250. An application of the Euler's relation.

by Virgil Nicula, Mar 10, 2011, 12:17 PM

PP. Prove that for any acute or right-angled triangle $ABC$ exists the relation $\frac{m_a}{h_a}+\frac{m_b}{h_b}+\frac{m_c}{h_c} \le 1+\frac{R}{r}$ .

Proof. Suppose that $\triangle ABC$ is acute or right-angled. Denote its circumcircle $w=C(O,R)$ and the midpoints $M$ , $N$ , $P$ of the sides $[BC]$ , $[CA]$ , $[AB]$ respectively.

Thus, $m_a\le R+OM$ , $m_b\le R+ON$ , $m_c\le R+OP$ . I"ll use the well-known relations $\left\|\begin{array}{c}
OM+ON+OP=R+r\ (\mathrm{\underline{Euler's\ relation}})\\\\
a\cdot OM+b\cdot ON+c\cdot OP=2S\end{array}\right\|$ $\implies$ $\sum\frac {m_a}{h_a}=$ $\sum\frac {am_a}{ah_a}=$

$\sum\frac {am_a}{2S}\le$ $\frac {1}{2S}\cdot \sum a(R+OM)=$ $\frac {2sR+2S}{2S}=\frac Rr+1$ $\implies$ $\sum\frac {m_a}{h_a}\le 1+\frac Rr$ , where $2s=a+b+c$ . Our inequality is equivalent with $\frac {am_a+bm_b+cm_c}{a+b+c}\ \le\ R+r$ .

Since $\min\left\{m_a,m_b,m_c\right\}\le \frac {am_a+bm_b+cm_c}{a+b+c}$ obtain $\min\left\{m_a,m_b,m_c\right\}\ \le \ R+r$ . Observe that $\sum OM=R\sum\cos A=R+r\iff$ $\boxed{\sum \cos A=1+\frac rR}$ .

Remark. $\cos A+(\cos B+\cos C)=\left(1-2\sin^2\frac A2\right)+2\sin\frac A2\cos\frac {B-C}{2}=$ $1+2\sin\frac A2\left(\cos\frac {B-C}2-\cos\frac {B+C}2\right)=$ $1+4\sin\frac A2\sin\frac B2\sin\frac C2=$

$1+4\sqrt{\frac {(s-b)(s-c)}{bc}\cdot\frac {(s-c)(c-a)}{ac}\cdot\frac {(s-a)(s-b)}{ab}}=$ $1+\frac {4(s-a)(s-b)(s-c)}{abc}=$ $1+\frac {4sr^2}{4Rsr}=1+\frac rR$ . Now I"ll prove the Euler's relation.

Apply the Ptolemy's relation in $:\ \left\{\begin{array}{ccc}
\mathrm{APON} & : & b\cdot OP+c\cdot ON=aR\\\\
\mathrm{BMOP} & : & c\cdot OM+a\cdot OP=bR\\\\
\mathrm{CNOM} & : & a\cdot ON+b\cdot OM=cR\\\\
\mathrm{<\ and\ >} & : & a\cdot OM+b\cdot ON+c\cdot OP=(a+b+c)r\end{array}\right\|\ \bigoplus\ \implies$ $\sum a\cdot\sum OM=(R+r)\cdot \sum a\implies$ $\sum OM=R+r$ .

Otherwise. Let incircle $C(I,r)$ , circumcircle $w=C(O,R)$ and $S\in II_a\cap w$ . Is well-known or prove easily that $OM=OS-MS=R-\frac {r_a-r}{2}$ . Thus,

$OM+ON+OP=\sum\left(R-\frac {r_a-r}{2}\right)=$ $3R-\frac {\left(r_a+r_b+r_c\right)-3r}2=$ $3R-\frac {(4R+r)-3r}{2}=R+r\implies$ $OM+ON+OP=R+r$ . I used identity

$\boxed{r_a+r_b+r_c=4R+r}$ . Indeed, $(s-a)(s-b)(s-c)=$ $s^3-s^2(a+b+c)+s(ab+bc+ca)-abc\iff$ $sr^2=s^3-2s^3+s(ab+bc+ca)-4Rsr\iff$

$r^2=-s^2+(ab+bc+ca)-4Rr\iff$ $\boxed{ab+bc+ca=s^2+r^2+r(4R+r)}$ . Thus, $rr_a=\frac Ss\cdot\frac S{s-a}=\frac {S^2}{s(s-a)}=(s-b)(s-c)$ a.s.o.

$\implies$ $r\sum r_a=\sum (s-b)(s-c)=-s^2+(ab+bc+ca)=$ $r(4R+r)\implies$ $r_a+r_b+r_c=4R+r$ . Observe that $4(ab+bc+ca)=$

$(a+b+c)^2+\sum\left[a^2-(b-c)^2\right]\iff$ $4\sum bc=4s^2+4(s-b)(s-c)\iff$ $\sum bc=s^2+\sum(s-b)(s-c)$ .

Another identities: $\boxed{II_a^2=(r_a+r)^2+(b-c)^2=(r_a-r)^2+a^2}$ and $\boxed{r_a-r=\frac {ar_a}{s}=4R\sin^2\frac A2}$ .

Remark.In the case of the obtuse triangle $ABC$ , for example $A>\frac {\pi}{2}$ , obtain analogously that $OM=-R\cos A$ and $\boxed{\begin{array}{ccc}
OM+ON+OP & = & r_a-R\\\\
\cos B+\cos C-\cos A & = & \frac {r_a}{R}-1\end{array}}\ (*)$ .

Indeed, $\left\{\begin{array}{ccc}
\mathrm{APON} & : & b\cdot OP+c\cdot ON=aR\\\\
\mathrm{BMOP} & : & c\cdot OM-a\cdot OP=-bR\\\\
\mathrm{CNOM} & : & -a\cdot ON+b\cdot OM=-cR\\\\
\mathrm{<\ and\ >} & : & -a\cdot OM+b\cdot ON+c\cdot OP=(-a+b+c)r_a\end{array}\right\|\ \bigoplus\ \implies$ $(b+c-a)\cdot\sum OM=(b+c-a)(r_a-R)\implies$ $\sum OM=r_a-R$ .

Otherwise. $OM+ON+OP=R(-cos A+\cos B+\cos C)$ and $(\cos B+\cos C)-\cos A=2\sin\frac A2\cos\frac {B-C}{2}-\left(1-2\sin^2\frac A2\right)=$

$-1+2\sin\frac A2\left(\cos\frac {B+C}{2}+\cos\frac {B-C}{2}\right)=$ $-1+4\sin\frac A2\cos\frac B2\cos\frac C2=$ $-1+4\sqrt {\frac {(s-b)(s-c)}{bc}\cdot\frac {s(s-b)}{ac}\cdot\frac {s(s-c)}{ab}}=$

$-1+\frac {4s(s-b)(s-c)}{abc}=$ $-1+\frac {4S^2}{4RS(s-a)}=$ $-1+\frac {S}{R(s-a)}=-1+\frac {r_a}{R}$ $\implies\ (*)$ .
This post has been edited 57 times. Last edited by Virgil Nicula, Nov 22, 2015, 11:31 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a