411. Geometry 4.

by Virgil Nicula, Mar 20, 2015, 1:43 PM

P7 (M. Ochoa Sanchez). Let $ABCD$ be a rectangle and the points $P\in (AB),$ $M\in (BC),$ $N\in (AD)$ so that $MN\parallel AB$ and $Q\in MN\cap PC.$ Suppose

that the quadrilaterals $APQN,$ $PBMQ$ and $MCDN$ are circumscriptibly with the incenters $r,$ $r$ and $R$ respectively. Prove that $\boxed{2R=r\left(1+\sqrt 5\right)}\ (*)\ .$


Proof. Denote the incircle $w=\mathbb C(I,r)$ of $PBMQ,$ $R\in PQ\cap w$ with $RP=x,$ $RQ=y$ and the incircle $\Omega =\mathbb C(O,R)$ of $MCDN\ .$ Prove easily that $\boxed{xy=r^2}\ (1)$ and

$MCDN$ is circumscriptibly $\iff$ $CQ+DN=NQ+CD\iff$ $(2R+r-y)+2R=(r+x)+2r+(x+y)\iff$ $2R=r+x+y\iff$ $\boxed{x+y=2R-r}\ (2)\ .$

Observe that $\frac {BP}{BC}=\frac {MQ}{MC}\iff$ $\frac{r+x}{R+r}=\frac {r+y}{R}=\frac {x-y}r=\frac {2r+x+y}{2R+r}\ \stackrel{(2)}{=}\ \frac {2r+(2R-r)}{2R+r}=1\implies $ $\boxed{x=R\ \wedge\ y=R-r}\ (3)\ .$ Therefore, $xy=r^2\iff$

$R(R-r)=r^2\iff$ $\boxed{R^2-Rr-r^2=0}\ (4)\ .$ I"ll use the substitution $\boxed{t=\frac Rr}\ .$ In conclusion, the previous relation $(4)$ becomes $\frac Rr=\frac {1+\sqrt 5}2\ .$



P8. Let $ABC$ be an equilateral triangle with the circumcircle $w$ and $Q\in (BC)$ for which denote $\{A,P\}=AQ\cap w.$ Prove that $ \frac {1}{PB} + \frac {1} {PC} = \frac {1}{PQ}.$

$\boxed{\begin{array}{ccccc}
\mathrm{Ptolemy's\ theorem} & PB\cdot \cancel{AC}+PC\cdot \cancel{AB}=PA\cdot \cancel{BC} & \iff & \boxed{PB+PC=PA} & \searrow\\\\
\triangle ACP\sim\triangle BQP\ : & \frac {CP}{QP}=\frac {AP}{BP} & \iff & \boxed{PA\cdot PQ=PB\cdot PC} & \nearrow\end{array}\ \bigodot\ \implies\ PQ\cdot (PB+PC)=PB\cdot PC\iff \frac {1}{PB} + \frac {1} {PC}=\frac 1{PQ}}$


P9 (M. Ochoa Sanchez, Peru). The circle $w$ is interior tangent to the circle $\Omega$ at $T.$ For $\{A,B\}\subset w$ so that $T\not\in \{A,B\}$ construct the

tangents $AP,$ $BQ$ to the circle $w,$ where $\{P,Q\}\subset \Omega.$ Denote $\{P,M\}=PT\cap w$ and $\{Q,N\}=QT\cap  w .$ Prove that $\frac {PA}{PT}=\frac {QB}{QT}.$


Proof. $\widehat{QPT}\equiv\widehat {NMT},$ i.e. $PQ\parallel MN.$ Thus, $\frac {PM}{QN}=\frac {PT}{QT}\ (*)$ $\implies$ $\left\{\begin{array}{c}
AP^2=PM\cdot PT\\\\
BQ^2=QN\cdot QT\end{array}\right\|\ \stackrel{(*)}{\implies}\ \left(\frac {AP}{BQ}\right)^2=\left(\frac {PT}{QT}\right)^2\implies$ $\frac {AP}{BQ}=\frac {PT}{QT}\implies$ $\frac {PA}{PT}=\frac {QB}{QT}.$


P10 (Cesar Trucios). Let a parallelogram $ABCD$ and $\left\{\begin{array}{ccccc}
AD=BC=a & , & N\in (AD) & : & \frac {NA}n=\frac {ND}1=\frac a{n+1}\\\\
AB=CD=b & , & M\in (CD) & : & \frac {MC}m=\frac {MD}1=\frac b{m+1}\end{array}\right\|$ so that $m\left(\widehat{ABN}\right) =m\left(\widehat{NBM}\right)=$

$m\left(\widehat{MBC}\right)=x.$ Prove that $\boxed{2\cos  x=\sqrt{\frac {(m+1)(n+1)}{mn}}}\ (*)\ .$
Particular case. If $n=1$ and $m=2$ then obtain that $2\cos x=\sqrt 3,$ i.e. $x=30^{\circ}\ .$

Proof. Denote $AD=a,$ $AB=b$ and observe that $\triangle ABN\sim\triangle CBM$ $\implies$ $\frac {AB}{CB}=\frac {NA}{CM}$ $\implies$ $\frac ba=\frac {na}{n+1}\cdot\frac {m+1}{mb}$ $\implies$ $\frac {b^2}{a^2}=\frac {n(m+1)}{m(n+1)}$ $\implies$ $\frac ab=\sqrt{\frac {m(n+1)}{n(m+1)}}\ (1)\ .$

Apply the theorem of Sines in $\triangle BCM\ :\ \frac {BC}{\sin 2x}=\frac {MC}{\sin x}\implies$ $\frac a{\sin 2x}=\frac {mb}{(m+1)\sin x}\implies$ $\frac ab=\frac {2m}{m+1}\cdot\cos x\ \stackrel{(*)}{\implies}\ 2\cos x=\sqrt{\frac {(m+1)(n+1)}{mn}}\ .$



P11. Let $\gamma$ be the circumcircle of $ \triangle ABC$. Let $ R_a$ be the radius of the circle touching $ AB$ , $AC$ and

$\gamma$ internally (mixtilinear incircle). Define $ R_b,R_c$ similarly. Prove that $ \frac {1}{aR_a} + \frac {1}{bR_b} + \frac {1}{cR_c} = \frac {p^2}{rabc}$ .


Proof 1. Let $ B'$ and $ C'$ b tangency points of $ \gamma$ with $ AB$ and $ AC$ . It's well-known that the incenter $ I$ is the midpoint of $ B'C'$ . Let $ O_a$ be the center of $ \gamma$ . Then $ IB' = AI \tan \dfrac{A}{2} = $

$\dfrac{AI \sin \dfrac{A}{2} }{\cos \dfrac{A}{2}} = $ $\dfrac{r }{\cos \dfrac{A}{2}}$ $\implies R_a = \dfrac{IB'}{\cos \dfrac{A}{2}} = \dfrac{r }{\cos^2 \dfrac{A}{2}} = \dfrac{r}{\frac {p(p - a)}{bc}}\implies$ $\boxed{R_a= \dfrac{r \cdot bc}{p(p - a)}}$ and $ \sum \dfrac{1}{aR_a} = \sum\dfrac{p(p - a)}{r abc} = \dfrac{p}{rabc}\sum (p - a) = \dfrac{p^2}{rabc}$ .

Remark 1. Let $AB'=AC'=x$ and apply the Casey's theorem to $A$ , $B$ , $C$ and $\gamma\ :\ AB'\cdot BC=$ $BB'\cdot AC+CC'\cdot AB\iff$ $xa=(c-x)b+(b-x)c\iff$

$x=\frac {2bc}{a+b+c}\iff\boxed{AB'=\frac {bc}{p}}$ . Thus, $I\in B'C'\iff$ $IB'\perp IA\iff$ $AI=AB'\cos\frac A2\iff$ $\frac {p-a}{\cos\frac A2}=\frac {bc}{p}\cdot\cos\frac A2\iff$ $\cos^2\frac A2=\frac {p(p-a)}{bc}$ , what is true.

Remark 2. Denote $\left\{\begin{array}{c}
\{T,X\}=TM\cap \gamma\\\\
\{T,Y\}=TN\cap \gamma\end{array}\right\|$ . It is well-known that $I\in BY\cap CX$ . Apply the Pascal's theorem to the cyclical $XTYBAC\ :$

$\left\{\begin{array}{c}
M\in XT\cap BA\\\\
 N\in TY\cap AC\\\\
I\in YB\cap CX\end{array}\right\|$ $\implies I\in MN$ . Thus, $\frac {TB}{TC}=\frac {TB}{TA}\cdot\frac {TA}{TC}=$ $\frac {MB}{MA}\cdot\frac {NA}{NC}=$ $\frac {MB}{NC}=$ $\frac {c-\frac {bc}{p}}{b-\frac {bc}{p}}\implies$ $\boxed{\frac {TB}{TC}=\frac {c(p-b)}{b(p-c)}}$ .



P12 (1989 China League). Let $\triangle ABC$ with $c>b$ . The exterior angle bisector of $\widehat{BAC}$ intersect the circumcircle

$w=C(O,R)$ in $E$ and through $E$ construct $EF \perp AB\ ,\ F\in AB$ . Show that $2\cdot AF=AB-AC\ .$


Proof 1. Let $L\in BC\cap AE$. Thus: $\boxed{AF=AE\sin \frac{A}{2}}$ ; $\triangle ABE\sim \triangle ALC$ $\Longrightarrow \boxed{AE\cdot AL=bc}\ .$ $\boxed{2bc\sin\frac{A}{2}=(c-b)\cdot AL}\Longrightarrow \boxed{2\cdot AF=c-b}$ (product).

Proof 2. Let : the reflection $M$ of $E$ w.r.t. the circumcenter $O$ of $\triangle ABC$ ; the projection $P$ of $M$ to $AB\ .$ From a well-known property $BP=AF$ and the relations

$BP=MB\cos \left(B+\frac{A}{2}\right)$ , $MB=2R\sin\frac{A}{2}$ results $AF=2R\sin \frac{A}{2}\cos\left(B+\frac{A}{2}\right)$ $\Longrightarrow$ $AF=R(\sin C-\sin B)$ $\Longrightarrow$ $\boxed{\ 2\cdot AF=c-b\ }\ .$



P13. In a $ \triangle\ ABC$ with $ AB\perp AC$ denote $ \left\|\begin{array}{ccc} M\in (AC) & , & MA = MC \\
\ D\in (AC) & , & AD\perp AC\end{array}\right\|$. For $ E\in AM$ denote $ Z\in BE$ for which $ DZ\parallel AC$. Prove that $ CE \perp AZ$.

Proof 1. $\left\|\begin{array}{ccc} 
A(\ 0\ ,\ 0\ ) & ; & M\left(\ \frac c2\ ,\ \frac b2\ \right)\\\\
B(\ 0\ ,\ b\ ) & ; & D\left(\ \frac {b^2c}{b^2 + c^2}\ ,\ \frac {bc^2}{b^2 + c^2}\ \right)\\\\
C(\ c\ ,\ 0\ ) & ; & E(\ mc\ ,\ mb\ )\ ,\ m\in\mathcal R\end{array}\right\|$ $\implies$ $ Z\left(\ - \frac {mb^2c}{(b^2 + c^2)(m - 1)}\ ,\ \frac {bc^2}{b^2 + c^2}\ \right)\implies$ $\odot\begin{array}{ccc}
\nearrow & s(CE) = \frac {m}{m - 1}\cdot\frac bc & \searrow\\\\
\searrow & s(AZ) = - \frac {m - 1}{m}\cdot\frac cb & \nearrow\end{array}$ $\odot$ $ \implies$ $ s(CE)\cdot s(AZ) = - 1\ .$

Proof 2. Let $ \left\|\begin{array}{c} N\in AZ\cap BC \\
\\ P\in AD\cap CE\end{array}\right\|$ . So $ DZ\parallel AC$ $ \implies$ $ \frac {ZA}{ZN} = \frac {DC}{DN}$ . Menelaus' theorem $:\  \left\{\begin{array}{cccc} 
\overline {CEP}/\triangle ADM\ : & \frac {CD}{CM}\cdot\frac {EM}{EA}\cdot\frac {PA}{PD} = 1 & \implies & \frac {PA}{PD} = \frac {CM}{CD}\cdot \frac {EA}{EM}\\\\
\overline {BZE}/\triangle AMN\ : & \left|\begin{array}{c}
\frac {BN}{BM}\cdot\frac {EM}{EA}\cdot\frac {ZA}{ZN} = 1\\\\
\frac {ZA}{ZN}=\frac {DC}{DN}\end{array}\right| & \implies & \frac {NB}{ND} = \frac {BM}{CD}\cdot \frac {EA}{EM} \end{array}\right\|$ $ \implies$

$ \frac {PA}{PD} = \frac {NB}{ND}$ $ \implies$ $ NP\parallel AB$ $ \implies$ $ NP\perp AC\ .$ Therefore, $ \left\|\begin{array}{c} AD\perp NC \\
\ NP\perp AC\end{array}\right\|$ $ \implies$ the point $ P$ is the orthocenter of the triangle $ ANC$ $ \implies$ $ CP\perp AN$ $ \implies$ $ CE\perp AZ\ .$

Proof 3. Let $\left\{\begin{array}{c}
N=DZ\cap AB\\\\
P=BE\cap AC\\\\
Q=CE\cap AB\end{array}\right\|$ . Thus, $\left\{\begin{array}{cccc}
E\in AM & \implies & \frac{AQ}{QB}=\frac{AP}{PC} & (1)\\\\
ND\parallel AC & \implies & \frac{NZ}{ZD}=\frac{AP}{PC} & (2)\end{array}\right\|$ . But $\triangle NDA\sim\triangle ABC$ and they have the homologous sides perpendicular, for our case

$ND\bot AB$ . Since, from $(1)\ \wedge \ (2)$ the points $Q$ and $Z$ divide the homologous sides $AB$ and $ND$ respectively into the same ratio, i.e. $\frac{AQ}{BQ}=\frac{NZ}{ZD}\implies AZ\bot CQ\iff AZ\bot CE$ .


An easy extension. In $ \triangle\ ABC$ denote the midpoint $ M$ of the side $ [BC]$ . For $ \left\|\begin{array}{c} D\in BC \\
 \\
E\in AM\\\\
X\in BE\end{array}\right\|$ denote $ \left\|\begin{array}{ccc} 
N\in AX\cap BC \\
 \\
P\in AD\cap CE\end{array}\right\|$. Prove that $ DX\parallel AC\iff PN\parallel AB\ .$

Proof. Menelaus's theorem $\ :\ \left\{\begin{array}{ccc}
\overline{CEP}/\triangle ADM & \implies & \frac {CM}{CD}\cdot\frac {PD}{PA}\cdot\frac {EA}{EM}=1\\\\
\overline{XBE}/\triangle ANM & \implies & \frac {XA}{XN}\cdot\frac {BN}{BM}\cdot\frac {EM}{EA}=1\end{array}\right\|\ \bigodot$ $\implies$

$\boxed{\frac {PA}{PD}=\frac {XA}{XN}\cdot\frac {BN}{CD}}\ (*)$ . Hence $DX\parallel AC\iff$ $\frac {XA}{XN}=\frac {DC}{DN}\stackrel{(*)}{\iff}$ $\frac {PA}{PD}=\frac {NB}{ND}\iff$ $PN\parallel AB$ .



P14. Let $\triangle ABC$ and $\left\{\begin{array}{ccc}
E\in AC & : & \widehat{EBA}\equiv\widehat{EBC}\\\\
F\in AB & : & \widehat{FCA}\equiv\widehat{FCB}\end{array}\right\|$ . For $M\in (EF)$ let distancies $x$ , $y$ and $z$ from $M$ to $BC$ , $CA$ , $AB$ respectively. Prove that $x=y+z$ .

Generalization. Let $\triangle ABC$ and $\left\|\begin{array}{ccc}
 F\in (AB) & ; & \frac {FA}{FB} = \beta\\\\
 E\in (AC) & ; & \frac {EA}{EC} = \gamma\end{array}\ \right\|$ . For $M\in (EF)$ let the distancies $x$ , $y$ and $z$ from $M$ to $BC$ , $CA$ , $AB$ respectively. Prove that $ax =\frac {by}{\beta} + \frac {cz}{\gamma}$ .



P15 (Evgeniy Kulanin, Rusia). Let $\triangle ABC$ . Denote $:$ the midpoint $M$ of the side $[BC]$ ; the Nagel point $N$ ; the Gergonne point $\Gamma$ ; the Feuerbach's point $F$ .

Prove that in any triangle $ABC$ the line $N\Gamma\parallel BC\iff F\in AM$ (lista scurta a concursului R.M.G. - Revista de Matematica din Galati,2007).


Proof. I"ll show that $\boxed{N\Gamma\parallel BC\iff a(b+c)=b^2+c^2\iff F\in (AM)}\ .$ Denote the second intersection $L$ of the Euler's circle with the median $AM$ , the orthocenter $H$ ,

$D\in AH\cap BC$ and the midpoint $E$ of $[AH]$ . Is well-known that $\{M,D,E\}$ belong to the Euler's circle. From the power of $A$ w.r.t. this circle obtain that $AE\cdot AD=AL\cdot AM\iff$

$R\cos A\cdot h_a=AL\cdot m_a\iff$ $4Rh_a\cdot\cos A=4m_a\cdot AL\iff$ $2bc\cdot\cos A=4m_a\cdot AL\iff$ $\boxed{AL=\frac {b^2+c^2-a^2}{4m_a}}\ .$ Thus, $LM=AM-AL=$ $\frac {4m_a^2-\left(b^2+c^2-a^2\right)}{4m_a}=$

$\frac {2\left(b^2+c^2\right)-a^2-\left(b^2+c^2\right)+a^2}{4m_a}$ , i.e. $\boxed{LM=\frac {b^2+c^2}{4m_a}}\ .$ $\odot\ \boxed{N\Gamma\ \parallel\ BC}\iff$ $\frac {p-a}{p}=\frac {(p-b)(p-c)}{\sum (p-b)(p-c)}\iff$ $\frac {p}{(p-a)}=1+\frac {(p-a)[(p-b)+(p-c)]}{(p-b)(p-c)}\iff$

$(p-a)^2=(p-b)(p-c)\iff$ $\boxed{a(b+c)=b^2+c^2}\ .$ $\odot\ \boxed{F\in AM}\Longleftrightarrow L\in AM\cap w$ , where $w=C(I,r)\ .$ Denote Notam $\{L,S\}=AM\cap w$ , where $L\in (AS)\ .$ From

$AL=\frac {b^2+c^2-a^2}{4m_a}$ and $LM=\frac {b^2+c^2}{4m_a}$ obtain that $p_w(A)=(p-a)^2=AL\cdot AS$ $\Longrightarrow$ $AS=\frac {4m_a(p-a)^2}{b^2+c^2-a^2}\ .$ Thus, $MS=MA-AS=m_a-\frac {4m_a(p-a)^2}{b^2+c^2-a^2}$ , i.e

$MS=\frac {2m_a\left[a(b+c)-a^2-bc\right]}{b^2+c^2-a^2}\ $ Also $p_w(M)=\frac {(b-c)^2}{4}=$ $MS\cdot ML=\frac {2m_a\left[a(b+c)-a^2-bc\right]}{b^2+c^2-a^2}\cdot$ $ \frac {b^2+c^2}{4m_a}$ , i.e. $\left(b^2+c^2-a^2\right)(b-c)^2=$

$2\left(b^2+c^2\right)\left[a(b+c)-a^2-bc\right]\ \Longleftrightarrow\ \left[a(b+c)-\left(b^2+c^2\right)\right]^2=0$ $\Longleftrightarrow\boxed{a(b+c)=b^2+c^2}\ .$ I used the the metrical relations

$ab+bc+ca=p^2+\sum(p-b)(p-c)=p^2+r(4R+r)$ and $IA^2=\frac {bc(p-a)}{p}$ .



P16. Let $ABC$ be an $A$-rightangled triangle $ABC$ with the incenter $I$ and the midpoint $M$ of the side $[BC]$. Prove that $IB=2\cdot IM\iff \frac cb=\frac 34\iff IB\perp IM$ .

Proof. $IB=2\cdot IM\iff$ $IB^2=4\cdot IM^2\iff$ $a(a-b)=4\cdot\left[r^2+\left(\frac {b-c}2\right)^2\right]\iff$ $a(a-b)=4r^2+(b-c)^2\iff$ $a(a-b)=(b+c-a)^2+(b-c)^2\iff$

$a^2-ab=a^2+(b+c)^2-2a(b+c)+(b-c)^2\iff$ $ab+2a^2-2a(b+c)=0\iff$ $2a=b+2c\iff$ $4\left(b^2+c^2\right)=b^2+4c^2+4bc\iff$ $\frac a5=\frac b4=\frac c3$ .

Denote the symmetrical point $J$ of $I$ w.r.t. $M$ . Observe that $BICJ$ is a parallelogram and $m\left(\widehat {IBJ}\right)=m\left(\widehat {IBC}\right)+$ $m\left(\widehat {JBC}\right)=\frac {B+C}2=45^{\circ}$ .

Thus, $IB=2\cdot IM\iff IB=IJ\iff$ $m\left(\widehat{IBJ}\right)=$ $m\left(\widehat{IJB}\right)=90^{\circ}\iff$ $ IB\perp IJ\iff IB\perp IM$ .

Remark. $IB^2=\frac {ac(s-b)}{s}=ac-4Rr=$ $ac-a(b+c-a)=a(a-b)\implies$ $\boxed{IB^2=a(a-b)}$ . Obtain analogously $IC^2=a(a-c)$ and $IA^2=(a-b)(a-c)$ .



P17 (M.O. Sanchez). Let an acute $\triangle ABC$ with crcumcircle $w=\mathbb C(O,R)$ and $D\in (BC),$ $\{A,H\}=\{A,D\}\cap w,$

$\left\{\begin{array}{ccc}
E\in AC & ; & DE\perp AC\\\\
F\in AB & ; & DF\perp AB\end{array}\right\|$ and $G\in EF\cap AD.$ Prove that $\boxed{AG\cdot AH=AD^2}\ (*).$


Proof. Apply the theorem of Cathetus to the $D$-right triangles $:\ \left\{\begin{array}{ccc}
\triangle ADB\ : & AD^2=AF\cdot AB\\\\
\triangle ADC\ : & AD^2=AE\cdot AC\end{array}\right\|.$ Thus, $AF\cdot AB=AD^2=AE\cdot AC\implies$ $BFEC$ is cyclic

and $\widehat{AFG}\equiv \widehat{AFE}\equiv \widehat{ECD}\equiv \widehat{ACB}\equiv \widehat{AHB}\equiv \widehat{GHB}\implies$ $\widehat{AFG}\equiv \widehat{GHB}\implies$ $BFGH$ is cyclic $\implies$ $AF\cdot AB=AG\cdot AH\implies$ $AD^2=AG\cdot AH.$



P18 (M. O. Sanchez). Let $B$-isosceles $\triangle ABD$ with circumcircle $w$ and $C\in w$ so that $AB=a,$ $BC=b,$ $m\left(\widehat{BAD}\right)=\phi .$ Prove that $\boxed{[ACD]=\frac 12\cdot \left(a^2-b^2\right)\cdot\sin 2\phi}\ (*).$

Proof 1. Let $AC=u,$ $CD=v.$ Apply the generalized Pythagoras' theorem to the triangles $:\ \left\{\begin{array}{cc}
BCD\ : & a^2=b^2+v^2+2bv\cos \phi\\\\
ABC\ : & a^2=b^2+u^2-2bu\cos \phi\end{array}\right\|\ \ominus\ \implies$

$v^2-u^2+2b\cos\phi (v+u)=0\implies$ $\boxed{2b\cos\phi =u-v}\ (*).$ In conclusion, $a^2=b^2+v^2+v\cdot 2b\cos\phi\ \stackrel{(*)}{=}\ a^2=b^2+v^2+v\cdot (u-v)=$

$b^2+uv\implies$ $a^2-b^2=uv\implies$ $2\cdot [ACD]=uv\sin 2\phi\iff$ $[ACD]=\frac 12\cdot\left(a^2-b^2\right)\cdot\sin 2\phi.$

Proof 2. Observe that $AD=2a\cos\phi.$ Apply the Ptolemy's theorem to $ABCD\ :\ AB\cdot CD+AD\cdot BC=BD\cdot AC\iff$ $\cancel av+2\cancel ab\cos \phi=\cancel au\iff$

$v+2b\cos \phi =u\iff$ $\boxed{2b\cos\phi =u-v}\ (*).$ Apply the generalized Pythagoras' theorem to the side $[AB]$ of $\triangle ABC\ :\ AB^2=CA^2+CB^2-2\cdot CA\cdot CB\cdot\cos\widehat{ACB}\iff$

$a^2=u^2+b^2-2bu\cos\phi\ \stackrel{(*)}{\iff}\ a^2=b^2-u(u-v)\iff$ $a^2=b^2+uv\iff$ $\boxed{uv=a^2-b^2}\implies $ $2\cdot [ACD]=uv\sin 2\phi\iff$ $[ACD]=\frac 12\cdot\left(a^2-b^2\right)\cdot\sin 2\phi.$



Lemma. Let $\triangle ABC$ with $\left\{\begin{array}{ccc}
m\left(\widehat{BAC}\right) & = & 18^{\circ}\\\\
m\left(\widehat{ABC}\right) & = & 30^{\circ}\end{array}\right\|\ .$ Prove that the relation $\boxed{CA^2-CB^2=CA\cdot CB}\ (*).$

Proof. Apply the theorem of Sines in the triangle $ ABC\ :\ r\equiv \frac {CB}{CA}=\frac {\sin\widehat {BAC}}{\sin\widehat{ABC}}=$ $\frac {\sin 18^{\circ}}{\sin 30^{\circ}}=$ $2\cdot\frac {-1+\sqrt 5}4\implies$ $r=\frac {-1+\sqrt 5}2\implies$

$(2r+1)^2=5\implies$ $r^2+r=1\implies$ $1+r=\frac 1r\implies$ $1+\frac {CB}{CA}=\frac {CA}{CB}\implies$ $CB\cdot (CA+CB)=CA^2\implies$ $CA^2-CB^2=CA\cdot CB.$


P19 (Kadir Altintas, Turkey). Let $\triangle ABC$ with $D\in (BC)$ so that $AD=DC,$ $B=30^{\circ}$ and $m\left(\widehat{BAD}\right)=18^{\circ}.$ Prove that $DA^2=DB\cdot BC.$

Proof. I"ll use upper lemma for $\triangle ABD,$ i.e. $\boxed{DA^2-DB^2=DA\cdot DB}\ (*)\ .$ In conclusion, $DA^2-DB^2=$

$DA\cdot DB\iff$ $DA^2=DB\cdot (\underline{DA}+DB)=DB\cdot (\underline{DC}+DB)=DB\cdot BC\iff$ $DA^2=DB\cdot BC.$



P20 (M. Ochoa Sanchez, Peru). The circle $w$ is interior tangent to the circle $\Omega$ at $D.$ For a point $A\in\Omega,$ $A\ne D$ construct the tangents

$AE,$ $AF$ to the circle $w,$ where $\{E,F\}\subset w.$ Denote $\{A,C\}=AE\cap \Omega$ and $\{A,B\}=AF\cap \Omega .$ Prove that $\frac {DA+DB}{DA+DC}=\frac {AB}{AC}.$


Proof. From a known property obtain that the rays $[DE,$ $[DF$ are the bisectors of $\widehat{ADC},$ $\widehat{ADB}$ respectively. Apply the theorem of bisector from the vertex $D$ in the triangles $:$

$\left\{\begin{array}{ccc}
DE/\triangle ADC\ : & \frac {DA}{EA}=\frac {DC}{EC}=\frac {DA+DC}{EA+EC}=\frac {DA+DC}{AC}\implies  \boxed{\frac {DA}{EA}=\frac {DA+DC}{AC}} & (1)\\\\
DF/\triangle ADB\ : & \frac {DA}{FA}=\frac {DB}{FB}=\frac {DA+DB}{FA+FB}=\frac {DA+DB}{AB}\implies \boxed{\frac {DA}{FA}=\frac {DA+DB}{AB}} & (2)\end{array}\right\|\ .$ So $AE=AF\implies$ $\frac {DA}{EA}=\frac {DA}{FA}\ \stackrel{1\wedge 2}{\implies}\ \frac {DA+DC}{AC}=\frac {DA+DB}{AB}.$
This post has been edited 107 times. Last edited by Virgil Nicula, Oct 14, 2016, 6:31 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a