448. Extensions or generalizations.

by Virgil Nicula, Sep 9, 2016, 4:27 PM

Lemma 1. Let an trapezoid $ABCD$ and $M\in (AD),$ $N\in (BC)$ so that $MN\parallel AB\parallel CD.$ Prove that $\boxed{MN\cdot BC=AB\cdot NC+CD\cdot NB}\ (*) .$

Proof. Let $AB=a,$ $CD=b,$ with $a>b,$ $E\in AB$ so that $CE\parallel AD$ and $P\in CE\cap MN,$ i.e. $MP=b,$ $EB=a-b.$

Since $PN\parallel EB\implies$ $\frac {PN}{EB}=\frac {CN}{CB}$ get $MN=MP+PN=$ $MP+\frac {CN}{CB}\cdot EB=$ $b+\frac {CN}{CB}\cdot (a-b)=$

$\frac {b\cdot (BC-CN)+a\cdot CN}{BC}\implies$ $MN=\frac {a\cdot NC+b\cdot NB}{BC}$ $\implies$ $MN\cdot BC=AB\cdot NC+CD\cdot NB.$


Lemma 2 (Cristea). Let $\triangle ABC$ with $M\in (AB),$ $N\in (AC)$ and $P\in (MN)$ for which denote $D\in AP\cap BC.$ Prove $\boxed{\frac {PD}{PA}\cdot BC=\frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB}\ (**)$

Proof 1. Let $\{U,V\}\subset MN$ so that $BU\parallel AD\parallel CV.$ Thus, $\left\{\begin{array}{cccc}
\frac {MB}{MA} & = & \frac {BU}{AP} & \odot DC\\\\
\frac {NC}{NA} & = & \frac {VC}{AP} & \odot DB\end{array}\right\|\ \bigoplus\implies$ $\frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB=$

$\frac {BU}{AP}\cdot DC+\frac {VC}{AP}\cdot DB=$ $\frac {BU\cdot DC+VC\cdot DB}{AP}\ \stackrel {\mathrm{lemma 1}}{=}\ \frac {PD\cdot BC}{AP}\implies$ $\frac {PD}{PA}\cdot BC=\frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB.$

Proof 2. Let $d\parallel BC$ with $A\in d,$ $X\in MN\cap BC,$ $Y\in MN\cap d.$ Thus, $\left\{\begin{array}{cccc}
\frac {MB}{MA} & = & \frac {BX}{AY} & \odot DC\\\\
\frac {NC}{NA} & = & \frac {CX}{AY} & \odot DB\end{array}\right\|\ \bigoplus\implies$ $\frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB=$

$\frac 1{AY}\cdot (BX\cdot DC+CX\cdot DB)=$ $\frac 1{AY}\cdot [DC(XD-BD)+DB(XD+DC)]=$ $\frac {XD(BD+DC)}{AY}=$ $\frac {XD}{AY}\cdot BC=\frac {PD}{PA}\cdot BC,$ i.e. relation $(**).$


Proof 3. Let $X\in MN\cap BC$ and apply Menelaus' theorem to $:\ \left\{\begin{array}{ccccc}
\overline{XMP}/\triangle ABD : & \frac {XB}{XD}\cdot \frac{PD}{PA}\cdot \frac {MA}{MB}=1 & \implies & \frac {MB}{MA}=\frac {XB}{XD}\cdot \frac {PD}{PA} & \odot DC\\\\
\overline{XNP}/\triangle ACD : & \frac {XC}{XD}\cdot\frac {PD}{PA}\cdot\frac {NA}{NC}=1 & \implies & \frac {NC}{NA}=\frac {XC}{XD}\cdot\frac {PD}{PA} & \odot DB\end{array}\right\|\ \bigoplus\implies$

$\frac {MB}{MA}\cdot DC+\frac {NC}{NA}\cdot DB=$ $\frac {PD}{PA}\cdot\frac{XB\cdot DC+XC\cdot DB}{XD}=$ $\frac {PD}{PA}\cdot\frac {(XD-BD)DC+(XD+DC)BD}{XD}=$ $\frac {PD}{PA}\cdot \frac {XD(DC+BD)}{XD} =\frac {PD}{PA}\cdot BC,$ i.e. $(**)$


Lemma 3. Let $\triangle ABC$ with incenter $I$ and $E\in (AC),$ $F\in (AB)$ so that $I\in (EF)$ and $D\in BC\cap EF,$ $C\in (BD).$ Prove that $\frac a{ID}+\frac b{IE}=\frac c{IF}.$

Proof. Let $\left\{\begin{array}{ccc}
AF=y & \implies & BF=c-x\\\\
AE=y & \implies & CE=b-y\end{array}\right\|.$ Apply Menelaus" theorem to $\overline {DEF}/\triangle ABC\ :$ $\frac {DC}{DB}\cdot \frac{FB}{FA}\cdot \frac {EA}{EC}=1$ $\iff$ $\frac {DC}{DB}\cdot \frac {c-x}x\cdot\frac y{b-y}=1$ $\iff$ $\frac {DC}{x(b-y)}=$

$\frac {DB}{y(c-x)}=$ $\frac a{cy-bx}$ $\implies$ $\boxed{DB=\frac {ay(c-x)}{cy-bx}}\ (*)\ .$ So ray $[AI$ is $A$-bisector in $\triangle AEF$ $\implies$ $\frac {IF}{IE}=\frac {AF}{AE}$ $\iff$ $\boxed{\frac {IF}{IE}=\frac xy}\ (1)$ and ray $[BI$ is the $B$-bisector

in $\triangle BDF$ $\iff$ $\frac {IF}{ID}=\frac {BF}{BD}\ \stackrel{(*)}{=}\ \frac {c-x}{\frac {ay(c-x)}{cy-bx}}=$ $\frac {cy-bx}{ay}$ $\iff$ $\boxed{\frac {IF}{ID}=\frac {cy-bx}{ay}}\ (2)\ .$ So $\frac a{ID}+\frac b{IE}=\frac c{IF}$ $\iff$ $a\cdot\frac {IF}{ID}+b\cdot\frac {IF}{IE}=$ $c\ \stackrel{(1\wedge 2)}{\iff}$

$a\cdot\frac {cy-bx}{ay}+b\cdot\frac xy=c$ $\iff$ $\frac {cy-bx}y+\frac {bx}y=c,$ what is true.


Extension (Francisco Javier García Capitán) : http://i944.photobucket.com/albums/ad288/GemenLeu/07b11e30-359c-460a-9945-3234dff32119_zpsfohj0j35.jpg


Lemma 4. Let $\triangle ABC$ with interior $P$ for which $\left\{\begin{array}{ccc}
E & \in & BP\cap AC\\\\
F\ & \in & CP\cap AB\end{array}\right\|$ and $M\in (BC)$ for which $K\in MP\cap EF.$ Prove that $\boxed{\frac {KE}{KF}=\frac{MB}{MC}\cdot\frac {PE}{PB}\cdot\frac{PC}{PF}}\ (***).$

Proof 1. Apply Menelaus' theorem to $:\ \left\{\begin{array}{ccc}
\overline{LKP}/\triangle CEF\ : & \frac {LE}{LC}\cdot\frac {PC}{PF}\cdot\frac {KF}{KE}=1\\\\
\overline{LPM}/\triangle CEB\ : & \frac {LC}{LE}\cdot\frac {MB}{MC}\cdot\frac {PE}{PB}=1\end{array}\right\|\ \bigodot\ \implies$ $\boxed{\frac {KE}{KF}=\frac{MB}{MC}\cdot\frac {PE}{PB}\cdot\frac{PC}{PF}}\ (*)\ .$ See P1 from here and its extensions.

Proof 2. Let $\left\{\begin{array}{ccc}
m\left(\widehat{BPM}\right)=m\left(\widehat{EPK}\right)=x\\\\  
m\left(\widehat{CPM}\right)=m\left(\widehat{FPK}\right)=y\end{array}\right\|$ and apply $\left\{\begin{array}{ccc}
\frac {MB}{MC} & = & \frac {PB}{PC}\cdot\frac {\sin x}{\sin y}\\\\ 
 \frac {KE}{KF} & = & \frac {PE}{PF}\cdot\frac {\sin x}{\sin y}\end{array}\right\|$ $\implies$ $\frac {KE}{KF}\cdot\frac {PF}{PE}=\frac {\sin x}{\sin y}=\frac {MB}{MC}\cdot\frac {PC}{PB}\implies$ $\frac {KE}{KF}=\frac {MB}{MC}\cdot\frac {PE}{PB}\cdot\frac {PC}{PF}.$



P1 (own). Let $\triangle ABC$ with the incenter $I$ for which denote $\left\{\begin{array}{ccc}
E & \in & BI\cap AC\\\\
F\ & \in & CI\cap AB\end{array}\right|$ and $M\in (BC)$ for which denote $\left\{\begin{array}{ccc}
K & \in & MI\cap EF\\\\
N\ & \in & AK\cap BC\end{array}\right|\ .$ Prove that $\widehat{MAB}\equiv\widehat{NAC}.$

Proof. $\left\{\begin{array}{ccccc}
\frac {KE}{KF} & = & \frac {MB}{MC}\cdot\frac {PE}{PB}\cdot\frac {PC}{PF} & = & \frac {MB}{MC}\cdot\frac b{a+c}\cdot\frac {a+b}c\\\\
\frac {KE}{KF} & = & \frac {NC}{NB}\cdot\frac {AE}{AC}\cdot\frac {AB}{AF} & = & \frac {NC}{NB}\cdot\frac c{a+c}\cdot\frac {a+b}b\end{array}\right\|$ $\implies$ $\frac {MB}{MC}\cdot \frac bc=\frac {NC}{NB}\cdot\frac cb$ $\implies$ $\frac {MB}{MC}\cdot\frac{NB}{NC}=\left(\frac cb\right)^2,$ i.e. $[AM$ and $[AN$ are isogonal $\iff$ $\widehat{MAB}\equiv\widehat{NAC}.$

Extension. Let $\triangle ABC$ with interior $P$ for which $\left\{\begin{array}{ccc}
D & \in & AP\cap BC\\\\
E & \in & BP\cap AC\\\\
F\ & \in & CP\cap AB\end{array}\right|$ and $M\in (BC)$ for which let $:\ \left\{\begin{array}{ccc}
K & \in & MP\cap EF\\\\
N\ & \in & AK\cap BC\end{array}\right|\ .$ Prove that $\boxed{\frac {MB}{MC}\cdot\frac{NB}{NC}=\left(\frac {DB}{DC}\right)^2}$

Proof 1. If $P$ has barycentric coordinates $(x,y,z)$ w.r.t. $\triangle ABC,$ where $x+y+z=1,$ then prove $\left\{\begin{array}{c}
\frac {DB}z=\frac {DC}y=\frac {BC}{z+y}\ ;\ \frac {PA}{z+y}=\frac {PD}{x}=\frac {AD}{1}\\\\
\frac {EC}x=\frac {EA}z=\frac {AC}{x+z}\ ;\ \frac {PB}{x+z}=\frac {PE}{y}=\frac {BE}{1}\\\\
\frac {FA}y=\frac {FB}x=\frac {AB}{y+x}\ ;\ \frac {PC}{y+x}=\frac {PF}{z}=\frac {CF}1\end{array}\right\|\ .$ Apply lemma $2:$

$\left\{\begin{array}{c}
\frac {KE}{KF}=\frac {MB}{MC}\cdot\frac {PE}{PB}\cdot\frac {PC}{PF}\\\\
\frac {KE}{KF}=\frac {NC}{NB}\cdot\frac {AE}{AC}\cdot\frac {AB}{AF}\end{array}\right\|$ $\implies$ $\left\{\begin{array}{c}
\frac {KE}{KF}=\frac {MB}{MC}\cdot\frac {y}{x+z}\cdot\frac {x+y}{z}\\\\
\frac {KE}{KF}=\frac {NC}{NB}\cdot\frac {z}{x+z}\cdot\frac {x+y}{y}\end{array}\right\|$ $\implies$ $\frac {MB}{MC}\cdot\frac{NB}{NC}=\frac {x+z}{y}\cdot\frac {z}{x+y}\cdot\frac {z}{x+z}\cdot\frac {x+y}{y}=$ $\left(\frac zy\right)^2=$ $\left(\frac {DB}{DC}\right)^2$ $\implies$ $\frac {MB}{MC}\cdot\frac{NB}{NC}=$ $ \left(\frac {DB}{DC}\right)^2.$

Proof 2. $\odot\begin{array}{ccc}
\nearrow & \frac {KE}{KF}=\frac {MB}{MC}\cdot \frac {PE}{PB}\cdot\frac {PC}{PF} & \searrow \\\\
\searrow & \frac {KE}{KF}=\frac {NC}{NB}\cdot\frac {AE}{AC}\cdot\frac {AB}{AF} & \nearrow\end{array}\odot$ $\implies$ $\boxed{\frac {MB}{MC}\cdot\frac {NB}{NC}=\frac {AE}{AC}\cdot\frac {AB}{AF}\cdot\frac {PB}{PE}\cdot\frac {PF}{PC}}\ (1).$ Apply the Menelaus' theorem to $:\ \begin{array}{ccc}
\nearrow & \overline{APD}/\triangle BFC & :\\\\
\searrow & \overline{APD}/\triangle BEC & :\end{array}$

$\begin{array}{cccccc}
\frac {AF}{AB}\cdot\frac {DB}{DC}\cdot\frac {PC}{PF}=1 & \implies & \frac {DB}{DC} & = & \frac {PF}{PC}\cdot\frac {AB}{AF} & \searrow\\\\
\frac {AE}{AC}\cdot\frac {DC}{DB}\cdot\frac {PB}{PE}=1 & \implies & \frac {DB}{DC} & = & \frac {AE}{AC}\cdot \frac {PB}{PE} & \nearrow\end{array}\bigodot \implies $ $\boxed{\left(\frac {DB}{DC}\right)^2=\frac {PF}{PC}\cdot\frac {AB}{AF}\cdot\frac {AE}{AC}\cdot \frac {PB}{PE}}\ (2).$ From $(1)$ and $(2)$ obtain that $\frac {MB}{MC}\cdot\frac{NB}{NC}=\left(\frac {DB}{DC}\right)^2$


Particular case. Let $\triangle ABC$ and an interior $P$ which belongs to the $A$-bisector $[AD$, where $D\in (BC).$ Denote

$\left\{\begin{array}{ccc}
E & \in & BP\cap AC\\\\
F\ & \in & CP\cap AB\end{array}\right|$ and $M\in (BC)$ for which $\left\{\begin{array}{ccc}
K & \in & MP\cap EF\\\\
N\ & \in & AK\cap BC\end{array}\right|\ .$ Prove that $\widehat{DAM}\equiv\widehat{DAN}.$


P2 (Baris Altay). Let convex $ABCD$ be with $M\in (AB),$ $N\in (CD)$ so that $P\in AC\cap BD$ and $P\in (MN).$ Prove that $\boxed{\frac {PM}{PN}=\frac {AM}{AB}\cdot\frac {PB}{PD}+\frac {BM}{BA}\cdot \frac {PA}{PC}}\ (*)\ .$

Proof. Let $R\in AC\cap MD,$ $S\in BD\cap MC.$ Apply Menelaus' theorem to $:\ \left\{\begin{array}{c}
\overline{ARP}/\triangle BDM\ :\ \frac {AM}{AB}\cdot\frac {PB}{PD}\cdot\frac {RD}{RM}=1\implies\frac {AM}{AB}\cdot \frac {PB}{PD}=\frac {RM}{RD}\ (1)\\\\
\overline{BSP}/\triangle ACM\ :\ \frac {BM}{BA}\cdot\frac {PA}{PC}\cdot\frac {SC}{SM}=1\implies\frac {BM}{BA}\cdot \frac {PA}{PC}=\frac {SM}{SC}\ (2)\end{array}\right\|$ and

$\left\{\begin{array}{c}
\overline{CPR}/\triangle DMN\ :\ \frac {CN}{CD}\cdot\frac {RD}{RM}\cdot\frac {PM}{PN}=1\implies\frac {CN}{CD}\cdot \frac {PM}{PN}=\frac {RM}{RD}\ (3)\\\\

\overline{DPS}/\triangle CMN\ :\ \frac {DN}{DC}\cdot\frac {SC}{SM}\cdot\frac {PM}{PN}=1\implies\frac {DN}{DC}\cdot \frac {PM}{PN}=\frac {SM}{SC}\ (4)\end{array}\right\|\ \bigoplus$ $\implies$ $\frac {PM}{PN}\cdot\frac {ND+NC}{DC}=$ $\frac {RM}{RD}+\frac {SM}{SC}\ \stackrel{1\wedge 2}{\implies}\ \frac {PM}{PN}=$ $\frac {AM}{AB}\cdot\frac {PB}{PD}+$ $\frac {BM}{BA}\cdot\frac {PA}{PC}.$



P3. Let $\triangle ABC$ and its interior $P$ with cevian $\triangle DEF,$ where $D\in (BC),$ $E\in (CA)$ and $(AB).$ Let $L\in EF\cap AD.$ Prove that $\frac {PA}{PD}=2\cdot \frac {LA}{LD}$ and $\frac {[EAF]}{[BAC]}=\frac {[EPF]}{[BPC]}.$

Proof. Let $AL=m,$ $LP=n$ and $PD=p.$ Is well known that division $(A,L,P,D)$ is harmonic, i.e. $\frac {PL}{PD}=\frac{AL}{AD}\iff$ $\frac np=\frac m{m+n+p}\iff$ $\boxed{n(m+n+p)=mp}\ (1).$

So $\frac {PA}{PD}=2\cdot \frac {LA}{LD}\iff$ $\frac {m+n}p=2\cdot \frac m{n+p}\iff$ $(m+n)(n+p)=mp\iff$ $n^2+n(m+p)+\cancel{mp}=\cancel 2mp\iff$ $n(m+n+p)=mp,$ i.e. the true relation $(1).$

Apply Menelaus' theorem to $\begin{array}{ccc}
\nearrow & \overline{APD}/\triangle BFC & :\\\\
\searrow & \overline{APD}/\triangle BEC & :\end{array}$ $\begin{array}{cccccc}
\frac {AF}{AB}\cdot\frac {DB}{DC}\cdot\frac {PC}{PF}=1 & \implies & \frac {DB}{DC} & = & \frac {PF}{PC}\cdot\frac {AB}{AF} & \searrow\\\\
\frac {AE}{AC}\cdot\frac {DC}{DB}\cdot\frac {PB}{PE}=1 & \implies & \frac {DB}{DC} & = & \frac {AE}{AC}\cdot \frac {PB}{PE} & \nearrow\end{array}\implies$ $\frac {PF}{PC}\cdot\frac {AB}{AF}=\frac {AE}{AC}\cdot \frac {PB}{PE}\iff$ $\frac {AE\cdot AF}{AB\cdot AC}=\frac {PE\cdot PF}{PB\cdot PC}$

$\iff$ $\frac {[EAF]}{[CAB]}=\frac {[EPF]}{[CPB]}.$ Otherwise. $(A,L,P,D)$ is harmonic $\implies$ $\frac {LA}{LP}=\frac {DA}{DP}\iff$ $\frac {[EAF]}{[EPF]}=\frac {LA}{LP}=\frac {DA}{DP}=\frac {[BAC]}{[BPC]}\implies$ $\frac {[EAF]}{[EPF]}=\frac {[BAC]}{[BPC]}$



P4. Let $\triangle ABC$ and an interior $P.$ Let $\left\{\begin{array}{ccc}
x=[BPC]\ ; & y=[EPF]\ ; & z=[EAF]\\\\
u=[PBF]\ ; &  v=[PCE]\ ; & S=[BAC]\end{array}\right\|,$ where $y\le \min\{x,z\}$ and

$z(\sqrt x-\sqrt y)\ge y\left(\sqrt x+\sqrt y\right).$ Prove that $\boxed{uv=xy\ \wedge\ xz=yS}\ (*)$ and $\boxed{(u+y)(v+y)=z(x-y)}\ (**).$


Proof. $\left\{\begin{array}{ccc}
\frac {FA}{FB}=\frac {[FEA]}{[FEB]} & = & \frac z{u+y}\\\\
\frac {FA}{FB}=\frac {[FCA]}{[FCB]} & = & \frac{v+y+z}{u+x}\end{array}\right\|$ $\implies$ $\frac z{u+y}=\frac {v+y+z}{u+x}=\frac {v+y}{x-y}$ $\implies$ $\boxed{(u+y)(v+y)=z(x-y)}$ and $\left\{\begin{array}{c}
\frac {PB}{PE}=\frac {[PFB]}{[PFE]}=\frac uy\\\\
\frac {PB}{PE}=\frac {[PCB]}{[PCE]}=\frac xv\end{array}\right\|$ $\implies$ $\frac uy=\frac xv$ $\implies$ $\boxed{xy=uv}$.

Example. If $x=7,$ $y=3$ and $z=15,$ then find $\{u,v,S\}.$ Answer$:\ \left\{\begin{array}{ccc}
u+v & = & 10\\\
uv & = & 21\end{array}\right\|$ $\implies \{u,v\}=\{3,7\}\implies S=(x+y)+z+(u+v)=10+15+10=35.$



P5.Given scalene $ \triangle ABC.$ and $ A',$ $ B',$ $ C'$ where internal bisectors of angles $ CAB,$ $ ABC,$ $ BCA$ meet $ BC,$ $ CA,$ $ AB$ respectively. Let $ BC$ meet

perpendicular bisector of $ AA'$ at $ A''.$ Let $ CA$ meet perpendicular bisector of $ BB'$ at $ B'.$ Let $ AB$ meet perpendicular bisector of $ CC'$ at $ C''.$ Prove that $ A''\in B''C''.$


Proof. Let $X\in AA\cap BC.$ Thus, $\left\{\begin{array}{cccccc}
m(\widehat{XAA'}) & = & m(\widehat{XAB})+m(\widehat{BAA'}) & = & C+\frac{A}{2}\\\\
m(\widehat{XA'A}) & = & m(\widehat{A'AC})+m(\widehat{A'CA}) & = & \frac{A}{2}+C\end{array}\right\|$ $\implies$ $\widehat{XAA'}\equiv\widehat{XA'A}$ $\implies$ $\triangle AXA'$ is isosceles. Thus, $X\equiv A''$ a.s.o.

Generalizare (Kostas Vitas). $\triangle ABC$ is given and let $P$ be an arbitrary point inwardly to it, with its cevian $\triangle DEF.$ On $BC$ we

define $D',$ as the harmonic conjugate of $D,$ w.r.t. $B,$ $C$ and similarly we define $E'\in AC$ and $F'\in AB.$ Prove that midpoints of $[DD'],$ $[EE']\,$ $[FF']$ are collinear.


Proof 1. It is easy to define $D',$ $E',$ $F',$ as the intersections of the sidelines $BC,$ $AC,$ $AB$ respectively, from the segment lines $EF,$ $DF,$ $DE,$ as well known.

These points are collinear ( well known and easy to prove ) and now, based on Gauss’s theorem, we conclude that the midpoints of the segments $DD',$ $EE',$ $FF',$ as the

diagonals of the complete quadrilateral $DED'E'FF',$ are collinear and the proof is completed. This problem is coming from the past, as well known.

Proof 2. I"ll use a remarkable property of the harmonic division $(A,B,C,D)$ where $\frac {BA}{BC}=\frac {DA}{DC}\ :$ if $M$ is midpoint of $[BD],$ then $\frac {MA}{MC}=\left(\frac {BA}{BC}\right)^2.$ If denote

midpoints $X,$ $Y,$ $Z$ of $DD',$ $EE',$ $FF'$ respectively, then $\left\{\begin{array}{ccc}
\frac {XB}{XC} & = & \left(\frac {DB}{DC}\right)^2\\\\
\frac {YC}{YA} & = & \left(\frac {EC}{EA}\right)^2\\\\
\frac {ZA}{ZB} & = & \left(\frac {FA}{FB}\right)^2\end{array}\right\|\ \bigodot$ $\implies$ $\frac {XB}{XC}\cdot\frac {YC}{YA}\cdot\frac {ZA}{ZB}=\left(\frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}\right)^2=1\implies$ $Z\in XY.$



P6 (nkht-tk14). Let $AD,$ $BE,$ $CF$ be the inner angled-bisectors of $\triangle ABC,$ where $D\in (BC),$ $E\in (CA)$ and $F\in (AB).$ Denote the incircle $w=\mathbb C(I,r),$ the

circumcircle $\Omega=\mathbb (O,R)$ and the $A$-excircle $w_a=\mathbb C\left(I_a,r_a\right).$ Prove that $:$ the distance $\delta_{EF}(I)=\frac{rR}{OI_a};$ the inequality $ID+IE+ IF\geq 6r.\sqrt{\frac{ 3R}{ 11R + 2r}}.$


Proof 1 (TelvCohl). Let $ \triangle I_aI_bI_c $ be the excentral triangle of $ \triangle ABC $ and let $ M $ be the midpoint of $ I_bI_c. $ Let $ X, $ $ X^* $ be the projection of $ I $ on $ BC, $ $ EF, $ respectively and

let $ T $ be the intersection of $ BC, $ $ EF, $ $ I_bI_c. $ Clearly, $ B, $ $ C, $ $ I_b, $ $ I_c $ lie on a circle with diameter $ I_bI_c $ (center $ M $) and $ IT $ is the polar of $ I_a $ w.r.t. $ \odot (M), $ so $ TI, $ $ TX, $ $ TX^* $ is

perpendicular to $ I_aM, $ $ MO, $ $ OI_a, $ respectively, hence notice $ A, $ $ I, $ $ T, $ $ X, $ $ X^* $ are concyclic we conclude that $\triangle I_aOM \stackrel{-}{\sim} \triangle XIX^* \Longrightarrow \delta = \frac{Rr}{OI_a} = \frac{Rr}{\sqrt{ {R}^2 + 2Rr_a }}.$



P7 (M.O. Sanchez). Let $ABC$ be a triangle with the incenter $I$ and the points $X\in (AB),$ $Y\in (AC)$ so that $I\in (XY)$ and $BXYC$ is cyclically. Prove that $BX+CY=XY.$

Proof. Denote $D\in AI\cap BC,$ $AX=x,$ $AY=y$ i.e. $BX=c-x,$ $CY=b-y.$ Apply the Cristea's relation $:\ \frac {XB}{XA}\cdot DC+\frac {YC}{YA}\cdot DB=\frac {ID}{IA}\cdot BC\iff$

$\frac {c-x}x\cdot \frac {\cancel ab}{\cancel{b+c}}+\frac {b-y}y\cdot \frac {\cancel ac}{\cancel{b+c}}=\frac {\cancel a}{\cancel{b+c}}\cdot a\iff$ $b\cdot\left(\frac cx-1\right)+c\cdot\left(\frac by-1\right)=a\iff$ $bc\cdot\left(\frac 1x+\frac 1y\right)-(b+c)=a\iff$ $\boxed{\frac 1x+\frac 1y=\frac {a+b+c}{bc}}\ (*)\ .$ Since $BXYC$

is cyclic obtain that $\triangle XAY\sim\triangle CAB\iff$ $\frac {XA}{CA}=\frac {AY}{AB}=\frac {XY}{CB}$ $\iff$ $\frac xb=\frac yc=\frac {x+y}{b+c}=$ $\frac {XY}a=k\ \odot\begin{array}{ccc}
\nearrow & x=kb & \searrow\\\\
\searrow & y=kc & \nearrow\end{array}\odot\ \stackrel{(*)}{\implies}\ \frac 1k\cdot\left(\frac 1b+\frac 1c\right)=$ $\frac {a+b+c}{bc}\implies$

$\boxed{k=\frac {b+c}{a+b+c}}\ (1).$ Therefore, $XY=ak\ \stackrel{(1)}{\implies}\ \boxed{XY=\frac {a(b+c)}{a+b+c}}\ (2)$ and $BX+CY=(c-x)+(b-y)=$ $(b+c)-(x+y)=(b+c)(1-k)=$

$(b+c)\left(1-\frac {b+c}{a+b+c}\right)$ $\implies$ $\boxed{BX+CY=\frac {a(b+c)}{a+b+c}}\ (3).$ In conclusion, from the relations $(2)$ and $(3)$ obtain that $BX+CY=XY.$


Extension. Let $\triangle ABC$ and its interior point $P.$ Consider $X\in (AB),$ $Y\in (AC)$ so that $P\in (XY)$ and $BXYC$ is cyclically. Prove that $\boxed{\frac {BX+CY}{b+c}+\frac {XY}a=1}\ .$

Proof. Suppose w.l.o.g. that $P$ has the barycentric coordinates $(\alpha ,\beta ,\gamma )$ where $\alpha +\beta +\gamma =1$ and denote $D\in AP\cap BC$ where $\frac {DB}{\gamma}=\frac {DC}{\beta}=\frac a{1-\alpha}$ and $\frac {PD}{PA}=\frac {\alpha}{1-\alpha}.$

Apply the Cristea's relation $:\ \frac {XB}{XA}\cdot DC+\frac {YC}{YA}\cdot DB=\frac {PD}{PA}\cdot BC\iff$ $\frac {c-x}x\cdot \frac {\cancel a\beta}{\cancel{1-\alpha}}+\frac {b-y}y\cdot \frac {\cancel a\gamma}{\cancel{1-\alpha}}=\frac {\alpha}{\cancel{1-\alpha}}\cdot \cancel a\iff$ $\beta\cdot\left(\frac cx-1\right)+\gamma\cdot\left(\frac by-1\right)=\alpha\iff$

$\boxed{\frac {\beta c}x+\frac {\gamma b}y=1}\ (*).$ Since $BXYC$ is cyclic obtain $\triangle XAY\sim\triangle CAB\iff$ $\frac {XA}{CA}=\frac {AY}{AB}=\frac {XY}{CB}$ $\iff$ $\frac xb=\frac yc=\frac {x+y}{b+c}=$ $\frac {XY}a=k\ \odot\begin{array}{ccc}
\nearrow & x=kb & \searrow\\\\
\searrow & y=kc & \nearrow\end{array}\odot\ \stackrel{(*)}{\implies}$

$\frac {\beta c}{bk}+\frac {\gamma b}{ck}=1\iff$ $\frac {\beta c}{b}+\frac {\gamma b}{c}=k\iff$ $\boxed{k=\frac {\beta c^2+\gamma b^2}{bc}}\ (1).$ Thus, $XY=ak\implies$ $\boxed{\frac {a\left(\beta c^2+\gamma b^2\right)}{bc}}\ (2)$ and $BX+CY=(b+c)-(x+y)=$ $(b+c)(1-k)\ \stackrel{(1)}{=}$

$(b+c)\cdot \left(1-\frac {\beta c^2+\gamma b^2}{bc}\right)\implies$ $\boxed{BX+CY=\frac {(b+c)\left(bc-\beta c^2-\gamma b^2\right)}{bc}}\ (3).$ In conclusion, from the relations $(2)$ and $(3)$ obtain that $\frac {BX+CY}{b+c}+\frac {XY}a=1.$

Remark. $XY+AX+AY=k(a+b+c),$ where $k=\frac {\beta c^2+\gamma b^2}{bc}.$



P8 (Poncelet's porism). Consider two circles $\Gamma=\odot(O,R),\omega=\odot(I,r)$ satisfying $IO^2=R(R-2r)$.

Then starting from any $A$ on $\Gamma$, we can draw a triangle including $A$ which is inscribed in $\Gamma$ and circumscribes $\omega$.


Proof 1. Invert in $\omega$. Then $\Gamma$ inverts to $\Gamma^*$, with radius $R'=\tfrac12r$. Choose a point $A^*$ on $\Gamma^*$, and construct two circles through $I$ and $A^*$ with radius $\tfrac12r$. Both these circles

touch $\omega$ at $Y,Z$, and $\triangle IA^*Y\cong\triangle IA^*Z$, so $A^*$ is the midpoint of $\overline{YZ}$. Let $(IA^*Z),(IA^*Y)$ meet $\omega$ again at $B^*,C^*$, and let $X=B^*Z\cap C^*Y$. Note that the

circle on diameter $\overline{IX}$ passes through $B^*,C^*$. Easily $\triangle XYZ\sim\triangle A^*B^*C^*$, so $(IB^*C^*)$ has radius $\tfrac12r$ and is tangent to $\omega$. Inverting back, the result follows.



P9. Let an $A$-right $\triangle ABC$ with the midpoint $M$ of $[AB].$ Prove that $\sin\phi\le \frac 13$ where $\phi =m\left(\widehat{BCM}\right) .$

Proof 1. Let$:\ m\left(\widehat{BCM}\right)=\phi$ and $m\left(\widehat{ACM}\right)=\psi ,$ where $\phi +\psi =C\ ;$ the symetric $D$ of $M$ w.r.t. $A\ ;\ \{E,F\}\subset BC$ so that $DE\perp BC$ and $MF\perp BC.$ Thus,

$BM=MA=AD\ ,\ DE=3\cdot MF$ and $CD=CM$ $\implies$ $\sin\phi =\frac {MF}{MC}$ and $\sin (C+\psi )=$ $\frac {DE}{DC}=$ $3\cdot\frac {MF}{MC}=$ $3\sin\phi$ $\implies$ $\sin\phi=\frac 13\cdot\sin (C+\psi )\le$ $\frac 13\ .$

Proof 2 (trigonometric). Denote $\left\{\begin{array}{ccc}
m\left(\widehat{BCM}\right) & = & \phi\\\\
m\left(\widehat{ACM}\right) & = & \psi\end{array}\right\|$ where $\phi +\psi =C.$ Thus, $MA=MB\iff$ $b\sin \psi =a\sin\phi\iff$ $\sin B\sin \psi =\sin\phi\iff$

$\cos C\sin\psi =\sin\phi\iff$ $\sin (C+\psi )-\sin (C-\psi )=2\sin\phi\iff$ $\sin (C+\psi )-\sin\phi =2\sin\phi \iff$ $3\sin\phi =\sin (C+\psi )\le 1\implies$ $\sin\phi\le \frac 13.$


Extension. Let $\triangle ABC$ with $A\le 90^{\circ}$ and the midpoint $M$ of $[AB].$ Prove that $\boxed{\cot\widehat{BCM}\ge \frac {2\sqrt 2-3\cos A}{\sin A}}\ .$

Proof. The theorem of Sines to $\triangle AMC:\ \frac {AM}{\sin\widehat{ACM}}=\frac {AC}{\sin\widehat{AMC}}\ \stackrel{\phi=m\left(\widehat{BCM}\right)}{\iff}\ \frac c{2\sin (C-\phi )}=\frac b{\sin (B+\phi )}\iff$ $\sin C\sin (B+\phi )=2\sin B\sin (C-\phi )\iff$

$\tan C(\tan B+\tan\phi )=2\tan B(\tan C-\tan \phi )\iff$ $\tan\phi =\frac {\tan B\tan C}{2\tan B+\tan C}\iff$ $\cot\phi =\frac 2{\tan C}+\frac 1{\tan B}.$ Apply identity $\boxed{4S=\left(b^2+c^2-a^2\right)\cdot\tan A}\implies$

$\cot\phi=\frac {2\left(a^2+b^2-c^2\right)+\left(a^2+c^2-b^2\right)}{4S}=$ $\frac {3a^2+b^2-c^2}{4S}=$ $\frac {3\left(b^2+c^2-2bc\cdot\cos A\right)+b^2-c^2}{2bc\cdot\sin A}=$ $\frac {2b^2+c^2-3bc\cdot\cos A}{bc\cdot\sin A}=$ $\left(\frac {2b}c+\frac cb\right)\cdot\frac 1{\sin A}-3\cot A\ge$

$2\sqrt{\frac {2b}c\cdot\frac cb}\cdot\frac 1{\sin A}-3\cot A=$ $\frac {2\sqrt 2-3\cos A}{\sin A}\implies$ $\boxed{\cot \phi\ge\frac {2\sqrt 2-3\cos A}{\sin A}}\ .$ We have the equality if and only if $\boxed{\frac b1=\frac c{\sqrt 2}=\frac a{\sqrt {3-2\sqrt 2\cdot\cos A}}}\ .$

Remark. Study the particular cases $A\in\left\{\frac {\pi}2,\frac {\pi}4\right\}\implies$ $\odot\begin{array}{ccccc}
\nearrow & A=\frac {\pi}2 & \implies & \phi \le \arcsin\frac 13 & \searrow\\\\
\searrow & A=\frac {\pi}4 & \implies & \phi \le \frac {\pi}4 & \nearrow\end{array}\odot$



P10. Prove that $\triangle\, ABC\ \ \implies\ \ \boxed{\ \frac {h_a}{l_a}+\frac {h_b}{l_b}+\frac {h_c}{l_c}\ \ge\ 1+\sqrt {\frac {s^2+r^2+2Rr}{2R^2}}\ }$
$\boxed{\boxed{\begin{array}{lllll}\\\ 
 & \blacktriangleleft\text{\underline{Preliminary.}}\blacktriangleright\\\\
1\blacktriangleright & \prod\, \cos\frac {B-C}2=\frac {s^2+r^2+2Rr}{8R^2} \\ \\ 
\text{\underline{Proof.}} & \prod\, \cos\frac {B-C}2=\prod\, \frac {(b+c)}a\sin\frac A2=\frac {(a+b+c)(ab+bc+ca)-abc}{abc}\prod\, \sin\frac A2 \implies \\ \\ 
\ & \prod\, \cos\frac {B-C}2=\frac {2s\cdot (s^2+r^2+4Rr)-4Rrs}{4Rrs}\cdot\frac r{4R}=\frac {s^2+r^2+2Rr}{8R^2} \\ \\ \hline\hline \\\ 
2\blacktriangleright & \sum\, \frac 1{\cos\frac {B-C}2}=\frac {4R^2}{s^2+r^2+2Rr}\cdot\left[\left(\sum\, \cos\frac {B-C}2\right)^2-1\right]-1 \\ \\ 
\text{\underline{Proof.}} & \sum\, \frac 1{\cos^2\frac A2}=\frac {s^2+(4R+r)^2}{s^2}\ ;\ \sum\, \tan\frac A2=\frac {4R+r}s\ ;\ \sum\, \sin^2\frac A2=\frac {2R-r}{2R}\ (\ast) \\ \\ 
\ & \implies\left(\sum\, \cos\frac {B-C}2\right)^2=\sum\, \cos^2\frac {B-C}2+2\sum\, \cos\frac {A-B}2\cos\frac {A-C}2= \\ \\ 
\ & =\sum\, \left(\frac s{2R}\cdot\frac 1{\cos\frac A2}-\sin\frac A2\right)^2+2\prod\, \cos\frac {B-C}2\cdot\sum\, \frac 1{\cos\frac {B-C}2}\stackrel{(\ast)\wedge (1)}{=} \\ \\ 
\ & =\frac {s^2}{4R^2}\cdot\frac {s^2+(4R+r)^2}{s^2}-\frac sR\cdot\frac {4R+r}s+\frac {2R-r}{2R}+\frac {s^2+r^2+2Rr}{4R^2}\cdot\sum\, \frac 1{\cos\frac {B-C}2}= \\ \\ 
\ & =1+\frac {s^2+r^2+2Rr}{4R^2}+\frac {s^2+r^2+2Rr}{4R^2}\cdot\sum\, \frac 1{\cos\frac {B-C}2}\ \ldots\ \implies (2) \\\ 
\end{array}}\ \boxed{\begin{array}{cccc}
\\\ 
& \blacktriangleleft\text{\underline{Proof of the proposed problem.}}\blacktriangleright\\\\
\ & \left(\cos\frac {B-C}2-1\right)\left(\cos\frac {C-A}2-1\right)\left(\cos\frac {A-B}2-1\right)\, \le\, 0 \\ \\ 
\iff & 1+\sum\, \cos\frac {A-B}2\cos\frac {A-C}2\, \ge\, \sum\, \cos\frac {B-C}2+\prod\, \cos\frac {B-C}2 \\ \\ 
\iff & 1+\prod\, \cos\frac {B-C}2\cdot\sum\, \frac 1{\cos\frac {B-C}2}\, \ge\, \sum\, \cos\frac {B-C}2+\prod\, \cos\frac {B-C}2 \\ \\ 
\stackrel{(1)}{\iff} & 1+\frac {s^2+r^2+2Rr}{8R^2}\cdot\left(\sum\, \frac 1{\cos\frac {B-C}2}-1\right)\, \ge\, \sum\, \cos\frac {B-C}2 \\ \\ 
\stackrel{(2)}{\iff} & 1+\frac {s^2+r^2+2Rr}{8R^2}\cdot\left\{\frac {4R^2}{s^2+r^2+2Rr}\cdot\left[\left(\sum\, \cos\frac {B-C}2\right)^2-1\right]-2\right\}\, \ge\, \sum\, \cos\frac {B-C}2 \\ \\ 
\iff & 1+\frac 12\cdot\left[\left(\sum\, \cos\frac {B-C}2\right)^2-1\right]-\sum\, \cos\frac {B-C}2\, \ge\, \frac {s^2+r^2+2Rr}{4R^2} \\ \\ 
\iff & 2+\left(\sum\, \cos\frac {B-C}2\right)^2-1-2\sum\, \cos\frac {B-C}2\, \ge\, \frac {s^2+r^2+2Rr}{2R^2} \\ \\ 
\iff & \left(\sum\, \cos\frac {B-C}2-1\right)^2\, \ge\, \frac {s^2+r^2+2Rr}{2R^2} \\ \\ 
\iff & \sum\, \cos\frac {B-C}2\, \ge\, 1+\sqrt {\frac {s^2+r^2+2Rr}{2R^2}} \\ \\ 
\iff & \boxed{\ \frac {h_a}{l_a}+\frac {h_b}{l_b}+\frac {h_c}{l_c}\ \ge\ 1+\sqrt {\frac {s^2+r^2+2Rr}{2R^2}}\ } \\\  
\end{array}}}$

Remark. $\sum{\cos{\frac{B-C}{2}}}\geq 1+\sqrt{\frac{s^2+2Rr+r^2}{2R^2}}\iff$ $\frac {h_a}{l_a}+\frac {h_b}{l_b}+\frac {h_c}{l_c}\ \ge\ 1+\sqrt {\frac {s^2+r^2+2Rr}{2R^2}}\ .$ Here is a nice form of this inequality: if the internal angle bisectors of $A,B,C$

intersect the circumcircle of $\triangle ABC$ again at $X,Y,Z$ respectively, then it holds that $\boxed{AX+BY+CZ\ge 2R+\sqrt{\frac{2}{R}\cdot AX\cdot BY\cdot CZ}}$ because $AX=2R\cdot\cos\frac{B-C}{2}$ a.s.o.



P11. Let $\triangle ABC$ with $b\ne c$, the incenter $I$, the centroid $G$, $P\in IG\cap BC$ and $m\left(\widehat {GPB}\right)=\phi $.

Suppose w.l.o.g. $M\in (PS)$. Prove that $\left|(b-c)(b+c-3a)\right|\sin\phi =2r\left|(b+c-2a)\cos\phi \right|$.


Proof. Suppose w.l.o.g. $b\ne c$. Denote $:\ T\in BC$ so that $IT\perp BC$ and $IT=r\ ;\ S\in AI\cap BC$ where $\frac {IS}{IA}=\frac a{b+c}\ ;$ the midpoint $M$ of $[BC]$. Thus,

$SM=|BM-BS|=\left|\frac a2-\frac {ac}{b+c}\right|=\frac {a|b-c|}{2(b+c)}\implies$ $\boxed{SM=\frac {a|b-c|}{2(b+c)}}\ (*)$. Apply the Menelaus' theorem to the transversal $\overline{IGP}/\triangle ASM\ :$

$\frac {PM}{PS}\cdot\frac {IS}{IA}\cdot\frac {GA}{GM}=1\iff$ $\frac {PM}{PS}\cdot\frac a{b+c}\cdot 2=1\iff$ $\frac {PM}{b+c}=\frac {PS}{2a}=$ $\frac {SM}{|(b+c)-2a|}\ \stackrel{(*)}{=}\ \frac {\frac {a|b-c|}{2(b+c)}}{|(b+c)-2a|}\implies$ $\boxed{PM=\frac {a|b-c|}{2|b+c-2a|}}\ (1)$.

Thus, $TP=MP+MT\ \stackrel{(1)}{=}$ $\frac {a|b-c|}{2|b+c-2a|}+\frac {|b-c|}2=\frac {|b-c|}2\cdot \frac {|b+c-3a|}{|b+c-2a|}$. In conclusion, $\left|\tan\phi\right|=\frac {IT}{TP}\implies$ $\left|\tan\phi\right|=2r\cdot \left|\frac {b+c-2a}{(b-c)(b+c-3a)}\right|\ .$



P12. Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ which touches it at $D\in BC,$ $E\in CA$ and $F\in AB.$ Let $\left\{\begin{array}{ccc}
m\left(\widehat{BED}\right) & = & x\\\
m\left(\widehat{CFD}\right) & = & y\end{array}\right\|\ .$ Prove that $\boxed{\cot x+\cot y=\frac {3a}s\cdot\cot\frac A2}\ .$

Proof. Are wellknown $:\ r=(s-a)\tan\frac A2\ ;\ (s-a)(s-b)(s-c)=sr^2\ ;\ \left\{\begin{array}{ccccc}
AE & = & AF & = & s-a\\\\
BD & = & BF & = & s-b\\\\
CD & = & CE & = & s-c\end{array}\right\|\ ;\ \left\{\begin{array}{ccccc}
\cot \frac B2 & = & \frac {s-b}r & = & \frac {s-b}{s-a}\cdot\cot\frac A2\\\\
\cot\frac C2 & = & \frac {s-c}r & = & \frac {s-c}{s-a}\cdot\cot\frac A2\end{array}\right\|\ .$

$\blacktriangleright\ m\left(\widehat{CED}\right)=90^{\circ}-\frac C2$ and $\frac {BC}{BD}=\frac {EC}{ED}\cdot\frac {\sin\widehat{BEC}}{\sin\widehat{BED}}\iff$ $\frac {2a}{s-b}=\frac {\cos\left(\frac C2-x\right)}{\sin\frac C2\sin x}=\cot \frac C2\cot x+1\iff$ $\frac {2a}{s-b}=\frac {s-c}r\cdot\cot x+1\iff$ $\boxed{\cot x=\frac {r(2a+b-s)}{(s-b)(s-c)}}\ (1)\ .$

$\blacktriangleright\ m\left(\widehat{CFD}\right)=90^{\circ}-\frac B2$ and $\frac {CB}{CD}=\frac {FB}{FD}\cdot\frac {\sin\widehat{CFB}}{\sin\widehat{CFD}}\iff$ $\frac {2a}{s-c}=\frac {\cos \left(\frac B2-x\right)}{\sin\frac B2\sin y}=\cot\frac B2\cot y+1\iff$ $\frac {2a}{s-c}=\frac {s-b}r\cdot\cot y+1\iff$ $\boxed{\cot y=\frac {r(2a+c-s)}{(s-c)(s-b)}}\ (2)\ .$

From the sum of the relations $(1)$ and $(2)$ get $\cot x+\cot y=$ $\frac {r(4a+b+c-2s)}{(s-b)(s-c)}=$ $\frac {3ar}{(s-b)(s-c)}=$ $\frac {3ar(s-a)}{(s-a)(s-b)(s-c)}=$ $\frac {3ar(s-a)}{sr^2}=\frac {3a}s\cdot\cot\frac A2\implies$ $\cot x+\cot y=\frac {3a}s\cdot\cot\frac A2\ .$



P13. Let $ABC$ be a triangle with $C>B\ ,$ $A<90^{\circ}$ and $w$ is its circumcircle. Construct the point $P\in BC$ so that $AP\perp AC$ and

the tangents $PQ\ ,$ $PL$ to $w$ , where $\{Q,L\}\subset w\ .$ Denote the midpoint $M$ of the side $[AB]\ .$ Prove that $M\in QL\iff A=B\ .$


Proof. Denote $R\in QL\cap AP\ ,$ $N\in QL\cap PC$ and $\{S,A\}=\{P,A\}\cap w\ .$ Observe that $[SC]$ is a diameter of $w$ and $\left\{\begin{array}{ccc}
m\left(\widehat{PAB}\right)=90^{\circ}-A & ; & m\left(\widehat{ABS}\right)=90^{\circ}-B\\\\
m\left(\widehat{ASB}\right)=180^{\circ}-C & ; & m\left(\widehat{APC}\right)=90^{\circ}-C\end{array}\right\|\ .$ Therefore,

$\frac {PB}{PC}=\frac {AB\cdot \sin\widehat{PAB}}{AC\cdot \sin\widehat{PAC}}=\frac {c\cdot \cos A}b\implies$ $\frac {PB}{c\cdot\cos A}=\frac {PC}b=\frac a{b-c\cdot \cos A}=\frac a{a\cdot\cos C}=\frac 1{\cos C}\implies$ $\left\{\begin{array}{ccc}
PB & = & \frac {c\cdot\cos A}{\cos C}\\\\
PC & = & \frac b{\cos C}\end{array}\right\|\ (*)\ .$ Remark $PA=PC\cdot \sin C\ \stackrel{(*)}{\implies}\ \boxed{PA=b\tan C}\ (1)\
 .$

$\blacktriangleright$ The line $QL$ is the polar of $P$ w.r.t. the circle $w\implies$ $N$ is the harmonic conjugate of $P$ w.r.t. $[BC]\implies$ $\frac {NB}{NC}=\frac {PB}{PC}=\frac {c\cdot \cos A}b\implies$ $\frac {NB}{c\cdot \cos A}=\frac {NC}b=\frac a{b+c\cdot \cos A}\implies$

$\boxed{NB=\frac {ac\cdot\cos A}{b+c\cdot \cos A}}\ (2)\ \implies$ $NP=PB+BN\ \stackrel{*\wedge 2}{=}\ \frac {c\cdot\cos A}{\cos C}+\frac {ac\cdot \cos A}{b+c\cdot \cos A}=$ $\frac{c\cdot \cos A}{\cos C}\cdot\frac {b+c\cdot\cos A+a\cdot\cos C}{b+c\cdot \cos A}=$ $\frac {2bc\cos A}{\cos C(b+c\cdot\cos A)}\implies$

$\boxed{NP=\frac {2bc\cdot\cos A}{\cos C(b+c\cdot\cos A)}}\ (3)\ .$ In conclusion, $\frac {NB}{NP}\ \stackrel{2\wedge 3}{=}\ \frac {a\cancel c\cdot \cancel{\cos A}}{\cancel{b+c\cdot \cos A}}\cdot\frac {\cos C(\cancel{b+c\cdot\cos A})}{2b\cancel c\cdot\cancel{\cos A}}=\frac {a\cdot \cos C}{2b}\implies$ $\boxed{\frac {NB}{NP}=\frac {a\cdot \cos C}{2b}}\ (4)\ .$

$\blacktriangleright\ \frac {SA}{SP}=\frac {BA\cdot \sin\widehat{SBA}}{BP\cdot\sin\widehat{SBP}}\ \stackrel{(*)}{=}\ \frac {\cancel c\cdot\cos C}{\cancel c\cdot \cos A}\cdot\frac {\cos B}1=$ $\frac {\cos B\cos C}{\cos A}\implies\frac {SA}{SP}=\frac {\cos B\cos C}{\cos A}\implies$ $\frac {SA}{\cos B\cos C}=\frac {SP}{\cos A}=\frac {SP}{-\cos (B+C)}=$ $\frac {PA}{\sin B\sin C}\ \stackrel{(1)}{=}$ $\frac {b\sin C}{\cos C\sin B\sin C}=$

$\frac b{\sin B\cos C}\implies$ $\frac {SA}{\cos B\cos C}=\frac {SP}{\cos A}=\frac {b}{\cos C\sin B}\implies$ $\boxed{SA=\frac {c\cdot \cos B}{\sin C}}\ (5)$ and $SP=\frac {b\cdot \cos A}{\sin B\sin C}=\frac {c\cdot \cos A}{\sin C\cos C}\implies$ $\boxed{SP=\frac {c\cdot \cos A}{\sin C\cos C}}\ (6)\ .$ $QL$ is the polar of $P$ w.r.t. $w\implies$

$R$ is the harmonic conjugate of $P$ w.r.t. $[AS]\implies$ $\frac {RA}{RS}=\frac {PA}{PS}\ \stackrel{1\wedge 6}{=}\ \frac {b\sin C}{\cancel{\cos C}}\cdot\frac {\sin C\cancel{\cos C}}{c\cdot\cos A}=$ $\frac {\cancel c\sin B\sin C}{\cancel c\cdot\cos A}=$ $\frac {\sin B\sin C}{\cos A}\implies$ $\frac {RA}{\sin B\sin C}=$ $\frac {RS}{\cos A}=$ $\frac {SA}{\sin B \sin C-\cos (B+C)}=$

$\frac {SA}{2\sin B\sin C-\cos B\cos C}\implies$ $RA\ \stackrel{(5)}{=}\ \frac {\sin B\cancel{\sin C}}{2\sin B\sin C-\cos B\cos C}\cdot\frac {c\cdot \cos B}{\cancel{\sin C}}=\frac {c\sin B\cos B}{2\sin B\sin C-\cos B\cos C}\implies$ $\boxed{RA=\frac {c\sin B\cos B}{2\sin B\sin C-\cos B\cos C}}
 (7)\ .$ In conclusion,

$\frac {RP}{RA}=\frac {PA-RA}{RA}=\frac {PA}{RA}-1=\frac {b\sin C}{\cos C}\cdot \frac {2\sin B\sin C-\cos B\cos C}{c\cdot \sin B\cos B}-1=$ $\frac {\cancel c\cdot\cancel{\sin B}(2\sin B\sin C-\cos B\cos C)}{\cos C\cdot \cancel c\cdot \cancel{\sin B}\cos B}-1=$ $\frac {2\sin B\sin C-\cos B\cos C}{\cos C\cos B}-1=$ $2(\tan B\tan C-1)=$

$\frac {-2\cos (B+C)}{\cos B\cos C}=\frac {2\cos A}{\cos B\cos C}\implies$ $\frac {RP}{RA}=\frac {2\cos A}{\cos B\cos C}\implies$ $\boxed{\frac {RP}{RA}=\frac {2\cos A}{\cos B\cos C}}\ (8)\ .$ Apply Menelaus' theorem to $\overline{NMR}$ over $\triangle ABP\ :$ $M\in QL\iff$ $\frac {NB}{NP}\cdot\frac {RP}{RA}\cdot\frac {\cancel{MA}}{\cancel{MB}}=1\ \stackrel{4\wedge 8}{\iff}$

$\frac {a\cdot \cancel{\cos C}}{\cancel 2b}\cdot \frac {\cancel 2\cos A}{\cos B\cancel{\cos C}}=1\iff$ $\frac {2\sin A\cos A}{2\sin B\cos B}=1\iff$ $\frac {\sin 2A}{\sin 2B}=1\iff$ $2A=2B\ \vee\ \cancel{2(A+B)=\pi}\iff$ $2A=2B\iff$ $a=b\ .$ In conclusion, $\boxed{M\in QL\iff A=B}\ .$

Remark. Apply Menelaus' theorem to $\overline{CMS}$ over $\triangle ABP\ :\ M\in CS\iff$ $\frac {CB}{CP}\cdot\frac {SP}{SA}\cdot\frac {\cancel{MA}}{\cancel{MB}}=1\iff \frac {a\cdot\cancel{\cos C}}b\cdot\frac {\cancel{\sin C}}{\cancel c\cdot \cos B}\cdot\frac {\cancel c\cdot \cos A}{\cancel{\sin C}\cancel{\cos C}}=1\iff$ $a\cdot\cos A=b\cdot\cos B\iff A=B$



P14 (M. O. Sanchez). Let $\triangle ABC$ with $AB=1$ and the points ${M,N}$ so that $\left\{\begin{array}{ccc}
B\in (MC) & ; & MB=b\\\\
C\in (BN) & ; & CN=c\end{array}\right\|$ and $m\left(\widehat{MAN}\right)=150^{\circ}\ .$ Prove that there is the relation $\boxed{2+b+c=bc}\ (*)\ .$

Proof. Thus, $S=[ABC]\ \stackrel{AB=1}{\implies}\  S=\frac {\sqrt 3}4$ and $\left\{\begin{array}{ccc}
AM=u & ; & m\left(\widehat{BAM}\right)=x\\\\
AN=v & ; & m\left(\widehat{CAN}\right)=y\end{array}\right\|\ ,$ where $x+y=90^{\circ}\iff \boxed{\tan x\tan y=1}\ (1)\ .$ Apply the generalized Pythagoras' theorem to $:$

$\left\{\begin{array}{ccc}
\triangle ABM\ : & u^2=b^2+b+1\\\\
\triangle ACN\ : & v^2=c^2+c+1\end{array}\right\|\ (2)\ .$ Observe that $\frac {S_1}b=\frac {S_2}c=S=\frac {\sqrt 3}4=\sqrt {\frac {S_1S_2}{bc}}\implies$ $\boxed{S_1S_2=\frac {3bc}{16}}\ (3)\ .$ I"ll use the identity $\boxed{4S=\left(b^2+c^2-a^2\right)\tan A}$ for any $\triangle ABC\ :$

$\left\{\begin{array}{cccc}
\triangle ABM : & 4S_1=\left(u^2+1-b^2\right)\tan x & = & (b+2)\tan x \\\\
\triangle ACN \ : & 4S_2=\left(v^2+1-c^2\right)\tan y & = & (c+2)\tan y\end{array}\right\|$ $\bigodot\ \stackrel {1\wedge 3}{\implies}\ (b+2)(c+2)=3bc$ $\implies 4+2(b+c)=2bc\iff$ $\boxed{2+b+c=bc}\iff (b-1)(c-1)=3\ .$

Particular case $:\ c=2b\implies 2+b+2b=b\cdot 2b\implies$ $2b^2-3b-2=0\implies (b-2)(2b+1)=0\implies b=2\implies MB=2\cdot AB\implies \boxed{AB=\frac b2=\frac c4}\ .$



P15 (Carlos Hugo Olivera DIAZ). Let an acute $\triangle ABC$ with $c<b\ .$ Denote $:$ the midpoint $D$ of $[BC]$ and the projection

$P$ of $A$ on $BC\ ;$ the excenters $I_b\ ,$ $I_c\ ;\ M\in DI_c\cap AP$ and $N\in DI_b\cap AP\ .$ Prove that $\boxed{MN=(b-c)\cdot\cot \frac A2}\ .$


Proof. Let $\{X,Y\}\subset I_cX\perp BC$ and $I_bY\perp BC\ .$ Thus, $\left\{\begin{array}{ccccccc}
PM\parallel I_cX & \implies & \frac {PM}{I_cX}=\frac {DP}{DX} & \iff & \frac {PM}{r_c}=\frac {2\cdot \frac {b^2-c^2}{2a}}{b+c}=\frac {b-c}a & \implies & PM=\frac {r_c(b-c)}a\\\\
PN\parallel I_bY & \implies & \frac {PN}{I_bY}=\frac {DP}{DY} & \iff & \frac {PN}{r_b}=\frac {2\cdot \frac {b^2-c^2}{2a}}{b+c}=\frac {b-c}a & \implies & PN=\frac {r_b(b-c)}a\end{array}\right\|\implies$ $\frac {PM}{r_c}=$ $\frac {PN}{r_b}=$ $\frac {b-c}a=$

$\frac {MN}{r_c+r_b}\implies$ $MN=\frac {(b-c)\left(r_c+r_b\right)}a=$ $\frac {b-c}a\cdot\left(\frac S{s-c}+\frac S{s-b}\right)=$ $\frac {(b-c)S}{(s-b)(s-c)}=$ $\frac {sr(b-c)(s-a)}{(s-a)(s-b)(s-c)}=$ $\frac {\cancel{sr}(b-c)(s-a)}{\cancel sr\cancel{^2}}=$ $(b-c)\cdot \frac {s-a}{r}\implies$ $MN=(b-c)\cdot\cot\frac A2\ .$

Particular case $:\ A=90^{\circ}\ .$ In this case $r_b=s-c\ ,\ r_c=s-b\ ,\ \cot A2=1\implies$ $\boxed{MN=r_b-r_c}\implies MN=(s-c)-(s-b)=b-c\ .$
This post has been edited 495 times. Last edited by Virgil Nicula, Mar 1, 2019, 1:45 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a