324. Some determinants.

by Virgil Nicula, Oct 26, 2011, 8:11 AM

PP1. Prove that $\Delta\equiv \left|\begin{array}{ccc}
 (a+x)^2 & (a+y)^2 & (a+z)^2\\\\
 (b+x)^2 & (b+y)^2 & (b+z)^2\\\\
 (c+x)^2 & (c+y)^2 & (c+z)^2\end{array}\right|=-2\cdot \left|\begin{array}{ccc}
 1 & 1 & 1\\\\
 x & y & z\\\\
 x^2 & y^2 & z^2\end{array}\right|\cdot\left|\begin{array}{ccc}
 1 & 1 & 1\\\\
 a & b & c\\\\
 a^2 & b^2 & c^2\end{array}\right|$ .

Proof. Denote $V_0=\left(\begin{array}{c}
 1\\\\
 1\\\\
 1\end{array}\right)\ ,\ V_1=\left(\begin{array}{c}
 a\\\\
 b\\\\
 c\end{array}\right)\ ,\ V_2=\left(\begin{array}{c}
 a^2\\\\
 b^2\\\\
 c^2\end{array}\right)$ and $V(a,b,c)\equiv\left|\begin{array}{ccc}
1 & 1 & 1\\\\
a & b & c\\\\
a^2 & b^2 & c^2\end{array}\right|=(c-a)(c-b)(b-a)$ .

Therefore, $\Delta=\left|\begin{array}{ccc}
a^2+2xa+x^2 & a^2+2ya+y^2 & a^2+2za+z^2\\\\
b^2+2xb+x^2 & b^2+2yb+y^2 & b^2+2zb+z^2\\\\
c^2+2xc+x^2 & c^2+2yc+y^2 & c^2+2zc+z^2\end{array}\right|=$

$\left|\begin{array}{ccc}
x^2\cdot V_0+2x\cdot V_1+V_2 & y^2\cdot V_0+2y\cdot V_1+V_2 & z^2\cdot V_0+2z\cdot V_1+V_2\end{array}\right|=$ $\left|\begin{array}{ccc}
V_2 & 2y\cdot V_1 & z^2\cdot V_0\end{array}\right|+$ $\left|\begin{array}{ccc}
V_2 & y^2\cdot V_0 & 2z\cdot V_1\end{array}\right|+$

$\left|\begin{array}{ccc}
2x\cdot V_1 & V_2 & z^2\cdot V_0\end{array}\right|+$ $\left|\begin{array}{ccc}
2x\cdot V_1 & y^2\cdot V_0 & V_2\end{array}\right|+$ $\left|\begin{array}{ccc}
x^2\cdot V_0 & V_2 & 2z\cdot V_1\end{array}\right|+$ $\left|\begin{array}{ccc}
x^2\cdot V_0 & 2y\cdot V_1 & V_2\end{array}\right|=$

$2yz^2\cdot \left|V_2\ V_1\ V_0\right| +2zy^2\cdot\left|V_2\ V_0\ V_1\right|+$ $2xz^2\cdot\left|V_1\ V_2\ V_0\right|+2xy^2\cdot\left|V_1\ V_0\ V_2\right|+$ $2zx^2\cdot\left|V_0\ V_2\ V_1\right|+2yx^2\cdot\left|V_0\ V_1\ V_2\right|=$

$2\cdot \left[(y-z)\cdot x^2-\left(y^2-z^2\right)\cdot x+yz(y-z)\right]\cdot\left|V_0\ V_1\ V_2\right|=$ $2(y-z)(x-y)(x-z)\cdot V(a,b,c) =$ $-2\cdot V(x,y,z)\cdot V(a,b,c)$ .



PP2. Prove that $\left|\begin{array}{ccc}
 x & y & z\\\\
 x^2 & y^2 & z^2\\\\
 yz & zx & xy\end{array}\right|=\left|\begin{array}{ccc}
 1 & 1 & 1\\\\
 x^2 & y^2 & z^2\\\\
 x^3 & y^3 & z^3\end{array}\right|$ and $\left|\begin{array}{ccc}
 x+a & x+b & x+c\\\\
 x^2+a^2 & x^2+b^2 & x^2+c^2\\\\
x^3+a^3 & x^3+b^3 & x^3+c^3\end{array}\right|=f(x)\cdot V(a,b,c)$

where $V(a,b,c)= \left|\begin{array}{ccc}
 1 & 1 & 1\\\\
 a & b & c\\\\
 a^2 & b^2 & c^2\end{array}\right|$ and $f(x)=(x-a)(x-b)(x-c)+2abc$ .


Proof. Denote $D=\left|\begin{array}{ccc}
 x & y & z\\\\
 x^2 & y^2 & z^2\\\\
 yz & zx & xy\end{array}\right|$ . Multiply the columns $1$ , $2$ , $3$ cu $x$ , $y$ , $z$ respectively and divide implicitly the determinant

by $xyz\ :\ D=\frac {1}{xyz}\cdot \left|\begin{array}{ccc}
 x^2 & y^2 & z^2\\\\
 x^3 & y^3 & z^3\\\\
 xyz & xyz & xyz\end{array}\right|$ . From the third line appears the factor $xyz\ :\ D= \left|\begin{array}{ccc}
 x^2 & y^2 & z^2\\\\
 x^3 & y^3 & z^3\\\\
 1 & 1 & 1\end{array}\right|$ .

Efectuate a permutation with the lines $(\ 1\rightarrow 2\ ;\ 2\rightarrow 3\ ;\ 3\rightarrow 1\ )$ and obtain the proposed identity.

It is well-known that the Vandermonde determinant $V(a,b,c)$ is equal to $(c-a)(c-b)(b-a)$ . Define the column-matrices $X=\left(\begin{array}{c}
1\\\\
x\\\\
x^2\end{array}\right)$ , $ A=\left(\begin{array}{c}
1\\\\
a\\\\
a^2\end{array}\right)$ , $ B=\left(\begin{array}{c}
1\\\\
b\\\\
b^2\end{array}\right)$ , $C=\left(\begin{array}{c}
1\\\\
c\\\\
 c^2\end{array}\right)$ . Observe that $D=\left|xX+aA\ \ xX+bB\ \ xX+cC\right|=$ $|xX\ bB\ cC|+$ $|aA\ xX\ cC|+$ $|aA\ bB\ xX|+$ $|aA\ bB\ cC|=$

$xbc\cdot V(x,b,c)+$ $axc\cdot V(a,x,c)+$ $abx\cdot V(a,b,x)+$ $abc\cdot V(a,b,c)=$ $bcx\cdot V(b,c,x)+$ $cax\cdot V(c,a,x)+$ $abx\cdot V(a,b,x)+$ $abc\cdot V(a,b,c)=$

$x\cdot\sum cb(c-b)(x-b)(x-c)+$ $abcV(a,b,c)=$ $h(x)+abc\cdot V(a,b,c)$ , where $h(x)=x\cdot\sum cb(c-b)(x-b)(x-c)$ . Observe that $h(0)=0$

and $h(a)=h(b)=h(c)=$ $abc\cdot V(a,b,c)$ . In conclusion, $h(x)=\left[(x-a)(x-b)(x-c)+abc\right]\cdot V(a,b,c)$ , i.e. $D=f(x)\cdot V(a,b,c)$ .


PP3. Let $\{a,b,c\}$ be the roots of the equation $x^3-s_1x^2+s_2x-s_3=0$ . Ascertain $\Delta_1\left(s_1,s_2,s_3\right)=\left|\begin{array}{ccc}
a & b & c\\\\
b & c & a\\\\
c & a & b\end{array}\right|^2$

and $\Delta_2\left(s_1,s_2,s_3\right)=\left|\begin{array}{ccc}
1 & 1 & 1\\\\
a & b & c\\\\
a^2 & b^2 & c^2\end{array}\right|^2$ . Prove that $\{a,b,c\}\subset\mathbb R$ and $s_1=0\implies$ $4s_2^3+27s_3^2\le  0$ .

With other words, the equation $x^3+mx+n=0$ has real roots if and only if $4m^3+27n^2\le 0$ .


Proof. From the Viete's relations obtain that $\left\{\begin{array}{ccccc}
s_1 & = & a+b+c\\\\
s_2 & = & ab+bc+ca\\\\
s_3 & = & abc \end{array}\right\|$ and $\left\{\begin{array}{ccccc}
S_2 & = &  a^2+b^2+c^2 & = & s_1^2-2s_2\\\\
S_3 & = & a^3+b^3+c^3 & = & s_1^3-3s_1s_2+3s_3\\\\
S_4 & = & a^4+b^4+c^4 & = & s_1^4-4s_1^2s_2+4s_1s_3+2s_2^2\end{array}\right\|$ .

Therefore, $\Delta_1=\left|\begin{array}{ccc}
a & b & c\\\\
b & c & a\\\\
c & a & b\end{array}\right|\cdot\left|\begin{array}{ccc}
a & b & c\\\\
b & c & a\\\\
c & a & b\end{array}\right|=$ $\left(a^3+b^3+c^3-3abc\right)^2=$ $\left|\begin{array}{ccc}
S_2 & s_2 & s_2\\\\
s_2 & S_2 & s_2\\\\
s_2 & s_2 & S_2\end{array}\right|=\left(S_2+2s_2\right)\left(S_2-s_2\right)^2=$ $\left[s_1(s_1^2-3s_2)\right]^2$ .

$\Delta_2=\left|\begin{array}{ccc}
1 & 1 & 1\\\\
a & b & c\\\\
a^2 & b^2 & c^2\end{array}\right|^2=$ $\left|\begin{array}{ccc}
1 & 1 & 1\\\\
a & b & c\\\\
a^2 & b^2 & c^2\end{array}\right|\cdot \left|\begin{array}{ccc}
1 & a & a^2\\\\
1 & b & b^2\\\\
1 & c & c^2\end{array}\right|=$ $\left|\begin{array}{ccc}
3 & s_1 & S_2\\\\
s_1 & S_2 & S_3\\\\
S_2 & S_3 & S_4\end{array}\right|=$ $\left|\begin{array}{ccc}
3 & 0 & -2s_2\\\\
0 & -2s_2 & 3s_3\\\\
-2s_2 & 3s_3 & 2s_2^2\end{array}\right|=-\left(4s_2^3+27s_3^2\right)\ge 0$ .
This post has been edited 62 times. Last edited by Virgil Nicula, Nov 19, 2015, 8:19 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a