329. Some problems with complex numbers.

by Virgil Nicula, Nov 13, 2011, 10:07 AM

PP1. Let $z_1$ , $z_2$ , $z_3$ be three distinct complex numbers lying on a circle with center at the

origin such that $\left\{z_1+z_2z_3\ ,\  z_2+z_3z_1\ ,\  z_3+z_1z_2\right\}\subset\mathbb R$ . Prove that $z_1z_2z_3=1$ .


Proof. Let $z_1\overline {z_1}=z_2\overline {z_2}=z_3\overline {z_3}=r^2$ . Observe that $z_1+z_2\cdot z_3\in\mathbb R\iff$ $z_1+z_2\cdot z_3=\overline{z_1}+\overline{z_2}\cdot\overline{z_3}\iff$ $z_1+z_2z_3=\frac {r^2}{z_1}+\frac {r^4}{z_2z_3}\iff$

$z_1+z_2z_3=\frac {r^2\left(r^2z_1+z_2z_3\right)}{z_1z_2z_3}\iff$ $\frac {r^2}{z_1z_2z_3}=\frac {z_1+z_2z_3}{r^2z_1+z_2z_3}=$ $\frac {z_2+z_3z_1}{r^2z_2+z_3z_1}=\frac {z_3+z_1z_2}{r^2z_3+z_1z_2}=$ $\frac {\left(z_1+z_2z_3\right)-\left(z_2+z_3z_1\right)}{\left(r^2z_1+z_2z_3\right)-\left(r^2z_2+z_3z_1\right)}=$

$\frac {\left(z_1-z_2\right)\left(1-z_3\right)}{\left(z_1-z_2\right)\left(r^2-z_3\right)}=$ $\frac {1-z_3}{r^2-z_3}=$ $\frac {1-z_2}{r^2-z_2}=$ $\frac {1-z_1}{r^2-z_1}=$ $\frac {z_1-z_2}{z_1-z_2}=1\implies$ $z_1z_2z_3=r^2\implies$ $ r^3=r^2\implies r=1\implies z_1z_2z_3=1$ .



PP2. Ascertain $\lambda\in\mathbb R$ so that $(\exists )\ z_k\in\mathbb C$ , $k\in\overline{1,3}$ for which $|z_1|=|z_2|=|z_3|=1$ and $z_1^3+z_2^3+z_3^3+3\cdot\overline{z_1+z_2+z_3}=12-4\lambda\cdot (1+i)$ .

Proof. Since $\overline{z}_k=\frac {1}{z_k}\ ,\ k\in\overline {1,3}$ , then $\left\{\begin{array}{c}
z_1^3+z_2^3+z_3^3+3\cdot\overline{z_1+z_2+z_3}=12-4\lambda\cdot (1+i)\\\\
\overline{z}_1^3+\overline{z}_2^3+\overline{z}_3^3+3\cdot\left(z_1+z_2+z_3\right)=12-4\lambda\cdot (1-i)\end{array}\right\|$ $\implies$ $\left\{\begin{array}{c}
\sum \left(z_1+\overline z_1\right)^3=24-8\lambda\\\\
\sum\left(z_1-\overline z_1\right)^3=-8\lambda i\end{array}\right\|$ .

Denote $z_k=x_k+i\cdot y_k\ ,\ k\in\overline{1,3}$ . Thus, $\left\{\begin{array}{c}
z_k+\overline z_k=2x_k\\\\
z_k-\overline{z}_k=2y_k\cdot i\end{array}\right\|\implies$ $\left\{\begin{array}{c}
x_1^3+x_2^3+x_3^3=3-\lambda\\\\
y_1^3+y_2^3+y_3^3=\lambda\end{array}\right\|\implies$ $3=\sum\left(x_1^3+y_1^3\right)\le $

$\sum\left(x_1^2+y_1^2\right)=3$ because for any $k\in\overline{1,3}$ have $x_k^3+y_k^3\le x_k^2+y_k^2=1$ with equality iff $x_ky_k=0$ and $x_k+y_k=1$ for any $k\in\overline{1,3}$ .

In conclusion, for any $k\in\overline{1,3}$ have $z_k\in\{1,i\}$ . Observe that for any $k\in\overline{1,3}$ have $z_k^3=\overline z_k$ and $z_1+z_2+z_3=(3-\lambda )+\lambda\cdot i$ .

$\left\{\begin{array}{cccccc}
\mathrm{Case\ 1\ :} & z_1=z_2=z_3=i & \implies & 3i=3-\lambda +\lambda\cdot i & \implies & \lambda =3\\\\
\mathrm{Case\ 2\ :} & z_1=1\ ,\ z_2=z_3=i & \implies & 1+2i=3-\lambda +\lambda\cdot i & \implies & \lambda =2\\\\
\mathrm{Case\ 3\ :} & z_1=i\ ,\ z_2=z_3=1 & \implies & 2+i=3-\lambda +\lambda\cdot i & \implies & \lambda =1\\\\
\mathrm{Case\ 4\ :} & z_1=z_2=z_3=1 & \implies & 3=3-\lambda +\lambda\cdot i & \implies & \lambda =0\end{array}\right\|$ $\implies$ $\lambda\in\overline{0,3}$ .

With other words, for any $\lambda\in\overline{0,3}$ exists $z_k\in\mathbb C\ ,\ |z_k|=$ $1\ (\forall )\ k\in\overline{1,3}$ so that $z_1^3+z_2^3+z_3^3+3\cdot\overline{z_1+z_2+z_3}=12-4\lambda\cdot (1+i)$ .



PP3. Let $A(a)$ , $B(b)$ and $C(c)$ be three points in the same plane. Prove that $A\in BC\iff$ $a\cdot \overline b+b\cdot \overline c+c\cdot \overline a\in\mathbb R\iff$ $\left|\begin{array}{ccc}
1 & 1 & 1\\\
a & b & c\\\
\overline a & \overline b & \overline c\end{array}\right|=0$ .

Proof. $A\in BC\iff$ $(\exists ) \lambda \in \mathbb R$ so that $a-b=\lambda \cdot (c-b)\iff$ $(a-b)\cdot (\overline c-\overline b)=(c-b)\cdot (\overline a-\overline b)\iff$

$a\overline c-a\overline b-b\overline c=c\overline a -c\overline b-b\overline a\iff$ $z=a\overline b+b\overline c+c\overline a=a\overline c+c\overline b+b\overline a=\overline z\iff$ $z=a\overline b+b\overline c+c\overline a\in\mathbb R\iff$ $\left|\begin{array}{ccc}
1 & 1 & 1\\\
a & b & c\\\
\overline a & \overline b & \overline c\end{array}\right|=0$ .



PP4. Let $A(a)$ , $B(b)$ and $C(c)$ be three points in the same plane. Let $G(g)$ be the centroid of $\triangle ABC$ . Prove that $\sum\frac {1}{g-a}=0\iff\triangle ABC$ is equilateral.

Proof. Is well-known that $a+b+c=3g$ . Therefore, $\sum\frac {1}{g-a}=0\iff$ $\sum\frac {1}{b+c-2a}=0\iff$

$\sum(a+b-2c)(a+c-2b)=0\iff$ $a^2+b^2+c^2=ab+bc+ca\iff\triangle ABC$ is equilateral.



PP5. Let $\alpha$ be a real number so that $|\alpha |<1$ and $n\in\mathbb N^*$ . Prove that $z^{n+1}-\alpha  z^n-\alpha z+1=0\implies$ $|z|=1$ (Al. Halanay).


An easy extension. Let $a\in\mathbb R\ ,\ |a|\le 1\ ,\ \{k,n\}\subset$ $\mathbb N\ ,\ 1\le k<n$ . Prove that $z^n+az^{n-k}+az^k+1=0\implies$ $|z|=1$ (F. Vulpescu Jalea).

Proof. Verify easily for $a\in\{-1,0,1\}$ .Let $a\in (-1,0)\cup (0,1)$ . Consider the polinomials $f=X^k+a$ and $g=aX^k+1$ . Write our equation as

$x^{n-k}\cdot f(x)+g(x)=0$ . Denote the roots $z_p\ ,\ p\in\overline {1,k}$ of the equation $f(x)=0$ , i.e. $f(X)=\prod_{p=1}^k(X-z_p)$ and $\left|z_p\right|=\left|a_k\right|^{\frac 1k}<1\ ,\  p\in\overline {1,k}$ .

Since $f\in \mathbb R[X]$ have $\left\{z_1,z_2,\ \ldots\ ,z_k\right\}=\left\{\overline z_1,\overline z_2,\ \ldots\ ,\overline z_k\right\}$ . Observe that $\frac {1}{z_p}\ ,\ p\in\overline {1,k}$ are the roots of the equation $g(x)=0$ . Hence

$g(x)=ax^k+1=a\cdot\prod_{p=1}^k\left(x-\frac {1}{z_p}\right)=$ $a\cdot\prod_{p=1}^k\left(x-\frac {1}{\overline z_p}\right)=$ $a\cdot\prod_{p=1}^k\frac {x\overline z_p-1}{\overline z_p}=$ $(-1)^ka\cdot \prod_{p=1}^k\frac {1-x\overline z_p}{z_p}=$ $\prod_{p=1}^k\left(1-x\overline z_p\right)$ ,

i.e. $g(x)=\prod_{p=1}^k\left(1-x\overline z_p\right)$ .The initial equation becomes $x^{n-k}\cdot\prod_{p=1}^k\left(x-z_p\right)=-\prod_{p=1}^k\left(1-x\overline z_p\right)$ . Let $w\in\mathbb C$ so that $|w|\ne 1$ . Suppose at first $|w|>1$ .

From $\left(|w|^2-1\right)\left(1-z_p^2\right)>0$ $\iff$ $|w|^2+\left| z_p\right|^2>$ $1+\left|wz_p\right|^2\iff$ $w\overline w-w\overline z_p-\overline wz_p+z_p\overline z_p>$ $1-w\overline z_p-\overline wz_p+w\overline wz_p\overline z_p$ $\iff$

$\left(w-\overline z_p\right)\left(\overline w-\overline z_p\right)>\left(1-w\overline z_p\right)\left(1-\overline wz_p\right)\iff$ $\left|w-z_p\right|>\left|1-w\overline z_p\right|$ for any $p\in\overline {1,k}$ obtain that $\prod_{p=1}^k\left|w-z_p\right|>\prod_{p=1}^k\left|1-w\overline z_p\right|$ $\iff$

$\left|w^{n-k}\cdot \prod_{p=1}^k\left(w-z_p\right)\right|>\left|\prod_{p=1}^k\left(1-w\overline z_p\right)\right|\iff$ $\left|w^{n-k}f(w)\right|>|g(w)|$ , i.e. in this case the initial equation hasn't roots $z$ with $|z|>1$ .

If $|w|<1$ , prove similarly that $w$ cann't be a root of the initial equation. In conclusion, $z^n+az^{n-k}+az^k+1=0\implies$ $|z|=1$ .



PP6 (own). Let $P\in\mathbb C[X]$ be a polinomial with the dominant coefficient $1$ and the roots $x_k\ ,\ k\in\overline {1,n}$ . Suppose that exists $p\in\mathbb N^*$ so that

$\left\{x_1,x_2,\ \ldots\ ,x_n\right\}=\left\{x_1^p,x_2^p,\ \ldots\ ,x_n^p\right\}\ (*)$ . Prove that $P\left(\mathrm X^p\right)=(-1)^{n(p-1)} \cdot\prod_{k=0}^{p-1}P(w^k\mathrm X)$ , where $w=\cos\frac {2\pi}{p}+i\cdot\sin\frac {2\pi}{p}$ .


Proof. $P(X)=\prod_{i=1}^n\left(X-x_i\right)$ and $P\left(w^kX\right)=\prod_{i=1}^n\left(w^kX-x_i\right)=$ $w^{kn}\cdot \prod_{i=1}^n\left(X-\frac {x_i}{w^k}\right)$ , where $k\in\overline{1,p-1}$ . Denote $\frac {1}{w}=w_1=w^{p-1}$ . We have

$P\left(w^kX\right)=w^{kn}\cdot\prod_{i=1}^n\left(X-x_iw_1^k\right)$ Therefore, $\prod_{k=0}^{p-1}P\left(w^kX\right)=w^{\frac {np(p-1)}{2}}\cdot\prod_{i=1}^n\left(X-x_i\right)\left(X-x_iw_1\right)\left(X-x_iw_1^2\right)\ \ldots\ \left(X-x_iw_1^{p-1}\right)$ . Since

$\left\{1,w,w^2,\ \ldots\ ,w^{p-1}\right\}$ and $\left\{1,w_1,w_1^2,\ \ldots\ ,w_1^{p-1}\right\}$ are the roots of the same equation $x^p=1$ obtain that $\left\{x_i,x_iw_1,\ \ldots\ ,x_iw_1^{p-1}\right\}$ are the roots of the

equation $x^p=x_i^p$ . Thus, $\prod_{k=0}^{p-1}\left(X-x_iw_1^k\right)=X^p-x_i^p$ and $\prod_{k=0}^{p-1}P\left(w^kX\right)=w^{\frac {np(p-1)}{2}}\cdot\prod_{i=1}^n\left(X^p-x_i^p\right)$ . From $(*)$ obtain that $\prod _{k=0}^{p-1}P\left(w^kX\right)=$

$w^{\frac {np(p-1)}{2}}\cdot \prod_{k=1}^n\left(X^p-x_k\right)=w^{\frac {np(p-1)}{2}}\cdot P\left(X^p\right)$ . Since $w^{\frac {np(p-1)}{2}}= (-1)^{n(p-1)}$ obtain that $\boxed{\prod _{k=0}^{p-1}P\left(w^kX\right)=(-1)^{n(p-1)}\cdot P\left(X^p\right)}$ .



PP7 (Marcel Tena). Let $G_n$ be the set of the roots of the equation $z^n=1$ . Prove that $\prod_{w\in G_n}\left(w+\frac 1w\right)\in\{-4,0,2\}$ .

Proof.

$\blacktriangleright$ First case : $n=2p+1\ ,\ p\in\mathbb N$ (odd number). $X^n-1=X^{2p+1}-1=$ $(X-1)\cdot \sum_{k=0}^{2p}X^k=$ $(X-1)\cdot\prod_{k=1}^p\left(X-x_k\right)\cdot \prod_{k=1}^p\left(X-\overline x_k\right)\iff$

$\sum_{k=0}^{2p}X^k=\prod_{k=1}^p\left(X-x_k\right)\left(X-\overline x_k\right)=$ $\prod_{k=1}^p\left[X^2-\left(x_k+\frac {1}{x_k}\right)\cdot X+1\right]$ . For $X:=i$ obtain $\frac {i^{2p+1}-1}{i-1}=(-i)^p\cdot \prod_{k=1}^p\left(x_k+\frac {1}{x_k}\right)$ . Therefore,

$\prod_{k=1}^n\left(x_k+\frac {1}{x_k}\right)=$ $2\cdot\left[\prod_{k=1}^p\left(x_k+\frac {1}{x_k}\right)\right]^2=$ $2\cdot \left[\frac {i^{2p+1}-1}{(-i)^{p} (i-1)}\right]^2=$ $2\cdot \left[\frac {(-1)^pi-1}{(-i)^p(i-1)}\right]^2=$ $2\cdot \frac {2(-1)^{p+1}i}{(-1)^p(-2i)}=2\implies$ $\prod_{k=1}^n\left(x_k+\frac {1}{x_k}\right)=2$ .

$\blacktriangleright$ Second case : $n=2p\ ,\ p\in\mathbb N$ (even number). $X^n-1=X^{2p}-1=$ $(X-1)(X+1)\cdot\sum_{k=0}^{p-1}X^{2k}=$

$(X-1)(X+1)\cdot\prod_{k=1}^{p-1}\left(X-x_k\right)\left(X-\overline x_k\right)\iff$ $\sum_{k=0}^{p-1}X^{2k}=$ $\prod_{k=1}^{p-1}\left[X^2-\left(x_k+\frac {1}{x_k}\right)\cdot X+1\right]$ a.s.o.



PP8. Consider an interior point $D$ of the convex quadrilateral $ABCM$ so that $ABCD$ is a paralellogram. Prove that $\widehat{AMD}\equiv\widehat{BMC}\iff\widehat{MAD}\equiv\widehat{MCD}$ .

Proof. Consider $M(0)$ , $A(a)$ , $B(b)$ , $C(c)$ , $D(d)$ and denote $m(\angle AMD)=m(\angle BMC)=\alpha$ . Thus, $\left\{\begin{array}{c}
\frac{a}{d}=r_1(\cos\alpha+i\sin\alpha)\\\\
\frac{b}{c}=r_2(\cos\alpha+i\sin\alpha)\end{array}\right\|$ . Obtain

that $\frac{(d-a)(d-c)}{ac}=\frac{d^2-d(a+c)+ac}{ac}=$ $\frac{d^2-d(b+d)+ac}{ac}=1-\frac{bd}{ac}=$ $1-\frac{r_2}{r_1}\in\Bbb{R}$ and results that $\arg\frac{d-a}{-a}=\arg\frac{-c}{d-c}\iff$

$\widehat{MAD}\equiv\widehat{MCD}$ or $\arg\frac{d-a}{-a}-\arg\frac{-c}{d-c}=\pm\pi$ , what is imposibly because $D\in \mbox{Int}{\triangle MAC}\implies$ $\left\{\arg\frac{d-a}{-a},\,\arg\frac{-c}{d-c}\right\}\subset (0,\pi)$ , absurd.



PP9. Prove that $1+2\cdot |z|^2=\left|z^2+1\right|^2+2\cdot |z+1|^2\iff z^2+z+1=0$ .

Proof. $1+2\cdot |z|^2=\left|z^2+1\right|^2+2\cdot |z+1|^2\iff$ $1+2z\overline z=\left(z^2+1\right)\left(\overline z^2+1\right)+2\cdot (z+1)(\overline z+1)\iff$

$(z\overline z)^2+\left(z^2+\overline z^2\right)+2\cdot (z+\overline z)+2=0\iff$ $\left(z+\overline z+1\right)^2+\left(z\overline z-1\right)^2=0\iff$ $z+\overline z=-1\ \wedge\ z\overline z=1\iff$ $z^2+z+1=0$ .



PP10. Prove that $\triangle ABC$ is $A$-isosceles $\iff (\exists ) r\in\mathbb R$ so that $|r|<2$ and $\frac {a-b}{a-c}+\frac {a-c}{a-b}=r$ , where

$X(x)$ is the point $X$ with the affix $x$ from the complex plane. For $r=1$ obtain that $ABC$ is an equilateral triangle.


Proof. Denote $w=\cos A+i\cdot\sin A$ and $r=2\cdot\cos A=w+\overline w=\frac {w^2+1}{w}$ . Therefore, $\triangle ABC$ is $A$-isosceles $\iff (c-a)=w(b-a)$ or

$b-a=w(c-a)\iff$ $[(c-a)-w(b-a)][(b-a)-w(c-a)]=0\iff$ $\left(1+w^2\right)(b-a)(c-a)=w\left[(c-a)^2+(b-a)^2\right]=0\iff$

$r(b-a)(c-a)=\left[(c-a)^2+(b-a)^2\right]\iff$ $\frac {a-b}{a-c}+\frac {a-c}{a-b}=r$ . For $r=1\ :\   a^2+b^2+c^2=$ $ab+bc+ca\iff\triangle ABC$ is equilateral.



PP11. Let $Z_k\left(z_k\right)$ be four points in the complex plane such that $\left|z_k\right|=r\ ,\ k\in \overline{1,4}$ . Prove that $\boxed{Z_1Z_2\perp Z_3Z_4\ \iff\ z_1z_2+z_3z_4=0\ (*)}$ .

Proof 1. Suppose w.l.o.g. that $\left|z_k\right|=1\ ,\ k\in\overline{1,4}$ . Therefore, $Z_1Z_2\perp Z_3Z_4\iff$

$Z_1Z_3^2-Z_1Z_4^2=Z_2Z_3^2-Z_2Z_4^2\iff$ $\left|z_1-z_3\right|^2-\left|z_1-z_4\right|^2=\left|z_2-z_3\right|^2-\left|z_2-z_4\right|^2\iff$

$-z_1\cdot \overline z_3-\overline z_1\cdot z_3 +z_1\cdot \overline z_4+\overline z_1\cdot z_4=-z_2\cdot \overline z_3-\overline z_2\cdot z_3+z_2\cdot \overline z_4+\overline z_2\cdot z_4\iff$

$\left(z_1-z_2\right)\left(\overline z_3-\overline z_4\right)+\left(\overline z_1-\overline z_2\right)\left(z_3-z_4\right)=0\iff$ $\left(z_1-z_2\right)\left(\frac {1}{z_3}-\frac {1}{ z_4}\right)+\left(\frac {1}{z_1}-\frac {1}{z_2}\right)\left(z_3-z_4\right)=0\iff$ $z_1z_2+z_3z_4=0$ .

Remark. I used the relation $X(x)\ ,\ Y(y)\ \implies\ XY=|x-y|$ and $|x|^2=x\cdot\overline x$ .

Since the relation $(*)$ is unchanging at a rotation we can suppose w.l.o.g. that $Z_1Z_2\parallel Ox$ .Thus, exist $\{\alpha ,\beta\}\subset\mathbb C$ so that $z_1=\alpha\ ,\ z_3=\beta$

and $z_2=-\overline{\alpha}=-\frac {1}{\alpha}$ and $z_4=\overline {\beta}=\frac {1}{\beta}$ . In conclusion, $Z_1Z_2\perp Z_3Z_4\iff$ $z_1z_2=-1\ \wedge\ z_3z_4=1\implies z_1z_2+z_3z_4=0$ . Let $f(x,y)=\frac xy+\frac yx$ , where $\{x,y\}\subset\mathbb C^*$ .

Prove that for any $\{a,b,c,d\}\in\mathbb C^*$ there is the identity $f(a,b)+f(c,d)=f(a,d)+f(b,c)\iff$ $ac+bd=0\ \vee\ a=c\ \vee\  b=d$ .


Application. Denote $X(x)$ - the point $X$ with the affix $x\in\mathbb C$ . Let $ABCD$ be a cyclic quadrilateral from the complex plane. Prove that $AC\perp BD\iff ac+bd=0$ .

PP12. Demonstrate that $\cos 20^{\circ}\sin 50^{\circ}\cos80^{\circ}=\frac 18$ .

Method $1\blacktriangleright \ E=\cos 20^{\circ}\sin 50^{\circ}\cos 80^{\circ}\implies$ $8E=4\sin 50^{\circ}\cdot 2\cos 20^{\circ}\cos 80^{\circ}=$

$4\sin 50^{\circ}(\cos 100^{\circ}+\cos 60^{\circ})=$ $2(\sin 150^{\circ}-\sin 50^{\circ}+\sin 50^{\circ})=$ $2\sin 150^{\circ}=$ $2\sin 30^{\circ}=1\implies E=\frac 18$ .

Method $2\blacktriangleright\ E=\cos 20^{\circ}\sin 50^{\circ}\cos 80^{\circ}$ $\implies$ $8E\cdot\cos 10=8\cos10^{\circ}\sin 10^{\circ}\cos 20^{\circ}\cos 40^{\circ}=$

$4\sin 20^{\circ}\cos 20^{\circ}\cos 40^{\circ}=$ $2\sin 40^{\circ}\cos 40^{\circ}=\sin 80^{\circ}=$ $\cos 10^{\circ}\implies $ $8E\cdot\cos 10=\cos 10^{\circ}\implies  E=\frac 18$ .

Method $3\blacktriangleright$ Since $\sin 50=\cos 40$, we need to calculate $\cos 20\cos 40\cos 80$ . Let $w=\cos 20+ i\sin 20$ . Then we have $w^9=\cos 180^{\circ} +i \sin 180^{\circ}=-1$

i.e. $w^9+1=0$ . Note that for all positive integers $k$ we have $\cos 20k=\dfrac{w^k+w^{-k}}{2}$ . Now with $w^9=-1$ we have $\cos 20^{\circ}\cos 40^{\circ}\cos 80^{\circ}=$

$\dfrac{1}{8}\left(w+\dfrac{1}{w}\right)\left(w^2+\dfrac{1}{w^2}\right)\left(w^4+\dfrac{1}{w^4}\right)=$ $\dfrac{1}{8}\left(w^7+w^5+w^3+w+\dfrac{1}{w}+\dfrac{1}{w^3}+\dfrac{1}{w^5}+\dfrac{1}{w^7}\right)=$

$ \dfrac{1}{8}(w^7+w^5+w^3+w-w^8-w^6-w^4-w^2)=$ $\dfrac{w}{8}\cdot\left(1-w+w^2-w^3+w^4-w^4+w^6-w^7\right)=\frac w8\cdot\frac {1-w^8}{1+w}=\frac w8\cdot\frac {1-\frac {1}{-w}}{1+w}=\dfrac{1}{8}$ .

Remark. Prove similarly that $4\cos x\cos (60^{\circ}+x)\cos (60^{\circ}-x)=\cos 3x$ and $4\cos x\cos y\cos z=\cos (x+y+z)+\sum\cos (y+z-x)$ .

For example, $A+B+C=180^{\circ}\ \implies\ 4\cos A\cos B\cos C=$ $-1-(\cos 2A+\cos 2B+\cos 2C)\ \implies\ \sum \cos 2A=-1-4\cdot\prod\cos A$ .



PP13. For $n\in \mathbb N^*$ find the complex numbers $z$ for which $z^n$ and $(1+z)^n$ are real numbers .

Proof. $\left\{\begin{array}{ccccccc}
z^n\in \mathbb R & \iff & \overline z^n=z^n & \iff & \left(\frac {\overline z}{z}\right)^n=1 & \iff & \overline z=z\cdot w^r\\\\\
(1+z)^n\in\mathbb R & \iff & (1+\overline z)^n=(1+z)^n & \iff & \left(\frac {1+\overline z}{1+z}\right)^n=1 & \iff & 1+\overline z=(1+z)\cdot w^s\end{array}\right\|$ , where $\{r,s\}\subset\overline {0,n-1}$

and $w=\cos\frac {2\pi}{n}+i\cdot\sin\frac {2\pi}{n}$ . Thus, $1+z\cdot w^r=(1+z)\cdot w^s\iff$ $z\in \left\{\left|\frac {w^s-1}{w^r-w^s}\right|\{r,s\}\subset\overline {0,n-1}\right\}$ , where $w=\cos\frac {2\pi}{n}+i\cdot\sin\frac {2\pi}{n}$ .



PP14. Prove that $\boxed{\prod_{k=1}^{n-1}\sin\left(x+\frac {k\pi}{n}\right)=\frac {\sin nx}{2^{n-1}\sin x}}$ . For $x\rightarrow 0$ obtain that $\boxed{\prod_{k=1}^{n-1}\sin\frac {k\pi}{n}=\frac {n}{2^{n-1}}}$ .

Proof. Let $z_k=\cos\left(x+\frac {k\pi}{n}\right)+i\cdot\sin\left(x+\frac {k\pi}{n}\right)\ ,\ k\in \overline{1,n-1}$ . Observe that $\left(z^2-z_0^2\right)\prod_{k=1}^{n-1}\left(z^2-z_k^2\right)=z^{2n}-z_0^{2n}=$

$\left(z^2-z_0^2\right)\left(z^{2n-2}+z^{2n-4}z_0^2+\ \ldots\ +z^2z_0^{2n-4}+z_0^{2n-2}\right)$ . For $z:=1$ obtain that $\prod_{k=1}^{n-1}\left(1-z_k^2\right)=1+z_0^2+\ \ldots\ +z_0^{2n-4}+z_0^{2n-2}\iff$

$\frac {z_0^{2n}-1}{z_0^2-1}=$ $\prod_{k=1}^{n-1}\left(1-z_k^2\right)\iff$ $\frac {-1+\cos 2nx+i\cdot\sin 2nx}{-1+\cos 2x+i\cdot\sin 2x}=$ $\prod_{k=1}^{n-1}\left[1-\cos\left(2x+\frac {2k\pi}{n}\right)-i\cdot\sin\left(2x+\frac {2k\pi}{n}\right)\right]\iff$

$\frac {-1+\cos 2nx+i\cdot\sin 2nx}{-1+\cos 2x+i\cdot\sin 2x}=\prod_{k=1}^{n-1}\left[2\sin^2\left(x+\frac {k\pi}{n}\right)-2i\sin\left(x+\frac {k\pi}{n}\right)\cos\left(x+\frac {k\pi}{n}\right)\right]\iff$

$\frac {-2\sin^2nx+2i\cdot \sin nx\cos nx}{-2\sin^2x+2i\cdot\sin x\cos x}=\prod_{k=1}^{n-1}\left\{2(-i)\cdot\sin\left(x+\frac {k\pi}{n}\right)\cdot\left[\cos\left(x+\frac {k\pi}{n}\right)+i\cdot\sin\left(x+\frac {k\pi}{n}\right)\right]\right\}\iff$

$\frac {\sin nx}{\sin x}\cdot \frac {\cos nx+i\cdot\sin nx}{\cos x+i\cdot\sin x}=$ $2^{n-1}\cdot (-i)^{n-1}\cdot (\cos x+i\cdot\sin x)^{n-1}\left(\cos\frac {\pi}{n}+i\cdot\sin\frac {\pi}{n}\right)^{\frac {n(n-1)}{2}}\cdot \prod_{k=1}^{n-1}\sin\left(x+\frac {k\pi}{n}\right)$ . Observe that

$\left(\cos\frac {\pi}{n}+i\cdot\sin\frac {\pi}{n}\right)^{\frac {n(n-1)}{2}}=i^{n-1}$ and $\frac {\cos nx+i\cdot\sin nx}{\cos x+i\cdot\sin x}=(\cos x+i\cdot\sin x)^{n-1}$ . In conclusion, $\prod_{k=1}^{n-1}\sin\left(x+\frac {k\pi}{n}\right)=\frac {\sin nx}{2^{n-1}\sin x}$ .



PP15. Let $z_1 , z_2 \in \mathbb{C}$ so that $z_1 ^2 + z_2 ^2 \in \mathbb{R}$ and $\left\{\begin{array}{c}
z_1 (z_1 ^2 - 3z_2 ^2) = 2\\\\
z_2 (3z_1 ^2 - z_2 ^2)=11\end{array}\right\|$ . Find the value of $z_1 ^2 + z_2 ^2$ .

Proof 1 (mavropnevma). $\left\{\begin{array}{ccccc}
(z_1 +i\cdot z_2)^3=z_1^3 + 3i\cdot z_1^2z_2 - 3z_1z_2^2 - i\cdot z_2^3 & = & z_1(z_1^2 - 3z_2^2) +i\cdot z_2(3z_1^2 - z_2^2) & = & 2 + 11i\\\\
(z_1 - i\cdot z_2)^3 = z_1^3 - 3i\cdot z_1^2z_2 - 3z_1z_2^2 +i\cdot z_2^3 & = & z_1(z_1^2 - 3z_2^2) - i\cdot z_2(3z_1^2 - z_2^2) & = &  2 - 11i\end{array}\right\|\ \bigodot$ $\implies$

$(z_1^2 $ $+ z_2^2)^3 = (2 + 11i)\cdot (2 - 11i) = 125$ . Hence $z_1^2 + z_2^2 = 5$ .

Proof 2. Eliminate $z_2\ :\ \left\{\begin{array}{ccccc}
z_1\left(z_1^2-3z_2^2\right)=2 & \iff & z_1^3-3z_1\left(r-z_1^2\right)-2=0 & \iff & \boxed{4z_1^3=3rz_1+2}\\\\
z_2\left(3z_1^2-z_2^2\right)=11 & \iff & z_2\left(3z_1^2+z_1^2-r\right)-11=0 & \iff & \boxed{z_2=\frac {11}{4z_1^2-r}}\end{array}\right\|$ . Thus

$z_1 ^2 + z_2 ^2=r\iff$ $z_2^2=r-z_1^2\iff$ $121=\left(r-z_1^2\right)\left(4z_1^2-r\right)^2\iff$ $\left(z_1^2-r\right)\left(4z_1^2-r\right)^2+121=0\iff$

$\left(z_1^2-r\right)\left(16z_1^4-8rz_1^2+r^2\right)+121=0\iff$ $16z_1^6-24rz_1^4+9r^2z_1^2-r^3+121=0\iff$

$\left(4z_1^3\right)^2-6rz_1\left(4z_1^3\right)+9r^2z_1^2-r^3+121=0\iff$ $\left(3rz_1+2\right)^2-6rz_1\left(3rz_1+2\right)+9r^2z_1^2-r^3+121=0\iff$

$9r^2z_1^2+12rz_1+4-18r^2z_1^2-12rz_1+9r^2z_1^2-r^3+121=0\iff$ $125-r^3=0\ ,\ r\in\mathbb R\iff$ $r=5\iff$ $\boxed{z_1^2+z_2^2=5}$ .


An easy extension. Let $z_1 , z_2 \in \mathbb{C}$ so that $\left\{\begin{array}{ccc}
az_1 ^2 + z_2 ^2 & = & r \\\\
z_1 \left(az_1 ^2 - 3z_2 ^2\right) & = &  b\\\\
z_2 \left(z_2 ^2-3az_1^2\right) & = & c\end{array}\right\|$ , where $\{r,a,b,c\}\subset\mathbb R^*$ . Prove that $r^3=c^2+ab^2$ .

Proof. Eliminate $z_2\ :\ \left\{\begin{array}{ccccc}
z_1\left(az_1^2-3z_2^2\right)=b & \iff & az_1^3-3z_1\left(r-az_1^2\right)-b=0 & \iff & \boxed{4az_1^3=3rz_1+b}\\\\
z_2\left(z_2^2-3az_1^2\right)=c & \iff & z_2\left(r-az_1^2-3az_1^2\right)-c=0 & \iff & \boxed{z_2=\frac {c}{r-4az_1^2}}\end{array}\right\|$ . Thus,

$az_1 ^2 + z_2 ^2=r\iff$ $z_2^2=r-az_1^2\iff$ $c^2=\left(r-4az_1^2\right)^2\left(r-az_1^2-r\right)\iff$ $\left(4az_1^2-r\right)^2\left(az_1^2-r\right)+c^2=0\iff$

$\left(az_1^2-r\right)\left(16a^2z_1^4-8arz_1^2+r^2\right)+c^2=0\iff$ $16a^3z_1^6-24a^2rz_1^4+9ar^2z_1^2+c^2-r^3=0\iff$

$a\left(4az_1^3\right)^2-6arz_1\left(4az_1^3\right)+9ar^2z_1^2+c^2-r^3=0\iff$ $a\left(3rz_1+B\right)^2-6arz_1\left(3rz_1+b\right)+9ar^2z_1^2+c^2-r^3=0\iff$

$9ar^2z_1^2+6abrz_1+ab^2-18ar^2z_1^2-6abrz_1+9ar^2z_1^2+c^2-r^3=0\iff$ $ab^2+c^2-r^3=0\iff$ $\boxed{r^3=c^2+ab^2}$ .



PP16. Ascertain the geometrical locus of the point $L(z)\ ,\ z\in\mathbb C$ such that $|z|=|3z-1|$ .

Proof. Let fixed $O(0)$ , $A\left(\frac 13\right)$ and a mobile $L(z)$ . Thus, $|z|=|3z-1|\iff$ $LO=3\cdot LA$ , i.e. the locus of $L$ is the Appolonius' circle $w$ w.r.t. $[OA]$ and the ratio

$r=\frac{LO}{LA}=3$ (constant). The circle $w$ has diameter $[BC]$ , where $B\left(\frac 14\right)\ ,\ C\left(\frac 12\right)$ and $\frac {BO}{BA}=\frac {CO}{CA}=3$ , i.e. the circle $w$ is centered at $\left(\frac 38\right)$ and has radius $\frac 18$ .



PP17. Find the minimum of $f(z)=|z|+|z-1|+|z-i|+|z-3-4i|\ ,\ z\in\mathbb C$ .

Proof. Observe that $f(z)=\left[|z|+|z-(3+4i)|\right]+\left(|z-i|+|z-1|\right)\ge |3+4i|+|1-i|=5+\sqrt 2$ . The point of the minimum

is $P\in AC\cap BD$ , where $A(0)$ , $B(i)$ , $C(3+4i)$ and $D(1)$ , i.e. $P\left\{\begin{array}{c}
x+y=1\\\\
\frac x3=\frac y4=\frac 17\end{array}\right\|\implies$ $x=\frac 37$ and $y=\frac 47$ , i.e. $P\left(\frac 37+\frac 47\cdot i\right)$ .



PP18 (very nice !). Let $a\not \in\mathbb R$ so that $a^{7}=1$ . Find the value of $b=a^{4}+a^{2}+a$ .

Proof. $|a|=1$ , i.e. $\overline a=\frac 1a$ and $a^6+a^5+a^4+a^3+a^2+a+1=0\implies$ $b^2=a+a^4+a^2+2a^6+2a^5+2a^3\implies$

$b^2=\left(a^6+a^5+a^4+a^3+a^2+a\right)+\overline a+\overline a^2+\overline a^4\implies$ $b^2=-1+\overline b$ . Find $b=u+i\cdot v$ , where $\{u,v\}\subset\mathbb R$ and $v\ne 0$ .

Therefore, $b^2=-1+\overline b\iff\left\{\begin{array}{c}
u^2-v^2=-1+u\\\\
2uv=-v\end{array}\right\|$ $\iff$ $u=-\frac 12\ \wedge\ v\in\left\{\pm\frac {\sqrt 7}{2}\right\}$ . In conclusion, $b\in \left\{\frac {-1\pm i\cdot \sqrt 7}{2}\right\}$ .



PP19. Let $A(z_k)$ , $k\in \overline {1,6}$ be six points from the complex plane. Find the necessary and sufficient condition for that $A_1A_2\cap A_3A_4\cap A_5A_6\ne\emptyset$ .

Proof. The equation of the line $A_1A_2$ is $\left|\begin{array}{ccc}
z & \overline z & 1\\\
z_1 & \overline z_1 & 1\\\
z_2 & \overline z_2 & 1\end{array}\right|=0\iff$ $\bar z(z_2-z_1)-z(\bar z_2-\bar z_1)+z_1\bar z_2-z_2\bar z_1=0$ . Therefore, the equations of these lines are :

$\left\{\begin{array}{ccc}
A_1A_2 & : & \bar z(z_2-z_1)-z(\bar z_2-\bar z_1)+z_1\bar z_2-z_2\bar z_1=0\\\\
A_3A_4 & : & \bar z(z_4-z_3)-z(\bar z_4-\bar z_3)+z_3\bar z_4-z_4\bar z_3=0\\\\
A_5A_6 & : & \bar z(z_6-z_5)-z(\bar z_6-\bar z_5)+z_5\bar z_6-z_6\bar z_5=0\end{array}\right\|$ . In conclusion, $A_1A_2\cap A_3A_4\cap A_5A_6\ne\emptyset\iff$ $\begin{vmatrix}z_2-z_1&\bar z_2-\bar z_1&z_1\bar z_2-z_2\bar z_1\\
z_4-z_3&\bar z_4-\bar z_3&z_3\bar z_4-z_4\bar z_3\\
z_6-z_5&\bar z_6-\bar z_5&z_5\bar z_6-z_6\bar z_5\end{vmatrix}=0$ .



PP20. Let an acute $\triangle ABC$ , where $A\left(z_1\right)$ , $B\left(z_2\right)$ , $C\left(z_3\right)$ and $\{z_1,z_2,z_3\}$ are distinct, $|z_1| = |z_2| = |z_3| = 1$ and $\sum\frac{1}{2 + |z_2 + z_3|} =1\ (*)\ .$ Prove that $\triangle ABC$ is equilateral.

Proof. Suppose w.l.o.g. that the circumcircle of $\triangle ABC$ is $w=C(O,1)$ and $O(0)$ is the origin of the complex plane. Thus, the midpoints of $[BC]$ , $[CA]$ , $[AB]$ are $M\left(\frac {z_2+z_3}{2}\right)$ ,

$N\left(\frac {z_3+z_1}{2}\right)$ , $P\left(\frac {z_1+z_2}{2}\right)$ respectively. Thus, the relation $(*)\iff$ $\sum\frac {1}{2+2\cdot OM}=1\iff$ $\boxed{\sum\frac {1}{1+\cos A}=2}\ (1)$ . Since $\sum (1+\cos A)=$ $3+\sum \cos A=$ $4+\frac {r}{R}$

and $\sum\frac {1}{1+\cos A}\cdot\sum(1+\cos A)\ge 9$ obtain that $2\cdot \left(4+\frac rR\right)\ge 9\iff$ $2r\ge R\ \stackrel{(R\ge 2r)}{\iff}R=2r\iff\ A=B=C$ .

Remark 1. Prove easily that remarkable identity $\boxed{\ \sum bc(s-b)(s-c)=r^2\left[s^2+(4R+r)^2\right]\ }\ (2)$ . Observe that the relation $(1)$ $\sum\frac {1}{1+\cos A}=2\iff $ $\sum\frac {1}{\cos^2\frac A2}=4\iff$

$\sum\frac {bc}{s-a}=4s\iff$ $\sum bc(s-b)(s-c)=4s^2r^2\stackrel{(2)}{\iff}$ $\underline{4R+r=s\sqrt 3}$ . I"ll show that $4R+r=s\sqrt 3\iff A=B=C$ . Indeed, $\left\{\begin{array}{c}
r_a+r_b+r_c=4R+r\\\\
r_ar_b+r_br_c+r_cr_a=s^2\end{array}\right\|$ and

$\left(\sum r_a\right)^2\ge 3\left(\sum r_br_c\right)\iff$ $(4R+r)^2\ge 3s^2\iff 4R+r\ge s\sqrt 3$ . In conclusion, $4R+r=s\sqrt 3\iff \left(\sum r_a\right)^2=3\left(\sum r_br_c\right)\iff$ $A=B=C$ .

Remark 2. $\sum bc(s-b)(s-c)=\sum \left[s(s-a)+(s-b)(s-c)\right](s-b)(s-c)=$ $3S^2+\sum(s-b)^2(s-c)^2=$ $3S^2+\left[\sum (s-b)(s-c)\right]^2-$

$2\prod (s-a)\cdot \sum (s-a)=$ $3S^2+[r(4R+r)]^2-2S^2=$ $s^2r^2+[r(4R+r)]^2\implies$ $\sum bc(s-b)(s-c)=r^2\left[s^2+(4R+r)^2\right]$ . I used $\sum(s-b)(s-c)=r(4R+r)$ .



PP21. Let $z\in\mathbb C$ such that $\boxed{|2z+3i|=|z^2|}\ (*)$ . Find $\max |z|$ and $\min |z|$ .

Proof 1. Let $|z|=r$ , $z=a+bi$ . Thus, $|2z+3i|=|z^2|\iff$ $(2z+3i)(2\overline z-3i)=r^4\iff$ $r^4=4r^2-6i\left(z-\overline z\right)+9\iff$ $r^4-4r^2-9=12b$ . From $|b|\le r$

obtain that $-12r\le r^4-4r^2-9\le$ $12r\implies$ $\left\{\begin{array}{ccccc}
r^4-4r^2+12r-9\ge 0 & \implies & (r-1)(r+3)(r^2-2r+3)\ge 0 & \implies & r\ge 1\\\\
r^4-4r^2-12r-9\le 0 & \implies & (r-3)(r+1)\left(r^2+2r+3\right)\le 0 & \implies & r\le 3\end{array}\right\|$ $\implies $ $r\in [1,3]$ and $\left\{\begin{array}{c}
z_{\min}=-i\ .\\\\
z_{\max}=3i\ .\end{array}\right\|$

Proof 2. Denote $|z|=r$ . Thus, $|z|^2=$ $|2z+3i|\le $ $2|z|+3$ $\implies$ $r^2-2r-3\le 0$ $\implies$ $(r+1)(r-3)\le 0$ $\implies$ $r\le 3$ . Since $z_1=3i$ verifies the relation $(*)$

and $\left|z_1\right|=3$ obtain that $\boxed{\max |z|=3}$ . Analogously $3=|3i|=|(2z+3i)+(-2z)|\le $ $|2z+3i|+|-2z|=|z|^2+2|z|=r^2+2r\implies$

$r^2+2r-3\ge 0\implies$ $(r-1)(r+3)\ge 0\implies$ $r\ge 1$ . Since $z_2=-i$ verifies the relation $(*)$ and $\left|z_2\right|=1$ obtain that $\boxed{\min |z|=1}$ .


An easy extension. Let $\{a,b\}\subset \mathrm R\ ,\ 0<a<b$ and $z\in\mathbb C$ such that $\boxed{|(b-a)z+abi|=|z^2|}\ (*)$ . Find the range of $|z|$ .

Proof. Denote $|z|=r$ . Thus, $|z|^2=$ $|(b-a)z+abi|\le $ $(b-a)|z|+ab$ $\implies$ $r^2-(b-a)r-ab\le 0\begin{array}{ccc}
\nearrow &  -a & \searrow\\\\
\searrow & b & \nearrow\end{array}\odot$ $\implies$ $(r+a)(r-b)\le 0$ $\implies$ $r\le b$ . Since $z_1=bi$

verifies $(*)$ and $\left|z_1\right|=b$ obtain that $\boxed{\max |z|=b}$ . Analogously $ab=|abi|=|[(b-a)z+abi]+(a-b)z]|\le $ $|(b-a)z+abi|+|(a-b)z|=|z|^2+(b-a)|z|=$

$r^2+(b-a)r\implies$ $r^2+(b-a)r-ab\ge 0\begin{array}{ccc}
 \nearrow & -b & \searrow\\\\
\searrow & a & \nearrow\end{array}\odot$ $\implies$ $(r-a)(r+b)\ge 0\implies$ $r\ge a$ . Since $z_2=-ai$ verifies $(*)$ and $\left|z_2\right|=a$ get $\boxed{\min |z|=a}$ .



PP22. Find the solutions of $z^{n}=(iz+2i)^{n}\ ,\ z \in \mathbb{C}$ knowing that they are written in the form $-1+ \lambda i\ ,\ \lambda\in\mathbb{R}$ .

Proof. $z^{n}=(iz+2i)^{n}$ $\iff$ $\left[\frac {i(z+2)}{z}\right]^n=1$ $\iff$ $\frac {i(z_k+2)}{z_k}=w^k$ , where $|w|=1$ , $\arg w=\frac {2\pi}{n}$ and $k\in \overline{0,n-1}$ .Therefore, $\frac {i(z_k+2)}{z_k}=w^k$ $\iff$ $-\frac 2{z_k}=1+iw^k=$

$1+\cos\left(\frac {2k\pi}{n}+\frac {\pi}{2}\right)+$ $i\sin\left(\frac {2k\pi}{n}+\frac {\pi}{2}\right)$ $\implies$ $-\frac 2{z_k}=2\cos \left(\frac {k\pi}{n}+\frac {\pi}{4}\right)\cdot\left[\cos \left(\frac {k\pi}{n}+\frac {\pi}{4}\right)+i\sin\left(\frac {k\pi}{n}+\frac {\pi}{4}\right)\right]\implies$ $z_k=-\frac {\cos\left(\frac {k\pi}{n}+\frac {\pi}{4}\right)-i\sin\left(\frac {k\pi}{n}+\frac {\pi}{4}\right) }{\cos\left(\frac {k\pi}{n}+\frac {\pi}{4}\right)}$ $\implies$

$z_k=-1+i\tan\left(\frac {k\pi}{n}+\frac {\pi}{4}\right)\ ,\ k\in\overline{0,n-1}$ . Hence $\boxed{z_k=-1+i\lambda_k\ ,\ \mathrm{where}\ \lambda_k=\tan\left(\frac {k\pi}{n}+\frac {\pi}{4}\right)\ ,\ k\in\overline{0,n-1}}$ .



PP23. Let $z\in\mathbb C^*$ so that $\left|z^2+1\right|=|z+2|$ . Prove that $|z|\le 2$ and we have $|z|=2\iff\mathcal Re(z)=\frac 12$ .

Proof. Denote $|z|=r$ and observe that $\left|z^2+1\right|=|z+2|\iff$ $\left(z^2+1\right)\left(\overline z^2+1\right)=(z+2)\left(\overline z+2\right)\iff$ $r^4+\left(z+\overline z\right)^2-2r^2+1=r^2+2\left(z+\overline z\right)+4\iff$

$\boxed{\left(r^4-3r^2-4\right)+\left[\left(z+\overline z\right)-1\right]^2=0}\ (*)\implies$ $r^4-3r^2-4\le 0\iff$ $\left(r^2+1\right)\left(r^2-4\right)\le 0\iff$ $r\in (0,2]\ .$ Have $r=2\iff z+\overline z=1\iff\mathcal Re(z)=\frac 12 .$

Remark. Prove similarlly that $\left|z^2+1\right|=2|az+b|$ , where $\{a,b\}\subset\mathbb R^*\iff$ $\left[r^2-\left(2a^2+1\right)\right]^2+4\left[\mathcal Re(z)-ab\right]^2=4\left(a^2+1\right)\left(a^2+b^2\right)$ .



PP24. Consider the function $f:\mathbb C^*\rightarrow \mathbb R^*_+$ , where $f(z)=\left|z+\frac 1z\right|$ . Find the range of $|z|$ , where $f(z)=1$ and ascertain generally for any $a>0$ the range of $|z|$ , where $f(z)=a$ .

Proof. Denote $|z|=r$ . Thus, $f(z)=1\iff$ $\left|z^2+1\right|=|z|\iff$ $\left(z^2+1\right)\left(\overline z^2+1\right)=z\overline z\iff$ $r^4+\left(z+\overline z\right)^2-2r^2+1=r^2\iff$ $r^4-3r^2+1+\left(z+\overline z\right)^2=0$

$\iff$ $\left(r^2-\frac 32\right)^2+\left(z+\overline z\right)^2=\frac 54$ . Observe that $\left|r^2-\frac 32\right|\le \frac {\sqrt 5}2\iff$ $\frac {3-\sqrt 5}2\le r^2\le\frac {3+\sqrt 5}2\iff$ $r\in\left[\frac {\sqrt 5-1}2\ ,\ \frac {\sqrt 5+1}2\right]$ , i.e. $\left|2r-\sqrt 5\right|\le 1$ .



P25. If $\{x,y,z\}\subset\mathbb C$ and $|x|=|y|=|z|=1\ ,$ then $|x-y|^2\ +\ |x-z|^2\ +\ 1\ \ge\  |y-z|^2\ \ (1)\ .$

Proof. I"ll use an well known identity over $\mathbb C$ (prove easily) $:\ \boxed{|a+b+c|^2+|a|^2+|b|^2+|c|^2=|a+b|^2+|b+c|^2+|c+a|^2}\ .$ Its geometrical interpretation is equivalent with the

identity $HA^2+HB^2+HC^2=HO^2+3R^2\ .$ With the substitutions $\left\{\begin{array}{ccc}
a & = & y-x\\\\
b & = & x-z\\\\
c & = & z-y\end{array}\right\|$ obtain the identity $|y|^2+|z|^2+|x-y|^2+|x-z|^2=|x|^2+|y-z|^2+|y+z-x|^2$

what implies $\boxed{|y|^2+|z|^2+|x-y|^2+|x-z|^2\ge |x|^2+|y-z|^2}$ with equality iff $\underline{y+z=x}\ .$ In conclusion, $|x|=|y|=|z|=1\ \Longrightarrow\ (1)\ .$

Observatie. Aceasta problema exprima peste $\mathbb C$ o inegalitate cunoscuta din geometria triunghiului $:\ \boxed{b^2+c^2+R^2\ \ge\  a^2}\ \ (*)$ cu egalitate daca si numai daca $A=120^{\circ}$ si $B=C\ .$

Metoda 1. Notam cercul circumscris $C(O,R)$ al $\triangle ABC\ ,$ mijlocul $M$ al laturi$[BC]$ si simetricul $N$ al lui $O$ fata de $M\ .$ Exprimam mediana

$[AM]$ in $\triangle ABC$ si $\triangle AON\ :\ 2\left(b^2+c^2\right)-a^2=4m_a^2=$ $2\cdot\left(AN^2+AO^2\right)-ON^2=$ $2\cdot AN^2+2R^2-4\cdot OM^2=$

$2\cdot AN^2+2R^2-4R^2+a^2\iff$ $AN^2=b^2+c^2-a^2+R^2\ge 0\iff$ $b^2+c^2+R^2\ge a^2\ .$

Metoda 2. Inegalitatea $(*)\iff 2bc\cdot\cos A+R^2\ge 0\iff$ $1+8\cos A\sin B\sin C\ge 0\iff$

$1+4\cdot\cos A\left[\cos (B-C)+\cos A\right]\ge 0\iff$ $\left[2\cos A+\cos (B-C)\right]^2+\sin^2(B-C)\ge 0\ .$


Extindere. $\left(\forall\right) X$ din planul $(ABC)$ exista relatia $\boxed{b^2+c^2-a^2\ge XA^2-XB^2-XC^2}\ \ (**)$

cu egalitate daca si numai daca $X$ este simetricul lui $A$ fata de mijlocul laturii $[BC]\ .$


Observatie. Daca $X$ este centrul cercului circumscris al $\triangle ABC$ , atunci se obtine inegalitatea $(*)\ .$

Metoda 1 (V.N.). Notam mijlocul $M$ pentru $BC$ [BC][/tex] si simetricul $Y$ al lui $X$ in raport cu $M\ .$ Aplicam teorema medianei in triunghiurile

$\left\|\begin{array}{ccc}
 \triangle ABC & \Longrightarrow & 4m_a^2=2(b^2+c^2)-a^2\\\\
 \triangle BXC & \Longrightarrow & 4\cdot XM^2=2\cdot\left(XB^2+XC^2\right)-a^2\\\\
 \triangle XAY & \Longrightarrow & 2m_a^2=XA^2+YA^2-2\cdot XM^2\end{array}\right\|\iff$ $\boxed{\left(XA^2-XB^2-XC^2\right)+YA^2=b^2+c^2-a^2}\ \Longrightarrow\ (**)\ .$

Metoda 2. Fie mijloacele $M$ , $N$ pentru $[BC]$ , $[AX]$ . Deci $b^2+c^2-a^2 \ge $ $XA^2-XB^2-XC^2 \iff$ $\frac{2(b^2+c^2)-a^2}{4}-\frac{a^2}{4} \ge $ $\frac{XA^2}{2}-\frac{2(XB^2+XC^2)}{4}\iff$

$\frac{2(b^2+c^2)-a^2}{4}+\frac{2(XB^2+XC^2)-a^2}{4} \ge $ $\frac{XA^2}{2}\iff$ $AM^2+MX^2 \ge $ $\frac{XA^2}{2}\iff$ $\frac{2(AM^2+MX^2)-XA^2}{4}\ \ge 0$ $ \Longleftrightarrow\ MN^2\ \ge\ 0$ care este adevarata.


Problema propusa 1. Sa se arate ca in $\triangle ABC$ exista inegalitatea $\boxed{\frac {b+c}{a}\ +\ \frac {a^2-bc}{b^2+c^2-bc}\ \ge\ 2}\ \ (***)\ .$

Indicatie. Se aplica inegalitatea $(**)$ pentru $X:=I_a$ - centrul cercului $A$-exinscris triunghiului $ABC\ .$

Observatie. Inegalitatea $(***)$ este echivalenta cu $\boxed{a^3+b^3+c^3+abc\ \ge\ 2a(b^2+c^2)}\ \ge\ 4abc\ .$

Problema propusa 2. Sa se arate urmatoarea identitate peste $\mathrm C\ ,$ care in interpretare geometrica este echivalenta cu relatia $HO^2+\sum OM^2=12R^2\ ,$

unde $NP\parallel BC\ ,$ $PM\parallel CA$ si $MN\parallel AB\ :\ |x+y+z|^2+|y+z-x|^2+|z+x-y|^2+|x+y-z|^2=4\cdot\left(|x|^2+|y|^2+|z|^2\right)\ .$


http://www.mathlinks.ro/Forum/viewtopic.php?t=5722

http://mathlinks.ro/Forum/viewtopic.php?f=47&t=345744&ml=1&sid=8e356a5809829f13cb9dacbb647b54b6

http://mathlinks.ro/Forum/viewtopic.php?f=47&t=345742&ml=1

http://www.mathlinks.ro/viewtopic.php?t=55455&search_id=655031139

http://www.mathlinks.ro/viewtopic.php?p=296657&search_id=655031139#296657

http://www.mathlinks.ro/viewtopic.php?p=277553&search_id=1382933615#277553
This post has been edited 257 times. Last edited by Virgil Nicula, Jun 5, 2016, 12:26 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a