253. An old algebraic inequality.

by Virgil Nicula, Mar 13, 2011, 6:46 AM

Proposed problem 1. Let $a,$ $b,$ $c$ be positive real numbers. Prove that $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{(b+c-a)(c+a-b)(a+b-c)}{2abc} \le 2.$

Proof. It is equivalently with $\frac 32\ \le\ \boxed{\ \sum\frac {a}{b+c}\ \le\ 2-\frac rR\ }$ . The right inequality is equivalent to $s^2 \le 6R^2+2Rr-r^2$ which follows from Gerretsen's inequality :

$s^2 \le 4R^2+4Rr+3r^2$ since $R \ge 2r$ . Can show that $\boxed{\sum\frac a{b+c}+\frac 12+\frac rR\ \stackrel{(1)}{\le}\ \sum\frac a{b+c}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ \stackrel{(2)}{\le}\ \frac 52}$ . The inequality $(1)$ is equivalently with

$\frac 12\ +\ \frac rR\ \le\ \frac{ab+bc+ca}{a^2+b^2+c^2}$ $\Longleftrightarrow$ $\frac{R+2r}{2R}\ \le\ \frac{p^2+r^2+4Rr}{2p^2-8Rr-2r^2}$ $\Longleftrightarrow$ $p^2\ \le\ 4R^2+5Rr+r^2$ . Compare with Gerretsen's inequality, i.e.

$p^2\ \le\ 4R^2+4Rr+3r^2$ ramain to show that $4R^2+4Rr+3r^2\ \le\ 4R^2+5Rr+r^2\ \Longleftrightarrow\ 2r\ \le\ R\ \Longleftrightarrow$ Euler's inequality. For the inequality $(2)$ can

write $\sum\ \frac{a}{b+c}\ =$ $\frac{\sum\ a(a+b)(a+c)}{\prod\ (b+c)}=$ $\frac{a^3+b^3+c^3+(a+b+c)(ab+bc+ca)}{(a+b+c)(ab+bc+ca)-abc}$ . Thus, $\boxed{\sum\frac{a}{b+c}=\frac{2p^2-2Rr-2r^2}{p^2+r^2+2Rr}}$ and the inequality $(2)$

becomes $\frac{2p^2-2Rr-2r^2}{p^2+r^2+2Rr}\ \le\ \frac 52\ -\ \frac{p^2+r^2+4Rr}{2p^2-8Rr-2r^2}$ $\Longleftrightarrow$ $\frac{2p^2-2Rr-2r^2}{p^2+r^2+2Rr}\le$ $\frac{2p^2-12Rr-3r^2}{p^2-r^2-4Rr}$ $\Longleftrightarrow$ $\ldots\Longleftrightarrow$

$0\le 3p^2r+2p^2R-5r^3-28Rr^2-32R^2r$ $\Longleftrightarrow\ \frac{r(32R^2+28Rr+5r^2)}{2R+3r}\ \le\ p^2$ . Compare with the Gerretsen's inequality, i.e. $16Rr-5r^2\ \le\ p^2$

remain to prove that $\frac{r(32R^2+28Rr+5r^2)}{2R+3r}\le$ $16Rr-5r^2$ $\Longleftrightarrow$ $R\ \ge\ 2r$ , what is truly.

Remarks.

$\odot$ The inequality $(2)$ appears in Secrets in inequalities (vol. I), pag. 202, where has another proof. From $(2)$ results $\boxed{\sum\frac a{b+c}+\frac rR\le 2}\ (\ast)$ .

$\odot\ \sum\frac{a^2}{b+c}=\sum\frac{b^2+c^2-2bc\cos A}{b+c}=$ $\frac{(b+c)^2-4bc\cos^2\frac A2}{b+c}=$ $4p-\sum\frac{4p(p-a)}{b+c}$ $\Longleftrightarrow$ $\sum\frac{a^2}{b+c}=4p\ -$

$2p\sum\frac{b+c-a}{b+c}$ $\Longleftrightarrow$ $\boxed{\sum\frac{a^2}{b+c}=2p\left(\sum\frac a{b+c}-1\right)}\ (\ast\ast)$ . Using the relation $(\ast)$ obtain $\boxed{\sum\frac{a^2}{b+c}\le \frac{2p(R-r)}R}$ .

$\odot$ From the inequality $(2)$ and the identity $(\ast\ast)$ obtain that $\sum\frac {a^2}{b+c}\le (a+b+c)\left(\frac 32-\frac{ab+bc+ca}{a^2+b^2+c^2}\right)\le\frac{2p(R-r)}R$ .



PP2. Prove that $\{x,y,z\}\subset\mathbb R^*_+\ \implies$ $\left(x+y+z\right)^2\left(yz+zx+xy\right)^2\le 3\left(y^2+yz+z^2\right)\left(z^2+zx+x^2\right)\left(x^2+xy+y^2\right)\ .$

Proof 1. $\left\{\begin{array}{c}
4\left(x^{2} + xy + y^{2}\right)\ge 3\left(x + y\right)^2\\\\
4\left(y^{2} + yz + z^{2}\right)\ge 3\left(y + z\right)^2\\\\
4\left(z^{2} + zx + x^{2}\right)\ge 3\left(z + x\right)^2\end{array}\right\|\bigodot\implies$ $64\left(y^{2} + yz + z^{2}\right)\left(z^{2} + zx + x^{2}\right)\left(x^{2} + xy + y^{2}\right)\ge $ $27\left(x + y\right)^{2}\left(y + z\right)^{2}\left(z + x\right)^{2}\ (*)\ .$ Observe that

$x\left(y - z\right)^{2} + y\left(z - x\right)^{2} + z\left(x - y\right)^{2}\ge 0\iff$ $9\left(x + y\right)\left(y + z\right)\left(z + x\right)\ge 8\left(x + y + z\right)\left(xy + yz + zx\right)\iff$ $81\left(x + y\right)^{2}\left(y + z\right)^{2}\left(z + x\right)^{2}\ge $

$64\left(x + y + z\right)^{2}\left(yz + zx + xy\right)^{2}\iff$ $\left(x + y + z\right)^{2}\left(yz + zx + xy\right)^{2}\le\frac {3}{64}\cdot 27\left(x + y\right)^{2}\left(y + z\right)^{2}\left(z + x\right)^{2}\ \stackrel{(*)}{\le}\ 3$ $\left(y^2 + yz + z^2\right)$ $\left(z^2 + zx + x^2\right)$ $\left(x^2 + xy + y^2\right)\ .$

From this chain obtain the required inequality, i.e. $\{x,y,z\}\subset\mathbb R^*_+\ \implies$ $\boxed{\left(x + y + z\right)^2 \left(yz + zx + xy\right)^2 \leq 3\left(y^2 + yz + z^2\right)\left(z^2 + zx + x^2\right)\left(x^2 + xy + y^2\right)}\ .$

Proof 2. $(\exists )\ \triangle ABC$ with $BC=a,CA=b,AB=c$ and the Fermat's point $M$ in it such that $MA=x\ ,\ MB=y\ ,\ MC=z$ , $\widehat{AMB}=\widehat{BMC}=\widehat{CMA}=120^{\circ}\ .$ Have

$\left\{\begin{array}{c}
c^{2}=x^{2}+y^{2}+xy\\\\
b^{2}=z^{2}+x^{2}+zx\\\\
a^{2}=y^{2}+z^{2}+yz\end{array}\right\|$ and $\left\{\begin{array}{c}
xy+yz+zx=\frac {4S}{\sqrt 3}\\\\
2(x+y+z)^{2}=a^{2}+b^{2}+c^{2}+4S\sqrt 3\end{array}\right\|$ , where $S$ is the area of $\triangle ABC\ .$ Using the relation $4RS=abc$ we obtain that the required inequality

is equivalently with $a^{2}+b^{2}+c^{2}+4S\sqrt 3\leq 18R^{2}\ .$ But this is truly because $\left\{\begin{array}{cc}
4S\sqrt 3\le a^2+b^2+c^2 & (1)\\\\
a^2+b^2+c^2\le 9R^2 & (2)\end{array}\right\|\implies$ $a^{2}+b^{2}+c^{2}+$ $4S\sqrt 3\ \stackrel{(1)}{\leq}\ 2\left(a^2+b^2+c^2\right)\ \stackrel{(2)}{\le}\ 18R^{2}\ .$
This post has been edited 41 times. Last edited by Virgil Nicula, Nov 22, 2015, 11:05 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a