & + & - & + & - & + & - & \begin{array}{ccccccccccc}
-\infty &  < & x_1 & < & x_2 & < & 0 & < & 1 & < & \infty\\\
- & - & \bigodot & + & \bigodot & - & - & - & - & - & -\end{array}\\\\

m=1 & 0 & - & + & - & + & - & \begin{array}{ccccccccc}
-\infty & < & \begin{array}{c}
x_1\\
x_2\end{array} & < & 0 & < & 1 & < & \infty\\\
- & - & \bigodot  & - & - & - & - & - & -\end{array}\\\\

m\in \left(1,\frac 53\right) & - & - & & & & & \begin{array}{ccccccc}
-\infty & < & 0 & < & 1 & < & \infty\\\
- & - & - & - & - & - & -\end{array}\\\\
m=\frac 53 & 0 & - & - & - & 0 & 0 & \begin{array}{ccccccc}
-\infty & < & 0 & < & \begin{array}{c}
x_1\\\
1\\\
x_2\end{array} & < & \infty\\\
- & - & - & - & \bigodot  & - & -\end{array}\\\\
m\in \left(\frac 53,2\right) &  + & - & + & + & - & + & \begin{array}{ccccccccccc}
-\infty & < & 0 & < & x_1 & < & 1 & < & x_2 & < & \infty\\\
- & - & - & - & \bigodot & + & + & + & \bigodot & - & -\end{array}\\\\
m=2 & & & & & & & \begin{array}{ccccccc}
-\infty & < & 0 & < & 1 & < & \infty\\\
- & - & 0 & + & + & + & +\end{array}\\\\
m\in (2,\infty ) & + & + & + & - & + & - & \begin{array}{ccccccccccc}
-\infty & < & x_1 & < & x_2 & < & 0  & < & 1 & < & \infty\\\
+ & + & 0 & - &  0 & + & + & + & + & + & +\end{array} \end{array}\right\|$

From the upper table obtain that the sign of $f(x)$ is constant on the interval $[0,1]$ iff $m\in \left(-\infty ,\frac 53\right)\cup (2,\infty )$ and

namely : for $m\in \left(-\infty , \frac 53\right)$ we have $f(x)<0$ and for $m\in (2,\infty )$ we have $f(x)>0$ , of course for any $x\in [0,1]$ .



PP2. Ascertain $m\in\mathbb R$ so that the equation $2(\sin x+\cos x)=m+\sin 2x$ has a maximum number of zeroes in the first dial, i.e. $\left[0,\frac {\pi}{2}\right]$ .

Proof. With the substitution $t=\phi (x)=\sin x+\cos x$ , where $\phi :\left[0,\frac {\pi}{2}\right]\rightarrow\left[1,\sqrt 2\right]$ is a surjective function, the initial equation becomes

$f(t)=t^2-2t+(m-1)=0\ (1)$ . Must to study the relative position of the real roots $t_1$ , $t_2$ of the equation $(1)$ w.r.t. the real numbers $1$ , $\sqrt 2$ .

The transfer from this debate to the study of the nature/kind of zeroes of the initial equation I"ll perform so :

$\left\|\begin{array}{cccccc}
x & 0 & & \frac {\pi}{4} & & \frac {\pi}{2}\\
==== & == & == & ==== & == & ==\\
 & & & \sqrt 2 & & \\
t=\phi (x) & & \nearrow & & \searrow & \\
& 1 & & & & 1\end{array}\right\|\ \implies$ $\left\{\begin{array}{ccc}
t<1 & \implies & x\not\in\mathbb R\\\\
t=1 & \implies & x_1=0\ \ \wedge\ \ x_2=\frac {\pi}{2}\\\\
1<t<\sqrt 2 & \implies & 0<x_1<\frac {\pi}{4}<x_2<\frac {\pi}{2}\\\\
t=\sqrt 2 & \implies & x_1=x_2=\frac {\pi}{4}\\\\
\sqrt 2<t & \implies & x\not\in\mathbb R\end{array}\right\|$ . I"ll study the signs (see the table from the previous problem) for

$\left\{\begin{array}{cc}
\Delta^{\prime} =2-m\\\\  
1\cdot f(1)=m-2\\\\
S-2\cdot 1=0\\\\
1\cdot f\left(\sqrt 2\right)=m+1-2\sqrt 2\\\\
S-2\cdot\sqrt 2=2-2\sqrt 2<0\end{array}\right\|$ . Therefore obtain $m\in \left(2\sqrt 2-1,2\right]$ and in this case the maximum number of zeroes is two !



PP3. Ascertain $m\in\mathbb R$ so that for any $x\ge 1$ we have $\left|x^2-mx+1\right|\le3\cdot\left(x^2+x+1\right)$ .

Proof. Prove easily that the function $f(x)=x+\frac 1x\ ,\ x\ge 1$ is $(\nearrow)$ strict increasing and $\mathrm{Im}f=[2,\infty)$ . Thus, $\left|x^2-mx+1\right|\le3\cdot\left(x^2+x+1\right)\ (\forall )\ x\ge 1\iff$

$\left|\left(x+\frac 1x\right)-m\right|\le3\cdot\left[\left(x+\frac 1x\right)+1\right]\ (\forall )\ x\ge 1\iff$ $|t-m|\le3(t+1)\ (\forall )\ t\ge 2\iff$ $(t-m)^2\le (3t+3)^2\ (\forall )\ t\ge 2\iff$

$(4t+3-m)(2t+m+3)\ge 0\ (\forall )\ t\ge 2$ . Let $t_1=\frac {m-3}{4}$ and $t_2=\frac {-m-3}{2}$ . Prove easily that $\left(t_1-t_2\right)\ .s.s.\ (m+1)$ for any $m\in\mathbb R$ . Therefore,

the solutions of the inequation $g(t)\equiv (4t+3-m)(2t+m+3)\ge 0$ are $t\in S_m=\left\{\begin{array}{cccc}
\mathbb R & \iff & m=-1 & \left(t_1=t_2\right)\\\\
\left(-\infty,t_1\right]\cup\left[t_2,\infty\right) & \iff & m<-1 & \left(t_1<t_2\right)\\\\
\left(-\infty,t_2\right]\cup\left[t_1,\infty\right) & \iff & m>-1 & \left(t_2<t_1\right)\end{array}\right\|$ .

The required values of the parameter $m$ so that $[2,\infty)\subset S_m$ obtain from $\max\left\{t_1,t_2\right\}\le 2$ , i.e. $\{m=-1\}\ \vee\ \left\{m<-1\ \wedge\  t_2\le 2\right\}\ \vee\ \left\{m>-1\ \wedge\ t_1\le 2\right\}\iff$

$\{m=-1\}\ \vee\ \left\{\begin{array}{c}
m<-1\\\\
\frac {-m-3}{2}\le 2\end{array}\right\}\ \vee\ \left\{\begin{array}{c}
m>-1\\\\
\frac {m-3}{4}\le 2\end{array}\right\}\iff$ $m\in\{-1\}\cup[-7,-1)\cup (-1,11]\implies$ $\boxed{m\in [-7,11]}$ .



PP4. Prove that $h(x)\equiv\left|(m-1)x^2-2(m+1)x+(m+1)\right|\le 4$ for any $x\in [-1,1]\ \iff\ h(-1)\le 4$ .

Proof. Observe that $\left|(m-1)x^2-2(m+1)x+(m+1)\right|\le 4\iff$ $-4\le m\left(x^2-2x+1\right)-\left(x^2+2x-1\right)\le 4\iff$

$\frac {x^2+2x-5}{x^2-2x+1}\le m\le\frac {x^2+2x+3}{x^2-2x+1}\ ,\ x\ne 1$ . Thus, $\left|(m-1)x^2-2(m+1)x+(m+1)\right|\le 4$ for any $x\in [-1,1]\iff$

$\max_{-1\le x<1}\frac {x^2+2x-5}{x^2-2x+1}\le m\le \min_{-1\le x<1}\frac {x^2+2x+3}{x^2-2x+1}\iff$ $-\frac 32\le m\le\frac 12\iff$ $|4m+2|\le 4\iff$ $|h(-1)|\le 4$ .



PP5. Ascertain $m\in\mathbb R$ so that $\left\{y\in\mathbb R\left|\ (\exists )\ x\in\mathbb R\ \mathrm {so\ that\ } y=\frac {x^2+mx+1}{x^2-x+1}\right|\right\}\subset [-3,2]$ .

Proof.
This post has been edited 91 times. Last edited by Virgil Nicula, Nov 20, 2015, 7:05 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a