188. Some problems from vectorial geometry.

by Virgil Nicula, Dec 10, 2010, 8:02 PM

PP0. Let $I$, $O$ be the incenter and the circumcenter of $\triangle ABC$ . Express $\overrightarrow{OI}$ with $\overrightarrow{OA}\ ,\ \overrightarrow{OB}\ ,\ \overrightarrow{OC}$ and $a\ ,\ b\ ,\ c$ .

Proof. $a\cdot \overrightarrow{XA}+b\cdot \overrightarrow{XB}+c\cdot \overrightarrow{XC}=(a+b+c)\cdot\overrightarrow{XI}$ for any $X\in (ABC)$ - plane.

In the particular case $X:=O$ obtain $\boxed {a\cdot \overrightarrow{OA}+b\cdot\overrightarrow{OB}+c\cdot \overrightarrow{OC}=(a+b+c)\cdot \overrightarrow{OI}}$ .



PP1 (own). Let $ABC$ be a triangle with the centroid $G$ and the Lemoine's point $S$ . Prove that there is the relation

$\left(b^2-a^2\right)\cdot\overrightarrow{AB}+\left(c^2-b^2\right)\cdot\overrightarrow{BC}+\left(a^2-c^2\right)\cdot\overrightarrow{CA}=$ $3\cdot\left(a^2+b^2+c^2\right)\cdot \overrightarrow {GS}$ .


Proof. I"ll use the barycentrical coordinates w.r.t. the triangle $ABC$ . Therefore, $G(1,1,1)$ and $S\left(a^2,b^2,c^2\right)$ . From the remarkable identity

$\sum a^2\cdot \overrightarrow {XA}=\left(\sum a^2\right)\cdot\overrightarrow{XS}$ for $X:=G$ obtain that $\boxed{\sum a^2\cdot \overrightarrow {GA}=\left(\sum a^2\right)\cdot\overrightarrow{GS}}\ (1)$ and from the remarkable identity

$\sum \overrightarrow {XA}=$ $3\cdot\overrightarrow{XG}$ for $X:=S$ obtain that $\boxed {\sum\overrightarrow {SA}=3\cdot\overrightarrow{SG}}\ (2)$ . Observe that $3\cdot \overrightarrow{GA}=$ $\overrightarrow {BA}+\overrightarrow{CA}$ a.s.o. Using the relations

$(1)$ and $(2)$ obtain that $\sum a^2\cdot \left(\overrightarrow {BA}+\overrightarrow{CA}\right)=3\cdot\left(\sum a^2\right)\cdot  \overrightarrow {GS}$ , i.e. $\sum \left(b^2-a^2\right)\cdot\overrightarrow {AB}=3\cdot\left(\sum a^2\right)\cdot\overrightarrow {GS}$ .



PP2 (own). Let $ABC$ be a triangle with the centroid $G$ , the incenter $I$ and the Lemoine's point $S$ .

Prove that exists the relation $(a-b)(a-c)\cdot\overrightarrow{IA}+\left(a^2+b^2+c^2\right)\cdot \overrightarrow{SI}+3bc\cdot\overrightarrow{GI}=\overrightarrow 0$ .


Proof. From the remarkable identities obtain that $\left\|\begin{array}{c}
\sum \overrightarrow{IA}=3\cdot\overrightarrow {IG}\\\\
\sum a^2\cdot\overrightarrow {IA}=\left(\sum a^2\right)\cdot {IS}\end{array}\right\|$ . Thus, $(a-b)(a-c)\cdot\overrightarrow{IA}+$ $\left(\sum a^2\right)\cdot \overrightarrow{SI}+3bc\cdot\overrightarrow{GI}=$

$\left(a^2-ac-ab+bc\right)\cdot\overrightarrow {IA}-$ $\left(\sum a^2\cdot\overrightarrow {IA}\right)+$ $bc\cdot\left(\sum\overrightarrow{AI}\right)=$ $\sum a(b+c)\cdot\overrightarrow{AI}=$ $-(b+c)\cdot\left(\sum a\cdot\overrightarrow{IA}\right)=\overrightarrow 0$ .



PP3 (own). Let $ABC$ be a triangle with the centroid $G$ and the incenter $I$ . Define the vectors $v_1=a\cdot \overrightarrow{GA}+b\cdot \overrightarrow{GB}+c\cdot \overrightarrow{GC}$

and $v_2=\overrightarrow {IA}+\overrightarrow {IB}+\overrightarrow {IC}$ . Prove that $v_1$ and $v_2$ are colinearly and $3\cdot v_1+2s\cdot v_2=\overrightarrow 0$ , where $2s=a+b+c$ .


Proof. Since $v_1\equiv \sum a\cdot \overrightarrow {GA}=2s\cdot\overrightarrow{GI}$ and $v_2\equiv \sum \overrightarrow{IA}=3\cdot\overrightarrow{IG}$ obtain $3\cdot v_1+2s\cdot v_2=\overrightarrow 0$ , i.e. $v_1$ and $v_2$ are colinearly and $3\cdot|v_1|=2s\cdot |v_2|$ .


PP4 (C. Cosnita). Let $w$ be a circle which pass through the centroid $G$ of the triangle $ABC$ . Denote the

power $p_w(X)$ of the point $X$ w.r.t. the circle $w$ . Prove that $p_w(A)+p_w(B)+p_w(C)=3\cdot p_w(G)$ (constant).


Proof. Let $w=C(P,\rho )$ be a circle for which $G\in w$ , i.e. $PG=\rho$ . Observe that $PA^2+PB^2+PC^2=3\cdot PG^2+3\cdot p_w(G)$ .

Therefore, $\sum p_w(A)=\sum\left(PA^2-\rho^2\right)=$ $\sum PA^2-3\rho^2=$ $3\cdot PG^2+3\cdot p_w(G)-3\rho^2=$ $3\cdot p_w(G)=\frac 13\cdot\sum a^2$ .



PP5. Let $ABC$ be a triangle. For a point $M$ define the points $\left\|\begin{array}{ccc}
\{D_1,D_2\}\subset BC & , & D_1D_2\parallel BC\\\\
\{E_1,E_2\}\subset CA & , & E_1E_2\parallel CA\\\\
\{F_1,F_2\}\subset AB & , & F_1F_2\parallel AB\end{array}\right\|$ and $\{M\}=D_1D_2\cap E_1E_2\cap F_1F_2$ .

Prove that the power of $M$ w.r.t. the circumcircle $w$ of $\triangle ABC$ is given by the relation $p_w(M)=\overrightarrow {MD_1}\cdot \overrightarrow{MD_2}+\overrightarrow {ME_1}\cdot \overrightarrow{ME_2}+\overrightarrow {MF_1}\cdot \overrightarrow{MF_2}$ .


Proof. Let $M(x,y,z)$ and denote $A_1\in AM\cap BC$ . Suppose w.l.o.g. $D_1\in AB$ and $D_2\in AC$ . From the relations $\frac {D_1M}{BA_1}=\frac {AM}{AA_1}=\frac {D_2M}{CA_1}$ obtain

that $\overrightarrow{D_1M}\cdot\overrightarrow{D_2M}=\left(\frac {AM}{AA_1}\right)^2\cdot\overrightarrow{A_1B}\cdot\overrightarrow{A_1C}$ . Since $x\cdot \overrightarrow{MA}+(y+z)\cdot\overrightarrow{AA_1}=\overrightarrow 0$ obtain that $\left(\frac {MA}{AA_1}\right)^2=(y+z)^2$ and from the relation

$y\cdot\overrightarrow{A_1B}+z\cdot\overrightarrow{A_1C}=\overrightarrow 0$ obtain that $\overrightarrow {A_1B}=-\frac {z}{y+z}\cdot\overrightarrow{BC}$ and $\overrightarrow{A_1C}=-\frac {y}{y+z}\cdot\overrightarrow{BC}$ . Therefore, $\overrightarrow{MD_1}\cdot\overrightarrow{MD_2}=-yza^2$ . Show

analogously that $\overrightarrow{ME_1}\cdot\overrightarrow{ME_2}=-zxb^2$ and $\overrightarrow{MF_1}\cdot\overrightarrow{MF_2}=-xyc^2$ . In conclusion, $\sum \overrightarrow{MD_1}\cdot\overrightarrow{MD_2}=-\sum yza^2=p_w(M)$ .



PP6 (own). Let $ABC$ be a triangle. Consider three given real numbers $\{\alpha , \beta ,\gamma\}$ so that $\alpha +\beta +\gamma \ne 0$ . Ascertain the

locus of a mobile point $M$ for which exists the relation $\alpha\cdot \overrightarrow {MB}\cdot\overrightarrow{MC}+\beta\cdot \overrightarrow {MC}\cdot\overrightarrow{MA}+\gamma\cdot \overrightarrow {MA}\cdot\overrightarrow{MB}=k$ (constant).


Proof. Suppose w.l.o.g. that $\alpha +\beta +\gamma=1$ . From the generalized Pytagoras' theorem obtain that $MA^2+MB^2-c^2=2\cdot\overrightarrow{MA}\cdot\overrightarrow{MB}$ a.s.o.

and $\sum\alpha\cdot \overrightarrow{MB}\cdot\overrightarrow{MC}=$ $\frac 12\cdot\sum  \alpha\cdot\left(MB^2+MC^2-a^2\right)=$ $\frac 12\sum (\beta+\gamma )\cdot MA^2-\frac 12\cdot\left(\sum\alpha a^2\right)$ . Consider $\boxed {\ F\left(\frac {\beta +\gamma}{2}, \frac {\gamma +\alpha}{2},\frac {\alpha +\beta}{2}\right)\ }$ .

For any point $M$ exist the relations $\frac 12\cdot\sum (\beta +\alpha )\cdot \overrightarrow{MA}=\overrightarrow {MF}$ and $\frac 12\cdot\sum (\beta +\gamma )\cdot MA^2=MF^2-p_w(F)$ , where $p_w(F)$ is the power of $F$

w.r.t. the circumcircle $w$ of $\triangle ABC$ . In conclusion, $MF$ is constant , i.e. the required locus is a circle with the center in the fixed point $F$ which was defined upper.



PP7. Let $\triangle ABC$ and three lines $d_k\ ,\ k\in\overline{1,3}$ for what denote $\left\{\begin{array}{cc}
d_1\ : & \left|\begin{array}{cc}
M\in AB\cap d_1\ ; & \overline{MB}=m\cdot\overline{MA}\\\
N\in AC\cap d_1\ ; &\overline{NC}=n\cdot \overline{NA}\end{array}\right|\\\\
d_2\ : & \left|\begin{array}{cc}
P\in BC\cap d_2\ ; & \overline{PC}=p\cdot\overline{PB}\\\
Q\in BA\cap d_2\ ; &\overline{QA}=q\cdot \overline{QB}\end{array}\right|\\\\
d_3\ : & \left|\begin{array}{cc}
R\in CA\cap d_3\ ; & \overline{RA}=r\cdot\overline{RC}\\\
S\in CB\cap d_3\ ; &\overline{SB}=s\cdot \overline{SC}\end{array}\right|\end{array}\right|$ .

Prove that $\boxed{d_1\cap d_2\cap d_3\ne\emptyset\ \iff\ 1+mpr+nqs=mq+ps+rn}$ .


Proof. Denote $\overline {OX}=X$ , where $O$ is the origin of the vectorial system and $\overline{XY}=Y-X$ . Thus, $\left\{\begin{array}{cc}
(1-m)M=B-mA\ ; & (1-n)N=C-nA\\\
(1-p)P=C-pB\ ; & (1-q)Q=A-qB\\\
(1-r)R=A-rC\ ; & (1-s)S=B-sC\end{array}\right\|$ . Denote $U\in AC\cap d_2$

and $V\in AB\cap d_3$ , $\left\{\begin{array}{c}
Y\in d_1\cap d_3=MN\cap SR\\\
Z\in d_1\cap d_2=MN\cap PQ\end{array}\right\|$ and I"ll show $Y=Z$ , i.e. $\frac {\overline{YM}}{\overline{YN}}=\frac {\overline{ZM}}{\overline{ZN}}$ . Thus $\underline{V\in RS}\iff$ $\frac {VB}{VA}\cdot\frac {RA}{RC}\cdot\frac {SC}{SB}=1\implies$ $\boxed{\frac {VB}{VA}=\frac sr}\ (1)$ . Since

$R=\frac {A-rC}{1-r}$ and $N=\frac {C-nA}{1-n}$ obtain $\frac {RA}{RN}=\frac {A-R}{N-R}=$ $\frac {A-\frac {A-rC}{1-r}}{\frac {C-nA}{1-n}-\frac {A-rC}{1-r}}=\frac {r(1-n)}{1-nr}\implies$ $\boxed{\frac {RA}{RN}=\frac {r(1-n)}{1-nr}}\ (2)$ . From $(1)$ obtain $V=\frac {sA-rB}{s-r}$ and

$M=\frac {B-mA}{1-m}\implies$ $\frac {VM}{VA}=\frac {M-V}{A-V}=$ $\frac {\frac {B-mA}{1-m}-\frac {sA-rB}{s-r}}{A-\frac {sA-rB}{s-r}}=\frac {s-mr}{r(1-m)}\implies$ $\boxed{\frac {VM}{VA}=\frac {s-mr}{r(1-m)}}\ (3)$ . Hence $V\in YR\iff$ $\frac {YM}{YN}\cdot\frac {RN}{RA}\cdot\frac {VA}{VM}=1\implies$

$\frac {YM}{YN}=\frac {RA}{RN}\cdot\frac{VM}{VA}$ . From $(2)$ and $(3)$ obtain that $\boxed{\frac {YM}{YN}=\frac {(1-n)(s-mr)}{(1-m)(1-nr)}}\ (4)$ . I"ll proceed analogously to assess the ratio $\frac {ZM}{ZN}$ . Thus, $\underline{U\in PQ}\iff$

$\frac {UA}{UC}\cdot\frac {PC}{PB}\cdot\frac {QB}{QA}=1\implies$ $\boxed{\frac {UA}{UC}=\frac qp}\ (5)$ and $U=\frac {pA-qC}{p-q}$ . Since $M=\frac {B-mA}{1-m}$ and $Q=\frac {A-qB}{1-q}$ obtain that $\frac {QM}{QA}=$ $\frac {M-Q}{A-Q}=$ $\frac {\frac {B-mA}{1-m}-\frac {A-qB}{1-q}}{A-\frac {A-qB}{1-q}}=$ $\frac {1-mq}{q(1-m)}\implies$

$\boxed{\frac {QM}{QA}=\frac {1-mq}{q(1-m)}}\ (6)$ . Since $N=\frac {C-nA}{1-n}$ and $U=\frac {pA-qC}{p-q}$ obtain that $\frac {UA}{UN}=\frac {A-U}{N-U}=$ $\frac {A-\frac {pA-qC}{p-q}}{\frac {C-nA}{1-n}-\frac {pA-qC}{p-q}}=\frac {q(1-n)}{p-nq}\implies$ $\boxed{\frac {UA}{UN}=\frac {q(1-n)}{p-nq}}\ (7)$ . Thus,

$\underline{U\in QZ}\iff$ $\frac {ZM}{ZN}\cdot\frac {UN}{UA}\cdot\frac {QA}{QM}=1\implies$ $\frac {ZM}{ZN}=\frac {QM}{QA}\cdot\frac {UA}{UN}$ . From $(6)$ and $(7)$ obtain $\boxed{\frac {ZM}{ZN}=\frac {(1-n)(1-mq)}{(1-m)(p-nq)}}\ (8)$ . In conclusion, $(4)$ and $(8)$ express that

$\frac {YM}{YN}=\frac {ZM}{ZN}\iff$ $\frac {YM}{YN}=\frac {(1-n)(s-mr)}{(1-m)(1-nr)}=\frac {(1-n)(1-mq)}{(1-m)(p-nq)}\iff$ $(1-mq)(1-nr)=(p-nq)(s-mr)\iff$ $1+mpr+nqs=mq+ps+rn$ .
This post has been edited 53 times. Last edited by Virgil Nicula, Nov 26, 2015, 6:35 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a