283. Some nice and easy problems.

by Virgil Nicula, Jun 4, 2011, 5:51 PM

P1. Let $ABC$ be an $A$-right triangle with incenter $I$ . Denote $\left\{\begin{array}{ccc}
E & \in & BI\cap AC\\\\
F & \in & CI\cap AB\end{array}\right\|\ .$ and the midpoint $M$ of $[EF]$ . Prove that $MI\perp BC$ . The drawing is here.

Proof 1 (synthetic). Denote the projections $X$ , $Y$ on $BC$ of $F$ , $E$ respectively. Observe that $EA=EY$ and $FA=FX$ . Therefore, $IA=IY$

and $IA=IX$ , i.e. $I$ is the circumcenter of $\triangle XAY$ . In conclusion, $MI$ is middleline in the right trapezoid $EFXY$ $\implies$ $MI\perp BC$ .

Remark. Prove easily that the point $I$ is the $B$-exincenter of $\triangle BFX$ and is the $C$-exincenter of $\triangle CEY$ . Thus $IX\perp IY$ and $m\left(\widehat{XAY}\right)=45^{\circ}$ .

Proof 2 (metric). I"ll use the equivalence $MI\perp BC\ \iff\ MB^2-MC^2=IB^2-IC^2$ and the well-known relations $\left\{\begin{array}{c}
BE^2=ac-EA\cdot EC\\\\
CF^2=ab-FA\cdot FB\end{array}\right\|\ (1)$ .

Observe that $\left\{\begin{array}{ccc}
BF=\frac {ac}{a+b}=\frac {a(a-b)}{c}\\\\
CE=\frac {ab}{a+c}=\frac {a(a-c)}{b}\end{array}\right\|\implies$ $\boxed{c\cdot BF-b\cdot CE=a(c-b)}\ (2)$ . Apply the theorem of the median to :

$\left\{\begin{array}{ccc}
BM/\triangle EBF & \implies & 4\cdot BM^2=\left(BF^2+BE^2\right)-EF^2\\\\
CM/\triangle ECF & \implies & 4\cdot CM^2=\left(CE^2+CF^2\right)-EF^2\end{array}\right\|$ $\implies$ $2\cdot\left(MB^2-MC^2\right)=$ $\left(BF^2-CE^2\right)+BE^2-CF^2\stackrel{(1)}{=}$

$\left(BF^2-CE^2\right)+\left(ac-EA\cdot EC\right)-\left(ab-FA\cdot FB\right)=$ $a(c-b)+BF(BF+FA)-CE(CE+EA)=$ $a(c-b)+c\cdot BF-b\cdot CE\stackrel{(2)}{=}$

$2a(c-b)\implies$ $\boxed{MB^2-MC^2=a(c-b)}\ (3)$ . On other hand, $IB^2-IC^2=\frac {ac(s-b)}{s}-\frac {ab(s-c)}{s}\implies$ $\boxed{IB^2-IC^2=a(c-b)}\ (4)$ .

From the last relations $(3)$ and $(4)$ obtain that $MB^2-MC^2=IB^2-IC^2$ , i.e. $MI\perp BC$ .

Proof 3 (metric). Denote the point $N\in EF$ for which $NI\perp BC$ . I"ll show that $N\equiv M$ . Using an well-known property $\frac {NF}{NE}=\frac {IF}{IE}\cdot\frac {\sin\widehat{NIF}}{\sin\widehat{NIE}}=$

$\frac cb\cdot\frac {CF}{BE}\cdot\frac {\cos\frac C2}{\cos\frac B2}=$ $\frac {a+c}{a+b}\cdot \frac {\cos^2\frac C2}{\cos^2\frac B2}=$ $\frac {c(a+c)(a+b-c)}{b(a+b)(a+c-b)}=$ $\frac {bc(a+c)+c\left(a^2-c^2\right)}{bc(a+b)+b\left(a^2-b^2\right)}=$ $\frac {bc(a+c)+b^2c}{bc(a+b)+bc^2}=1\implies$ $NE=NF\implies N\equiv M$ .

Remark. Prove easily that in any triangle $ABC$ exists the relation $MB^2-MC^2=a(c-b)\cdot\left[1+\frac {bc\cdot \cos A}{(a+b)(a+c)}\right]=a(c-b)\cdot\frac {(a+b+c)^2}{2(a+b)(a+c)}$ .

Observe that $A=90^{\circ}\iff b^2+c^2=a^2$ $\iff (a+b+c)^2=$ $2(a+b)(a+c)\iff$ $c(a+c)(a+b-c)=b(a+b)(a+c-b)\iff MI\perp BC\iff NE=NF$ .

Proof 4. Let $D\in (BC)$ so that $ID\perp BC.$ Thus, $DB^2-DC^2=(s-b)^2-(s-c)^2=a(c-b)\implies$ $\boxed{DB^2-DC^2=a(c-b)}\ (1)\ .$ Apply the theorem of median to $:$

$\left\{\begin{array}{cc}
BM/\triangle EBF\ : & 4\cdot MB^2=2\cdot \left(BF^2+BE^2\right)-EF^2\\\\
CM/\triangle FCE\ : & 4\cdot MC^2=2\cdot \left(CE^2+CF^2\right)-EF^2\end{array}\right\|\ \stackrel{(-)}{\implies}\ 2\cdot$ $\left(MB^2-MC^2\right)=\left(BF^2-CE^2\right)+\left(BE^2-CF^2\right)=$ $\left[\left(\frac {ac}{a+b}\right)^2-\left(\frac {ab}{a+c}\right)^2\right]+$

$\left[ac-\frac {ab^2c}{(a+c)^2}-ab+\frac {abc^2}{(a+b)^2}\right]=$ $\left[\underline{\frac {a^2(a-b)}{a+b}}-\underline{\underline{\frac {a^2(a-c)}{a+c}}}\right]+\left[a(c-b)-\underline{\underline{\frac {ac(a-c)}{a+c}}}+\underline{\frac {ab(a-b)}{a+b}}\right]=$ $a(c-b)+\left(a^2+ab\right)\cdot \frac {a-b}{a+b}-\left(a^2+ac\right)\cdot\frac {a-c}{a+c}=$

$a (c-b)+a(a-b)-a(a-c)=$ $2a(c-b)\implies$ $\boxed{MB^2-MC^2=a(c-b)}\ (2)\ .$ From $(1)$ and $(2)$ get $MB^2-MC^2=DB^2-DC^2\iff$ $MD\perp BC\iff$ $M\in ID\ .$



An easy extension. Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and $\left\{\begin{array}{ccccccc}
E & \in & BI\cap AC & ; & F & \in & CI\cap AB\\\\
D & \in & BC\cap w & ; & M & \in & EF\cap ID\end{array}\right\|\ .$ Prove that $\boxed{\frac {ME}{MF}=\frac {b(s-b)(a+b)}{c(s-c)(a+c)}}\ (*)\ .$

Proof 1.

$\blacktriangleright\ \mathrm{Pr}_{BC}(F)=X \implies BX=BF\cdot\cos B=\frac {2ac\cdot \cos B}{2(a+b)}=$ $\frac {a^2+c^2-b^2}{2(a+b)}\implies $ $DX=DB-BX=(s-b)-\frac {a^2+c^2-b^2}{2(a+b)}=$

$\frac {(a+b)(a+c-b)-\left(a^2+c^2-b^2\right)}{2(a+b)}=$ $\frac {\cancel a^2+a(c-\cancel b)+\cancel{ab}+b(c-\cancel b)-\cancel a^2-c^2+\cancel b^2}{2(a+b)}=\frac {c(a+b-c)}{2(a+b)}\implies$ $\boxed{DX=\frac {c(s-c)}{a+b}}\ (1)\ .$

$\blacktriangleright\ \mathrm{Pr}_{BC}(E)=Y \implies $ $CY=CE\cdot\cos C=\frac {2ab\cdot \cos C}{2(a+c)}=$ $\frac {a^2+b^2-c^2}{2(a+b)}\implies $ $DY=DC-CY=(s-c)-\frac {a^2+b^2-c^2}{2(a+c)}=$

$\frac {(a+c)(a+b-c)-\left(a^2+b^2-c^2\right)}{2(a+c)}=$ $\frac {\cancel a^2+a(b-\cancel c)+\cancel{ac}+c(b-\cancel c)-\cancel a^2-b^2+\cancel c^2}{2(a+c)}=\frac {b(a+c-b)}{2(a+c)}\implies$ $\boxed{DY=\frac {b(s-b)}{a+c}}\ (2)\ .$

In conclusion, $FX\parallel MD\parallel EY\iff$ $\frac {ME}{MF}=\frac {DY}{DX}\ \stackrel{(1\wedge 2)}{=}\  \frac {\frac {b(s-b)}{a+c}}{\frac {c(s-c)}{a+b}}\implies$ $\frac {ME}{MF}=\frac {b(s-b)(a+b)}{c(s-c)(a+c)}\ .$

Proof 2. Denote $U\in AC\cap DI$ and apply the Menelaus' theorem to the transversals $:\ \left\{\begin{array}{cccc}
\overline{DIU}/\triangle BCE\ : & \frac {UE}{UC}\cdot\frac {DC}{DB}\cdot \frac {IB}{IE}=1\\\\
\overline{UMI}/\triangle EFC\ : & \frac {UC}{UE}\cdot \frac {ME}{MF}\cdot \frac {IF}{IC}=1\end{array}\right\| \bigodot\implies$

$\frac {ME}{MF}\cdot\frac {DC}{DB}\cdot\frac {IB}{IE}\cdot\frac {IF}{IC}=1\implies$ $\frac {ME}{MF}\cdot\frac {s-c}{s-b}\cdot\frac {a+c}{b}\cdot\frac {c}{a+b}=1\implies$ $\frac {ME}{MF}=\frac {b(s-b)(a+b)}{c(s-c)(a+c)}\ .$

Particular case$:\ ME=MF\iff$ $b(s-b)(a+b)=c(s-c)(a+c)\iff$ $b(a+c-b)(a+b)=c(a+b-c)(a+c)\iff$ $bc(a+b)+b\left(a^2-b^2\right)=$ $bc(a+c)+$

$c\left(a^2-c^2\right)\iff$ $bc(b-c)+a^2(b-c)=$ $b^3-c^3\iff$ $(b-c)\left(a^2+bc\right)=$ $(b-c)\left(b^2+bc+c^2\right)\iff$ $b=c\ \vee\ b^2+c^2=a^2\iff$ $ABC$ is $A$-isosceles or $A$-right.



Generalization. Let $\triangle ABC\ ,$ $D\in (BC)\ ,$ an interior point $P$ and $\left\{\begin{array}{ccc} 
E & \in & BP\cap AC\\\\ 
F & \in & CP\cap AB\\\\
M & \in & EF\cap PD\end{array}\right\|\ .$ Prove that $\boxed{\frac {ME}{MF}=\frac {DB}{DC}\cdot\frac {PE}{PB}\cdot\frac {PC}{PF}}\ (*)\ .$

Proof. Denote $U\in AC\cap DP$ and apply the Menelaus' theorem to the transversals $:\ \left\{\begin{array}{cccc}
\overline{DPU}/\triangle BCE\ : & \frac {UE}{UC}\cdot\frac {DC}{DB}\cdot \frac {PB}{PE}=1\\\\
\overline{UMP}/\triangle EFC\ : & \frac {UC}{UE}\cdot \frac {ME}{MF}\cdot \frac {PF}{PC}=1\end{array}\right\| \bigodot\implies$

$\frac {ME}{MF}\cdot\frac {DC}{DB}\cdot\frac {PB}{PE}\cdot\frac {PF}{PC}=1\implies$ $\frac {ME}{MF}=\frac {DB}{DC}\cdot\frac {PE}{PB}\cdot\frac {PC}{PF}\ .$ Study some particular cases $:\ P\in \{O,H,L,N,\Gamma\}$ a.s.o. (standard notations).


P2. Let $\triangle ABC,$ an interior $P$ for which $\left\{\begin{array}{ccc}
D & \in & AP\cap BC\\\\
E & \in & BP\cap CA\\\\
F\ & \in & CP\cap AB\end{array}\right|$ and $M\in (BC)$ for which $\left\{\begin{array}{ccc}
K & \in & MP\cap EF\\\\
N\ & \in & AK\cap BC\end{array}\right|\ .$ Prove that $\frac {MB}{MC}\cdot\frac {NB}{NC}=\left(\frac {DB}{DC}\right)^2\ (*)\ .$ See here.


P3. Let $A_1A_2A_3A_4A_5A_6A_7$ be a regular heptagon and let $X\in A_1A_3\cap A_2A_5$ . Prove that $\frac {1}{A_1A_2}=\frac {1}{A_1A_3}+\frac {1}{A_1A_4}$ and find $m(\angle A_1XA_7)$ .

Proof. Apply the Ptolemy's theorem to the quadrilateral $A_1A_2A_3A_5$ and obtain the required relation. Remark that $\frac {1}{\sin\frac {\pi}{7}}=\frac {1}{\sin\frac {2\pi}{7}}+\frac {1}{\sin\frac {3\pi}{7}}$ .

Prove easily that $m\left(\widehat{A_1XA_2}\right)=m\left(\widehat{A_1A_2X}\right)=\frac {3\pi}{7}$ . Thus, $A_1A_7=A_1A_2=A_1X\implies$

$\triangle XA_1A_7$ is $A_1$-isosceles. Since $m\left(\widehat{XA_1A_7}\right)=\frac {4\pi}{7}$ obtain that $m\left(\widehat{A_1XA_7}\right)=\frac 12\cdot\left(\pi -\frac {4\pi}{7}\right)=\frac {3\pi}{14}$ .



P4. Show that $\log_{a}bc+\log_bca+\log_cab \ge 4(\log_{ab}c+\log_{bc}a+\log_{ca}b)$ for all $a$ , $b$ , $c$ greater than $1$ .

Proof. Denote $x = \lg a$ , $y = \lg b$ and $z = \lg c$ , where $x$ , $y$, $z$ are positive. Our statement comes to proving

$\frac{x + y}{z} + \frac{y + z}{x} + \frac{z + x}{y} \ge 4\left( \frac{x}{y + z} + \frac{y}{z + x} + \frac{z}{x + y} \right)$ . However, this follows from $\frac{x}{y} + \frac{x}{z} \ge \frac{4x}{y + z}$ .



P5. If the incircle of $\triangle ABC$ touches its sides in the points $X\in (BC)$ , $Y\in (CA)$ and $Z\in (AB)$ , then $XY^2+YZ^2+ZX^2=\frac {2r^2}{R}\cdot (4R+r)\le \frac {s^2}{3}$ .

Proof. $\boxed{XY^2+YZ^2+ZX^2}\equiv\sum YZ^2=$ $\sum \left(2r\cdot\cos\frac A2\right)^2=$ $\sum 4r^2\cdot\frac {s(s-a)}{bc}=$ $\frac {4r^2s}{abc}\cdot \sum a(s-a)=$ $\boxed{\frac {2r^2}{R}\cdot (4R+r)}\le $

$\frac 2R\cdot \frac {s^2}{27}\cdot (4R+r)=$ $\frac {s^2}{3}\cdot\frac {2(4R+r)}{9R}\le \boxed{\frac {s^2}{3}}$ . I used the well-known relations $\sum a(s-a)=2r(4R+r)$ , $3r\sqrt 3\le s$ , $2r\le R$ .



P6. IF $a$ , $b$ , $c$ , $d$ are the roots of the equations $P(x)\equiv x^4-7x^3+8x^2-5x+10=0$ , THEN find the value of $\prod\left(a^2+2\right)$ .

Proof. $P(X)=X^4-7X^3+8X^2-5X+10=\prod (X-a)\implies$ $P(X)\cdot P(-X)=$ $\left(8X^2+10\right)^2-\left(X^7-7X^3-5X\right)^2=$

$X^8-33X^6+14X^4+135X^2+100=$ $\prod\left(X^2-a^2\right)\implies$ $\prod\left(a^2+2\right)=q(-2)=166$ ,

where $q(t)=\prod\left(t-a^2\right)=t^4-33t^3+14t^2+135t+100$ . Thus, $\prod\left(a^2+2\right)=166$ . Remark that $\prod\left(a^2+2\right)=P\left(i\sqrt 2\right)\cdot P\left(-i\sqrt 2\right)$ .



P7. Find the maximum area of $\triangle ABC$ with $a=4$ and $c=3b$ .

Proof 1. Suppose w.l.o.g. $b=x$ , $c=3x$ , where $x>1$ . Observe that $s=2(x+1)$ , $s-a=2(x-1)$ , $s-b=2+x$ , $s-c=2-x$

and $S^2=4\left(x^2-1\right)\left(4-x^2\right)$ . Thus, $S$ is maximum $\iff$ $\left(x^2-1\right)\left(4-x^2\right)$ is maximum $\iff$ $x^2-1=4-x^2=\frac 32\iff$

$x^2=\frac 52\iff$ $x=\frac {\sqrt {10}}{2}$ because $\left(x^2-1\right)+\left(4-x^2\right)=3$ (constant). In this case $S^2_{\mathrm{max}}=4\cdot\left(\frac 32\right)^2$ , i.e. $\boxed{\ S_{\mathrm{max}}=3\ }$ .

Proof 2. Denote $D\in (BC)$ and $C\in (DE)$ so that $3=\frac {DB}{DC}=\frac {EB}{EC}$ , i.e. the rays $[AD$ , $[AE$ are the interior and exterior $A$-angled

bisectors of $\triangle ABC$ and the circle $w$ with diameter $[DE]$ is the Appolonius' circle which has the radius $\frac 32$ because prove easily that

$CE=2$ , i.e. $DE=3$ . Thus, for any $M\in w$ we have $\frac {MB}{MC}=3$ . In conclusion, $S_{\mathrm{max}}=\frac 12\cdot 4\cdot \frac 32$ $\implies$ $S_{\mathrm{max}}=3$ .



P8. Let $ABC$ be a triangle for which denote $m=\sin2A$ , $n= \sin2B$ and $p= \sin2C$ .

Show that $s(s - m)(s - n)(s -p) \geq 0$ , where $2s=m+n+p$ . When is the equality ?


Proof. Prove easily that $\boxed{\alpha +\beta+\gamma=\pi\implies\sin 2\alpha +\sin 2\beta+\sin 2\gamma=4\sin\alpha\sin\beta\sin\gamma}$ . Therefore,

$\left\|\begin{array}{ccc}
A+B+C=\pi & \implies & 2s=\sin 2A+\sin 2B+\sin 2C=4\sin A\sin B\sin C\\\\ 
\left(\frac {\pi}{2}-B\right)+\left(\frac {\pi}{2}-C\right)+(\pi -A)=\pi & \implies & 2(s-m)=\sin 2B+\sin 2C-\sin 2A=4\cos B\cos C\sin A\\\\
\left(\frac {\pi}{2}-C\right)+\left(\frac {\pi}{2}-A\right)+(\pi -B)=\pi & \implies & 2(s-n)=\sin 2C+\sin 2A-\sin 2B=4\cos C\cos A\sin B\\\\
\left(\frac {\pi}{2}-A\right)+\left(\frac {\pi}{2}-B\right)+(\pi -C)=\pi & \implies & 2(s-p)=\sin 2A+\sin 2B-\sin 2C=4\cos A\cos B\sin C\end{array}\right\|\ \bigodot\implies$

$16s(s-m)(s-n)(s-p)=$ $4\cdot\left[\prod (2\sin A\cos A)\right]^2=$ $4\cdot \prod\sin ^22A\ge 0$ . The equality is hold iff $\frac {\pi}{2}\in \left\{A,B,C\right\}$ .



P9. Suppose that for every $ k \in\left\{ 1,2,...,n\right\}$, where $ n\in\mathbb N$ , we have given a complex number $ z_k$

for which $ \left|z_{k}\right| = 1$ . Assume that $ \sum_{k = 1}^{n}z_{k} = 0$ . Prove that for $(\forall )\ z\in\mathbb{C}$ we have $\sum_{k=1}^{n}\left|z - z_{k}\right|\ge n$ .


Proof. Suppose w.l.o.g. that $z\ne 0$ . Then $\sum_{k=1}^n |z-z_k| =\sum_{k=1}^n \left|\overline{z}_k\right|\cdot \left|z-z_k\right| =$

$\sum_{k=1}^n \left|\overline{z}_k\cdot z-1\right| \ge$ $\left|\sum_{k=1}^n \left(\overline{z}_k\cdot z-1\right)\right|=$ $\left|z\cdot\sum_{k=1}^n\overline{z}_k-n\right|=$ $\left|z\cdot\overline{\sum_{k=1}^nz_k}-n\right|=n$ .



P10. Prove that in any triangle $ABC$ exists the inequality $m_a+m_b+m_c\ge \frac {a^2+b^2+c^2}{2R}$ , where $R$ is the length of the circumradius .

Proof 1. Denote the midpoint $M$ of $[BC]$ . The line $AM$ meet again the circumcircle of $\triangle ABC$ in $X$ . Since $MA\cdot MX=MB\cdot MC$

obtain that $MX=\frac {a^2}{4m_a}$ . Thus, $AX\le 2R\iff m_a+MX\le 2R\iff$ $m_a+\frac {a^2}{4m_a}\le 2R\iff$ $a^2+4m_a^2\le 8Rm_a$ .

Thus, $2\left(b^2+c^2\right)\le 8Rm_a\iff$ $b^2+c^2\le 4Rm_a$ a.s.o. In conclusion, $\sum\left(b^2+c^2\right)\le 4R\sum m_a\iff$ $\sum m_a\ge \frac {\sum a^2}{2R}$ .

Proof 2. The line $BO$ meet again the circumcircle $C(O,R)$ of $\triangle ABC$ in the point $E$ . Observe that $CE=2\cdot OM$ , $CE^2=4R^2-a^2$

and $\left|m_a-R\right|\le OM\iff$ $2\cdot\left|m_a-R\right|\le CE\iff$ $4\left(m_a-R\right)^2\le 4R^2-a^2\iff$ $8Rm_a\ge 4m_a^2+a^2\iff$

$4Rm_a\ge b^2+c^2\ (*)$ a.s.o. We have the equality in the relation $(*)$ iff $b=c$ or $AB\perp AC$ .

Proof 3. A simpler way uses the well-known inequality $\boxed{\ h_a\, \le\, s_a\ }$ , where $s_a$ represent the length of the $A$-symmedian. Indeed,

since $h_a=\frac {bc}{2R}$ and $s_a=\frac {2bc}{b^2+c^2}\cdot m_a$ we obtain $h_a\le s_a\iff\frac {bc}{2R}\le\frac {2bc}{b^2+c^2}\cdot m_a\implies\boxed{\ m_a\, \ge\, \frac {b^2+c^2}{4R}\ }$ a.s.o.



P11. Prove that in any $\triangle ABC$ exists the inequality $m_bm_c\le \frac {a^2}{2}+\frac {bc}{4}$ .

Proof 1. Denote the midpoints $M$ , $N$ of the sides $[AB]$ , $[AC]$ respectively. Apply the Ptolemy's inequality in the trapezoid

$MBCN\ :\ BN\cdot CM\le$ $ BM\cdot CN+BC\cdot MN\iff$ $m_bm_c\le \frac c2\cdot \frac b2+a\cdot\frac a2\iff$ $m_bm_c\le \frac {a^2}{2}+\frac {bc}{4}$ .

Proof 2. $4m_am_b\le 2a^2+bc\iff$ $\left[2\left(a^2+c^2\right)-b^2\right]\cdot\left[2\left(a^2+b^2\right)-c^2\right]\le\left(2a^2+bc\right)^2\iff$ $4\left(a^2+b^2\right)\left(a^2+c^2\right)+$ $b^2c^2-$ $2c^2\left(a^2+c^2\right)-$

$2b^2\left(a^2+b^2\right)\le$ $ 4a^4+b^2c^2+$ $4a^2bc\iff$ $2a^2\left(b^2+c^2\right)+$ $4b^2c^2-2\left(b^4+c^4\right)$ $\le 4a^2bc\iff$ $2a^2(b-c)^2\le$ $ 2\left(b^2-c^2\right)^2\iff$ $(b-c)^2\ge 0$ .

Remark.

$\blacktriangleright\ \sum\frac {m_bm_c}{a}\le \frac 12\cdot\sum a+\frac 14\cdot abc\sum\frac {1}{a^2}\le $ $s+Rsr\cdot\frac {1}{4r^2}\le s+\frac {Rs}{4r}\implies$ $\boxed{\frac {m_bm_c}{a}+\frac {m_cm_a}{b}+\frac {m_am_b}{c}\le s\left(1+\frac {R}{4r}\right)}$ . I used the chain

$\boxed{\frac {1}{R^2}\le\sum\frac {1}{a^2}\le\frac {1}{4r^2}}$ . Indeed, $\frac {1}{R^2}\le \frac {1}{2Rr}=$ $\frac {2s}{4RS}=\frac {a+b+c}{abc}=$ $\sum\frac {1}{bc}=$ $\frac {\sum (ab)(ac)}{(abc)^2}\le$ $\sum\frac {(bc)^2}{a^2b^2c^2}=$ $\sum\frac {1}{a^2}\le$ $\frac {1}{4(s-b)(s-c)}=$ $\frac {1}{4r^2}$ .

Otherwise, $\sum\frac {1}{a^2}\ge\frac {9}{\sum a^2}\ge \frac {1}{R^2}$ . I used the well-known inequalities $\left\{\begin{array}{c}
R\ge 2r\\\\
a^2+b^2+c^2\le 9R^2\\\\
\sum (bc)^2\ge abc(a+b+c)\\\\
a^2\ge 4(s-b)(s-c)\end{array}\right\|$ and the identities $\left\{\begin{array}{c}
abc=4RS=4Rsr\\\\
\sum\frac {1}{(s-b)(s-c)}=\frac {1}{r^2}\end{array}\right\|$ .

$\blacktriangleright\ \sum\frac {m_bm_c}{bc}\le\sum\frac {2a^2+bc}{4bc}=\frac 12\cdot \frac {\sum a^3}{abc}+\frac 34$ . Observe that $\frac {\sum a^3}{abc}=$ $\frac {s^2-3r^2-6Rr}{2Rr}\le$ $\frac {4R^2-2Rr}{2Rr}=$ $\frac {2R}{r}-1\implies$ $\boxed{\ \sum\frac {m_bm_c}{bc}\le\frac Rr+\frac 14\ }$ .



P12. Let $ABC$ be a triangle. Denote the feet $D$ , $E$ of the altitudes from $A$ and $C$ respectively. Let $F$ be the second

point of intersection of the circumcircles of $ABC$ and $AEH$. Show that $F\in DE\iff DC=3\cdot DB$ .


Proof. Denote the midpoint $M$ of $[BC]$ , the circumcircle $w$ of $\triangle ABC$ and the second intersections $L$ , $A'$ , $F'$ with $w$ of the lines $AH$ , $AO$ , $A'H$ respectively.

Since $HL=2\cdot HD$ , $HA'=2\cdot HM$ and $HA\cdot HL=HA'\cdot HF'$ $\implies$ $HA\cdot HD=HM\cdot HF'$ $\implies$ the quadrilateral $AF'DM$ is cyclically $\implies$

$AF'\perp HF'$ $\implies$ $F'\equiv F$ . Denote $G\in BH\cap AC$ . From $HB\cdot HG=HD\cdot HA=HM\cdot HF$ obtain that $HB\cdot HG=HM\cdot HF$ ,

i.e. $BMGF$ is cyclical quadrilateral. Thus, $DC=3\cdot DB\iff$ $D$ is the midpoint of $[BM]\iff$ $\widehat{GBM}\equiv\widehat{FMB}\iff$ $FG\parallel BC\iff$

$\widehat{BED}\equiv\widehat{BCG}\equiv$ $\widehat{AGF}\equiv\widehat{AEF}\iff$ $\widehat{BED}\equiv\widehat{AEF}\iff$ $F\in DE$ .



P13.The equation $f_a(x)\equiv x^{2}+(a+2)x+a^{2}-a+2=0\ (*)$ has real roots, where $a\in\mathbb R^*$ . Find the range of these roots.

Proof. $r$ is a root of $(*)\iff$ $f_a(r)=\underline r^{2}+(a+2)\underline r+a^{2}-a+2=0$ , i.e. $\underline a^2+(r-1)\cdot \underline a+\left(r^2+2r+2\right)=0$ .

$\blacktriangleright\ r\in\mathbb R\iff$ $\Delta_r' (a)\equiv (a+2)^2-4\left(a^2-a+2\right)\ge 0\iff$ $3a^2-8a+4\le 0\iff$ $a\in\left[\frac 23,2\right]$ .

$\blacktriangleright\ a\in\mathbb R^*\iff$ $\Delta_a^{\prime}(r)\equiv (r-1)^2-4\left(r^2+2r+2\right)\ge 0\iff$ $3r^2+10r+7\le 0\iff$ $\boxed{\ r\in\left[-\frac 73,-1\right]\ }$ .



P14. Let $ABC$ be a triangle with the incenter $I$ and the circumcircle $w=C(O,R)$ . Denote $B_1\in BI\cap AC$ ,

$C_1\in CI\cap AB$ and $\{M,N\}=B_1C_1\cap w$ . Prove that the circumradius of $\triangle MIN$ is equally to $2R$ .


Proof. Denote the exincenters $ I_a$ , $I_b$ , $I_c$ of $\triangle ABC$ . Then $I$ is the orthocenter of $\triangle  I_aI_bI_c$ and $w$ is nine-point circle of $\triangle I_aI_bI_c$ , i.e. the lengths of the circumradius

for the triangles $I_aI_bI_c$ and $II_bI_c$ are equally to $2R$ . We will show that $M$ , $N$ belong to the circumcircle of $\triangle II_bI_c$ . Suppose w.l.o.g. $C_1\in (MB_1)$ . Thus, $I_cAIB$

and $I_bAIC$ are cyclically $\Longrightarrow$ $\begin{array}{c}
C_1I\cdot C_1I_c=C_1A\cdot C_1B=C_1M\cdot C_1N \Longrightarrow I_cMIN\ \mathrm{is\ cyclically}\\\
B_1I\cdot B_1I_b=B_1A\cdot B _1C=B_1M\cdot B_1N \Longrightarrow I_bNIM\ \mathrm{is\ cyclically}\end{array}\implies$ $M$ , $N$ belong to the circumcircle of $\triangle MIN$ .



P15. Find $x \in R$ such $\left[x+\frac{1}{2}\right] + \left[x-\frac{1}{2}\right] = [2x]$ .

Proof. Using the Hermite's identity $[x]+\left[x+\frac 12\right]=[2x]$ obtain that $\left[x+\frac{1}{2}\right] + \left[x-\frac{1}{2}\right] = [2x]\iff$ $[x]=\left[x-\frac 12\right]=z\in\mathrm Z\iff$

$\left\{\begin{array}{c}
z\le x<z+1\\\
z\le x-\frac 12<z+1\end{array}\right\|\iff$ $\left\{\begin{array}{c}
z\le x<z+1\\\
z+\frac 12\le x<z+\frac 32\end{array}\right\|\iff$ $z+\frac 12\le x<z+1\ ,\ z\in\mathbb Z$ . In conclusion, $x\in\bigcup_{z\in\mathbb Z}\left[z+\frac 12,z+1\right)$ .

Remark. $\left[x+\frac{1}{2}\right] + \left[x-\frac{1}{2}\right] = [2x]\iff$ $x\in\bigcup_{z\in\mathbb Z}\left[z+\frac 12,z+1\right)\ \iff\ \left[2\cdot\left\{x\right\}\right]=1$ .



P16. Prove that if $ \triangle ABC$ is acute, then $ \frac {1}{\cos A\cos B} + \frac {1}{\cos B\cos C} + \frac {1}{\cos C\cos A}\geq12$ .

Proof I. $ \boxed {a = b\cdot\cos C + c\cdot\cos B}$ $ \implies$ $ a^2\ge 4bc\cdot \cos B\cos C$ $ \implies$ $ \sum\frac {1}{\cos B\cos C}\ge 4\cdot \sum \frac {bc}{a^2}\ge 12\cdot \sqrt [3]{\frac {bc}{a^2}\cdot \frac {ca}{b^2}\cdot\frac {ab}{c^2}} = 12$ .

Proof II. $ \sum \frac {1}{\cos B\cos C} =$ $ \sum \frac {2}{\cos (B - C) + \cos (B + C)}\ge$ $ \sum \frac {2}{1 - \cos A} =$ $ \sum\frac {1}{\sin^2\frac A2} =$

$ \sum\frac {bc}{(s - b)(s - c)} =$ $ \frac {abc}{pr^2}\cdot \sum \frac {s - a}{a} =$ $ \frac {4R}{r}\cdot\left(s\cdot\sum \frac 1a - 3\right)\ge$ $ \frac {4R}{r}\cdot\left(\frac 92 - 3\right) =$ $ \frac {6R}{r}\ge 12$ .

Observe that $ \boxed {\ \sum \frac {1}{\cos B\cos C}\ \ge\ \frac {36R^2}{s^2 + r^2 - 4R^2}\ \ge\ \frac {6R}{r}\ \ge\ 12\ }$ .



P17. Let $ ABCD$ be a rectangle with $ AD=1$ and let $ P\in (AB)$ be the point

for which the rays $[DP$ , $[DB$ trisect $\angle ADC$. Find the perimeter of $ \triangle BDP$ .


Proof. Denote $DB=x>1$ . Observe that $AB=\sqrt {x^2-1}$ and $\frac {PA}{DA}=\frac {PB}{DB}=\frac {AB}{DA+DB}\implies$

$\frac {PA}{1}=\frac {PB}{x}=\frac {\sqrt {x^2-1}}{1+x}$ .Since $AB\parallel CD$ obtain that $\widehat{PDB}\equiv\widehat{CDB}\equiv$ $\widehat{PBD}\implies$

$\widehat{PDB}\equiv\widehat{PBD}\implies$ $PD=PB=\frac {x\sqrt{x^2-1}}{x+1}$ and $PA=\frac {\sqrt {x^2-1}}{1+x}$ . Since $\triangle ADP\sim\triangle CDB$

obtain that $\frac {AD}{CD}=\frac {AP}{CB}\implies$ $\frac {1}{\sqrt{x^2-1}}=\frac {\sqrt {x^2-1}}{x+1}\iff$ $x^2-1=x+1\iff$ $x=2$ .

In conclusion, $BD=2$ and $PB=PD=\frac {2\sqrt 3}{3}$ $\implies$ the perimeter of the triangle $BDP$ is $2+\frac {4\sqrt 3}{3}$ .



P18 (from my dear Kunny). Given is a circle $w$ with the diameter $[AB]$ . For a mobile point $M\in w$ define $N\in (AB)$

for which $AN=MB$ . Find the position of the point $M$ so that the area $[AMN]$ of the triangle $AMN$ is maximum.


Proof. Denote $AB=a$ , $AM=u$ , $MB=AN=v$ and $\phi =m\left(\widehat{MAB}\right)$ . Suppose w.l.o.g. that $a=1$ . Thus, $u^2+v^2=1$ , $\sin \phi =\frac {MB}{AB}=v$

and $[ABE]=\frac 12\cdot AM\cdot AN\cdot\sin\phi =\frac {uv^2}{2}$ . In conclusion our problem becomes $\max_{u^2+v^2=1}uv^2\iff$ $u^2v^4$ is max. Observe that $u^2+\frac {v^2}{2}+\frac {v^2}{2}=1$

(constant). Thus $uv^2$ is max. $\iff$ $u^2=\frac {v^2}{2}=\frac 13\iff$ $u=\frac {\sqrt 3}{3}$ , $v=\frac {\sqrt 6}{3}$ and the maximum of the area of the triangle $AMN$ is $\frac {\sqrt 3}{9}$ .

Here are three similar problems.


SP1. Find the rotation cylinder with the constant volume and with the minimum total surface ("problem of the instant coffee can").

Proof. Denote the length $r$ of the circle from base and the length $g$ of the generatrix. Then its volume is $v(r,g)=\pi r^2g$ and its total surface is $s(r,g)=2\pi rg+2\pi r^2=$

$2\pi r(r+g)$ . Therefore, our problem is equivalently with $\min_{r^2g=k}f(r,g)$ , where $f(r,g)=r^2+rg$ . Observe that $r^2g$ is constant $\iff$ $\frac {r^4g^2}{4}$ is constant $\iff$

$r^2\cdot\frac {rg}{2}\cdot\frac {rg}{2}$ is constant. Thus, $r^2+rg=$ $r^2+\frac {rg}{2}+\frac {rg}{2}$ $\implies$ $r^2+rg$ is min. $\iff$ $r^2=\frac {rg}{2}\iff$ $g=2r=\sqrt[3]{4k}$ , i.e. the axial section is a square.


SP2. Given is a circle $w$ with the diameter $[AB]$ . For a mobile point $M\in w$ define $N$ of $(AB)$ so

that $MN\perp AB$ . Find the position of the point $M$ so that the sum $MB+MN$ is maximum.


Proof. Observe that $b+h_a$ is max. $\iff$ $b+\frac {bc}{a}$ is max. $\iff$ $b(a+c)$ is max. $\iff$ $b^2(a+c)^2$ is max. $\iff$ $\left(a^2-c^2\right)(a+c)^2$ is max. $\iff$ $(a-c)(a+c)^3$

is max. Since $(a-c)+\frac {a+c}{3}+\frac {a+c}{3}+\frac {a+c}{3}=2a$ (constant) obtain that $b+h_a$ is max. $\iff$ $a-c=\frac {a+c}{3}=\frac a2$ , i.e. $c=\frac a2$ , $b=\frac {a\sqrt 3}{2}$ , $h_a=\frac {a\sqrt 3}{4}$

and the maximum of the sum $b+h_a$ is equally to $\frac {3a\sqrt 3}{4}$ . With other words, in any $A$-right triangle $ABC$ there is the inequality $\boxed{\ h_a+\max\{b,c\}\le \frac {3a\sqrt 3}{4}\ }$ .


SP3. A plane figure is the reunion between a rectangle $ABCD$ and a semicircle $\mathbb S$ with the diameter $[DC]$ such

that $[DC]=[ABCD]\cap \mathbb S$ . Suppose that the perimeter of this figure is constant. Find the maximum of its area.


Proof. Denote $AB=CD=2x$ and $AD=BC=y$ . Thus, the perimeter of the figure is $(2+\pi )x+2y=k$ (constant) and the area of the plane figure is

$a(x,y)=2xy+\frac {\pi x^2}{2}=x\left(2y+\frac {\pi x}{2}\right)$ is max. $\iff$ the product $\left(2+\frac {\pi}{2}\right)x\cdot \left(2y+\frac {\pi x}{2}\right)$ is max. Observe that the sum $\left(2+\frac {\pi}{2}\right)x+\left(2y+\frac {\pi x}{2}\right)=k$

(constant). In conclusion, the area of the figure is maximum $\iff$ $\left(2+\frac {\pi}{2}\right)x= 2y+\frac {\pi x}{2}=\frac k2$ , i.e. $x=y=\frac {k}{4+\pi}$ (the rectangle is the reunion of two squares !).



P19. Let $ABC$ be a triangle. Consider the points $K\in (BC)$ , $L\in (CA)$ , $M\in (AB)$ so that $KLMB$ is

a parallelogram. Suppose that $[BMK]=S_1$ and $[KLC]=S_2$ . Find the area of the parallelogram $MKLA$ .


Proof. Denote $[AMK]=[ALK]=x$ . Since $\triangle BMK\sim\triangle KLC\ (*)$ obtain that $\frac {x+S_1}{x+S_2}=\frac {KB}{KC}\stackrel{(*)}{=}\sqrt{\frac {S_1}{S_2}}\iff$ $\frac {x+S_1}{x+S_2}=\sqrt{\frac {S_1}{S_2}}\iff$

$(x+S_1)\sqrt {S_2}=$ $(x+S_2)\sqrt {S_1}\iff$ $\left(x-\sqrt{S_1S_2}\right)\left(\sqrt{S_1}-\sqrt{S_2}\right)=0\iff$ $S_1=S_2\ \vee\ x=\sqrt{S_1S_2}\iff$ $[MKLA]=2\sqrt{S_1S_2}$ .



P20. Prove that the points the points $A\left(a,a^2\right)$ , $B\left(b,b^2\right)$ , $C\left(c,c^2\right)$ , $D\left(d,d^2\right)$ are concyclically $\iff$ $a+b+c+d=0$ .

Proof. Let the equation of the circle be $x^2+y^2+mx+ny+k=0$ . Now put $y=x^2$ to get another equation which

$a,b,c,d$ satisfy. The coefficient of $x^3$ in that equation is $0$ , therefore the sum of its roots is $0$ , i.e. $a+b+c+d=0$ .



P21. Let $\triangle ABC$ be a triangle such that $m(\angle BAC)=120 ^\circ$. Denote $O$ as circumcenter, and $H$ as orthocenter. Prove that $OH=AB+AC$ .

Proof (metric). $m(\angle BAC)=120 ^\circ\implies$ $3R^2=a^2=b^2+c^2+bc$ and $OH=b+c\iff$

$9R^2-\sum a^2=9\cdot OG^2=OH^2=(b+c)^2\iff$ $3R^2=a^2+b^2+bc$ , what is truly.



P22. Let $\{P,Q\}\subset (BC)$ be two points so that $PC=QB$ . Prove that $AQ\ge AP\iff (c-b)(PB-PC)\ge 0$ .

Proof. Apply the Stewart's relation to the cevians $AP$ and $AQ$ using that $\left\{\begin{array}{c}
PC=QB\\\
PB=QC\end{array}\right\|$ :

$\left\{\begin{array}{c}
a\cdot AP^2+a\cdot PB\cdot PC=c^2\cdot PC+b^2\cdot PB\\\\
a\cdot AQ^2+a\cdot PB\cdot PC=c^2\cdot PB+b^2\cdot PC\end{array}\right\|\implies$ $a\cdot \left(AQ^2-AP^2\right)=\left(c^2-b^2\right)(PB-PC)$ .

In conclusion, $AQ\ge AP\iff$ $(c-b)(PB-PC)\ge 0$ .

Particular case. If the point $P$ is the foot of the (interior) $A$-bisector of $\triangle ABC$ , then $\frac {PB}{c}=\frac {PC}{b}=\frac {a}{b+c}=\frac {PB-PC}{c-b}\implies$

$PB-PC=\frac {a(c-b)}{b+c}$ . In this case $AQ\ge AP\iff$ $(c-b)(PB-PC)\ge 0\iff$ $\frac {a(c-b)^2}{b+c}\ge 0$ , what is truly.



P23. Calculate the following sums : $\sum_{k=1}^nk2^{k-1}\ \ ;\ \sum _{k=1}^nkC_n^k$ .

Method 1. $\boxed{S_1\equiv \sum_{k=1}^n k2^{k-1}}\implies$ $S_1=2S_1-S_1=\sum_{k=1}^n k2^k-\sum_{k=1}^n k2^{k-1}=$ $\sum_{k=2}^{n+1} (k-1)2^{k-1}-\sum_{k=1}^n k2^{k-1}=$

$n2^n+\sum_{k=1}^n(k-1)2^{k-1}-\sum_{k=1}^n k2^{k-1}=$ $n2^n-\sum_{k=1}^n 2^{k-1}=$ $n2^n-\left(2^n-1\right)\implies$ $\boxed{S_1=(n-1)2^n+1}$ .

I used the formal property of the $\sum\ :\ \boxed{\sum_{k=m}^nf(k)=\sum_{k=m+p}^{n+p}f(k-p)}\ ,\ \{m,n,p\}\subset \mathbb Z$ and $m\le n$ .

Method 2. For $x\ne 1$ obtain that $\sum_{k=1}^nkx^k=\sum_{m=1}^n\sum_{k=m}^nx^k=$ $\sum_{m=1}^n\frac {x^{n+1}-x^m}{x-1}=$ $\frac {1}{x-1}\cdot \left(nx^{n+1}-\sum_{m=1}^nx^m\right)=$

$\frac {1}{x-1}\cdot \left(nx^{n+1}-\frac {x^{n+1}-x}{x-1}\right)\implies$ $\boxed{\sum_{k=1}^nkx^{k-1}=\frac {nx^{n+1}-(n+1)x^{n}+1}{(x-1)^2}}$ .

In the our particular case $x=2$ obtain that $S_1=\sum_{k=1}^nk2^{k-1}=$ $n2^{n+1}-(n+1)2^n+1$ , i.e. $S_1=(n-1)2^n+1$ .

Method 3 (with derivatives). $\sum_{k=1}^nkx^{k-1}=$ $\left(\sum_{k=1}^nx^k\right)'=$ $\left(\frac {x^{n+1}-x}{x-1}\right)'\implies$ $\sum_{k=1}^nkx^{k-1}=\frac {nx^{n+1}-(n+1)x^{n}+1}{(x-1)^2}$ .

Remark. For $x>0$ obtain that $nx^{n+1}+1\ge (n+1)x^n$ . For $x:=\sqrt [n+1]a\ ,\ a>0$ obtain that $\frac {1+na}{1+n}\ge \sqrt [n+1]{a^n}$

with equality for $a=1$ . This inequality means the Cauchy's inequality for $a_1=1$ and $a_k=a$ for any $k\in\overline{2,n}$ .

Here are some formal properties of the $\sum$ .

$\blacktriangleright\ \sum_{k=1}^n\left(a_k+b_k\right)=\sum_{k=1}^n a_k+\sum_{k=1}^nb_k\ \ ;\ \ \sum_{k=1}^n\lambda b_k=\lambda \cdot\sum_{k=1}^nb_k$ .

$\blacktriangleright\ \sum_{k=1}^nf(k)=\sum_{k=1}^nf(n+1-k)\ \ ;\ \ \sum_{k=m}^nf(k)=\sum_{k=m+p}^{n+p}f(k-p)$ .

$\blacktriangleright\ \sum_{p=1}^m\sum_{k=1}^nf(k,p)=\sum_{k=1}^n\sum_{p=1}^mf(k,p)\ \ ;\ \ \sum_{p=1}^m\sum_{k=1}^na_kb_p=\sum_{k=1}^na_k\cdot \sum_{p=1}^mb_p$ .

$\blacktriangleright\ \sum_{m=1}^n\sum_{k=1}^mf(k)=\sum_{m=1}^n\sum_{k=m}^nf(n+1-k)=\sum_{k=1}^n(n+1-k)f(k)=\sum_{k=1}^nkf(n+1-k)$ .

Method 1. $k\cdot C_n^k=\frac {n!k}{k!(n-k)!}=\frac {(n-1)!n}{(k-1)!(n-k)!}=n\cdot C_{n-1}^{k-1}\ ,\ k\in\overline{1,n}$ $\implies$ $S_2=n\cdot\sum_{k=1}^n C_{n-1}^{k-1}\implies$ $\boxed{S_2=n\cdot 2^{n-1}}$ .

Method 2. $\sum_{k=1}^nkC_n^k=\sum_{k=1}^n(n+1-k)C_n^{n+1-k}=$ $\sum_{k=1}^n(n+1-k)C_n^{k-1}=$ $\sum_{k=1}^nnC_n^{k-1}-\sum_{k=1}^n(k-1)C_n^{k-1}=$

$n\left(2^n-1\right)-\sum_{k=1}^{n-1}kC_n^k=$ $n\left(2^n-1\right)-\left(S_2-n\right)\implies$ $S_2=n2^n-S_2$ , i.e. $\boxed{S_2=n2^{n-1}}$ .

Method 3. $\sum_{k=1}^nkC_n^k=\sum_{m=1}^n\sum_{k=m}^nC_n^k=$ $\sum_{m=1}^n\left(2^n-\sum_{k=0}^{m-1}C_n^k\right)=$ $n2^n-\sum_{m=1}^n\sum_{k=0}^{m-1}C_n^k=$

$n2^n-\sum_{k=1}^nkC_n^k$ , i.e. $S_2=n2^n-S_2$ from where obtain $\boxed{S_2=n2^{n-1}}$ .



P24. $\left\{\begin{array}{c}
\sin x+\sin y+\sin z=0\\\\
\cos x+\cos y+\cos z=0\end{array}\right|\implies$ $\left\{\begin{array}{c}
\cos (y-z)=-\frac{1}{2}\\\\
\phi\in\mathbb R\ \implies\ \sum \sin(\phi \pm x)=\sum\cos (\phi \pm x)=0\\\\
\sum\cos 2x=\sum\sin 2x=0\\\\
\sin^2x+\sin^2y+\sin^2z=\frac 32\end{array}\right|$ .

Proof. $1=\sin^2x+\cos^2x=\left[-(\sin y+\sin z)\right]^2+\left[-(\cos y+\cos z)\right]^2=$ $2+2\cos (y-z)\implies\cos (y-z)=-\frac{1}{2}$ .

$\sum \sin (\phi \pm x)=$ $\sum\left(\sin\phi\cos x\pm\cos\phi \sin x\right)=$ $\sin\phi\sum \cos x\pm\cos\phi\sum\sin x=0$ .

$\sum \sin (\phi \pm x)=$ $\sum\left(\cos\phi\cos x\mp\sin\phi \sin x\right)=$ $\cos\phi\sum \cos x\mp\sin\phi\sum\sin x=0$ .

Particularly, for $\phi :=x+y+z$ obtain that $\sum\cos (y+z)=\sum\sin (y+z)=0$ . Thus, $\sum\sin^2x-\sum\cos^2x=$

$\left(\sum\sin x\right)^2-2\cdot\sum\sin y\sin z-$ $\left(\sum\cos x\right)^2+2\cdot\sum\cos y\cos z=$ $2\cdot\sum(\cos y\cos z-\sin y\sin z)\implies$

$-\sum\cos 2x=$ $\sum\sin^2x-\sum\cos^2x=2\cdot\sum\cos (y+z)=0$. In conclusion, $\sum\cos 2x=0$ and $\sum\sin^2x=\sum\cos^2x=\frac 32$ .

$\sum\sin 2x=\sum\left[(\sin x+\cos x)^2-1\right]=$ $-3+\left(\sum\sin x+\sum\cos x\right)^2-2\cdot\sum (\sin y+\cos y)(\sin z+\cos z)=$

$-3-2\cdot \sum\left[(\cos (y-z)+\sin (y+z)\right]=$ $-3-2\cdot \left(-\frac 32\right)=0$ . In conclusion, $\sum\sin 2x=0$ .

Otherwise. Denote $\left\{\begin{array}{c}
\cos x+i\cdot\sin x=u\\\
\cos y+i\cdot\sin y=v\\\
\cos z+i\cdot\sin z=w\end{array}\right|\implies$ $u+v+w=0\iff$ $\overline {\sum u}=\sum\overline u=0\iff$ $\sum\frac {1}{u}=0\iff$

$uv+vw+wu=0\ \implies\ u^2+v^2+w^2=0\ \implies$ $\left\{\begin{array}{c}
\sum\cos 2x=0\\\\
\sum\sin 2x=0\end{array}\right|$ $\implies \sum\left(1-2\sin^2x\right)=0\implies$ $\sum\sin^2x=\frac 32$ .



P25. Let $\{u, v\}\subset C^*$ and $L _{u,v}=\left \{\ z \in C \mid \; z +u \overline z + v = 0\ \right\} $ . What are the necessary and sufficient conditions for $L_{u,v}$ is a line ?

Proof. Proof. $z +u \overline z + v = 0\ \iff\ \overline z+\overline uz+\overline v=0$ . Eliminate $\overline z$ between the equivalent equations $\left\{\begin{array}{c}
z +u\cdot  \overline z + v = 0\\\
\overline u\cdot z+\overline z+\overline v=0\end{array}\right|\implies$

$\left(1-|u|^2\right)\cdot z+\left(v-u\overline v\right)=0$ , a relation what is verified by an infinitude of points $z\in L _{u,v}$ . In conclusion, $|u|=1\ \ \wedge\ \ u\overline v=v$ .

Otherwise. $\frac {1}{\overline u}=\frac u1=\frac {v}{\overline v}\iff$ $|u|=1\ \ \wedge\ \ u\overline v=v$ $\iff$ $u\overline v=v$ because $|u\overline v|=|v|$ and $v\ne 0\implies |u|=1$ .



P26. Prove that $\sin x = k\cdot\sin (a-x)\ \iff\ \tan \left(x-\frac a2\right) = \frac{k-1}{k+1}\cdot\tan\frac  a2$ .

Proof. $\sin x = k\cdot\sin (a-x)\iff$ $\frac k1=\frac{\sin x}{\sin (a-x)}\iff$ $\frac {k-1}{k+1}=\frac {\sin x-\sin (a-x)}{\sin x+\sin (a-x)}\iff$

$\frac {k-1}{k+1}=\frac {2\cdot\sin\left(x-\frac a2\right)\cos\frac a2}{2\cdot\sin\frac a2\cos\left(x-\frac a2\right)}\iff$ $\frac {k-1}{k+1}=\frac {\tan\left(x-\frac a2\right)}{\tan\frac a2}\iff$ $\tan \left(x-\frac a2\right) = \frac{k-1}{k+1}\cdot\tan\frac  a2$ .

Remark. For $x:=B\ ,\ a:=-A\ ,\ k:=-k$ obtain the Mollweide's identity in $\triangle ABC\ :\ \sin B=k\cdot\sin C\ \iff$

$\tan\frac {B-C}{2}=$ $\frac {k-1}{k+1}\cdot \cot\frac A2\ \iff\ \tan\frac {B-C}{2}=$ $\frac {b-c}{b+c}\cdot \cot\frac A2$ because $k=\frac {\sin B}{\sin C}=\frac bc$ .



P27. Let $ABCD$ be a convex quadrilateral such that $AC\perp BD$ and let $P\in AC\cap BD$ . Prove that the reflections of $P$ w.r.t. $AB$ , $BC$ , $CD$ , $DA$ are concyclic. Let $ABCD$

be a cyclic onvex quadrilateral such that $AC\perp BD$ . Prove that the line through the intersection of diagonals and the midpoint of any sides is perpendicular to the opposite side.



P28. Solve the system $\left\{\begin{array}{ccc}
xy+x & = & 2\\\\
yz+y & = & 3\\\\
zx+z & = & 4\end{array}\right\|$ , where $\{x,y,z\}\subset\mathbb R$ .

Proof 1. Denote $t\equiv xyz\ne 0$ . Thus, $\left\{
\begin{array}{ccc}
xy+x & = & 2\\\\
yz+y & = & 3\\\\
zx+z & = & 4\end{array}\right|$ $\left|\begin{array}{ccccccc}
\odot\ z & \implies & t+zx=2z & \implies & t+(4-z)=2z & \implies & z=\frac {t+4}3\\\\
\odot\ x & \implies & t+xy=3x & \implies & t+(2-x)=3x & \implies & x=\frac {t+2}4\\\\
\odot\ y & \implies & t+yz=4y & \implies & t+(3-y)=4y & \implies & y=\frac {t+3}5\end{array}\right\|$ $\bigodot$ $\implies$

$(t+2)(t+3)(t+4)=60t\iff$ $t^3+9t^2-34t+24=0\odot\begin{array}{ccccc}
\nearrow & t=1 & \implies & \left(\ \frac 34\ ,\ \frac 45\ ,\ \frac 53\ \right)\in\emptyset & \searrow\\\\
\rightarrow & t=2 & \implies & \left(\ 1\ ,\ 1\ ,\ 2\ \right) & \rightarrow \\\\
\searrow & t=-12 & \implies & \left(\ -\frac 52\ ,\ -\frac 95\ ,\ -\frac 83\ \right) & \nearrow\end{array}\odot$ .

Remark. Denote $s_1=x+y+z\ ,\ s_2=xy+yz+zx$ . Therefore, $\boxed{s_1+s_2=9}\ (*)$ and $\left\{\begin{array}{c}
x(y+1)=2\\\\
y(z+1)=3\\\\
z(x+1)=4\end{array}\right\|\ \bigodot\ \implies$

$xyz(x+1)(y+1)(z+1)=24\implies$ $t\left(t+s_2+s_1+1\right)=24$ $\stackrel{(*)}{\implies}$ $t(t+10)=24\implies$ $t^2+10t-24=0\begin{array}{ccc}
\nearrow & 2 & \searrow\\\\
\searrow & -12 & \nearrow\end{array}\odot$ a.s.o.

Proof 2. $\left\{\begin{array}{cccc}
x(y+1)=2 & \implies & y=\frac {2-x}x & (1)\\\\
z(x+1)=4 & \implies & z=\frac 4{x+1} & (2)\\\\
y(z+1)=3 & \implies & \frac {2-x}x\cdot\left(\frac 4{x+1}+1\right)=3 & (3)\end{array}\right\|\stackrel{(3)}{\implies}$ $(2-x)(x+5)=3x(x+1)\implies$ $2x^2+3x-5=0\begin{array}{cc}
\nearrow & x=1\stackrel{(1)}{\implies}y=1\stackrel{(2)}{\implies} z=2\\\\
\searrow & x=-\frac 52\stackrel{(1)}{\implies}y=-\frac 95\stackrel{(2)}{\implies}z=-\frac 83\end{array}$ .
This post has been edited 305 times. Last edited by Virgil Nicula, May 5, 2017, 11:10 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a