429. Bretschneider's_formula
by Virgil Nicula, Oct 4, 2015, 10:09 AM
The generalized Ptolemy's formula. Let
be a convex quadrilateral with
. Prove that
.
Proof. Construct outside
, i.e.
. Thus,

Observe that
. Apply the generalized Pythagoras'
theorem to the side
of

Remark two particular cases
. The relation
is the Ptolemy's formula.
Bretschneider's formula. Let a quadrilateral
with the area
and
.
Remark. Let
. If
is cyclic, then
.
Proof. Observe that


![$16S^2=\left[(b+c)^2-(a-d)^2\right]\left[(a+d)^2-(b-c)^2\right]-16abcd\cos\frac {A+C}{2}\implies$](//latex.artofproblemsolving.com/c/1/8/c18354c3ea632055584a8178e00b470576f9c4e6.png)
.
Remark (Coolidge's formula).
, what means 
Indeed, using the generalized Ptolemy formula
obtain that
![$2abcd [1+\cos (A+C)]=$](//latex.artofproblemsolving.com/b/f/6/bf60831e35eeacf1a3764ca661104d746b615c1e.png)
. Also can prove easily that
. For 
obtain the Brahmagupta's formula:
. If
is cyclic and tangential, then
.
Remark. Let
be a convex cyclical quadrilateral. Thus,
.
Direct proof of the Brahmagupta's formula. Suppoese w.l.o.g.
and denote
. Thus,
and

. Observe that
, where
, i.e.
.
In conclusion,
![$[ABCD]=\frac {c^2-a^2}{4c^2}\cdot\sqrt{\left[(x+y)^2-c^2\right]\left[c^2-(x-y)^2\right]}=$](//latex.artofproblemsolving.com/b/2/3/b231467ed671c53cf10a378f9e03bdb0ecdfd53f.png)
![$\frac 14\cdot\sqrt{\left[(b+d)^2-(c-a)^2\right]\left[(c+a)^2-(b-d)^2\right]}\implies$](//latex.artofproblemsolving.com/1/a/7/1a7a9b9d529047946e4079e79eea4615654bd7d2.png)
.
App. 1 (China Team Selection 2003). Let
be a tangential quadrilateral (admits a incircle
).
Prove that
.
Proof. Denote
. Define
, where
.
Therefore,
. Using the Bretschneider's formula
obtain that
. Since
, where 
obtain that
.
App. 2 (Leo Giugiuc). Let
be a convex quadrilateral so that
and
. Prove that
(standard notations).
Proof. Apply the generalized Ptolemy's_formula
.
Relatia Van Aubel. Fie
cu
Demonstrati ca pentru orice punct
are loc relatia 
Demonstratie. Notam
Se observa ca
Acum identitatea Van Aubel este evidenta, adica 
Observatie. Stim relatia lui Ptolemeu generalizata intr-un patrulater convex
Cazuri particulare.
Daca
, adica
este inscriptibil , atunci
(relatia lui Ptolemeu).
Daca
, atunci 
Relatia Van Aubel este cazul particular
aplicat la
degenerat , unde 
Fie un triunghi equilateral
si un punct
situat in interiorul unghiului
astfel incat
separa
si
Atunci exista relatia 
App. 3. Prove for
the following equivalence
so that
Proof 1. Denote
Observe that ![$b\cdot AP+c\cdot AN=b\cdot MN+c\cdot MP=2\cdot [AMC]+2\cdot [AMB]=2\cdot [ABC]=bc\implies$](//latex.artofproblemsolving.com/5/c/8/5c841feed41ef377268ee5ad65f319158e3863d9.png)
Apply the generalized Pytagoras's theorem to 

Remark. Another proof of the relation
what is true.
Proof 2. In the triangle
denote
the lengths of the sides
and
the measures of their opposite angles respectively. Construct the point
so that 
separates
,
and
i.e.
and
Observe that 
and
and 
Therefore,

Proof 3. Let
and
where
and
I"ll prove only the direct implication, i.e. suppose that
so that 
i.e.
Apply Stewart's relation to

From the relations




Proof. Construct outside





Observe that





theorem to the side
![$[AE]$](http://latex.artofproblemsolving.com/0/e/e/0ee81ab9421e97824f7785dc2c44c0f5b04a03b1.png)





Bretschneider's formula. Let a quadrilateral

![$S=[ABCD]$](http://latex.artofproblemsolving.com/d/7/c/d7c0f0918fa7f2eaf7f90ca234333d338468e9cb.png)


Remark. Let







Proof. Observe that
![$\left\{\begin{array}{ccc}
[ABCD]=[ABD]+[CBD] & \iff & 2S=ad\sin A+bc\sin C\\\\
a^2+d^2-2ad\cos A=b^2+c^2-2bc\cos C & \implies & a^2+d^2-\left(b^2+c^2\right)=2ad\cos A-2bc\cos C\end{array}\right\|$](http://latex.artofproblemsolving.com/3/c/7/3c7c83268cd9361c7a1a385c1f1da785ef1edea2.png)

![$4S^2+\frac 14\cdot\left[\left(a^2+d^2\right)-\left(b^2+c^2\right)\right]^2=a^2d^2+b^2c^2-2abcd\cos (A+C)=$](http://latex.artofproblemsolving.com/3/3/6/336c67357a2d02ae945899aec8f0659cf1060dae.png)

![$16S^2=\left[2(ad+bc)\right]^2-\left[\left(a^2+d^2\right)-\left(b^2+c^2\right)\right]^2-16abcd\cos^2\frac {A+C}{2}\implies$](http://latex.artofproblemsolving.com/3/0/2/3028268a8536509ae9c6c3d838720a96f61c21e1.png)
![$16S^2=\left[(b+c)^2-(a-d)^2\right]\left[(a+d)^2-(b-c)^2\right]-16abcd\cos\frac {A+C}{2}\implies$](http://latex.artofproblemsolving.com/c/1/8/c18354c3ea632055584a8178e00b470576f9c4e6.png)



Remark (Coolidge's formula).


Indeed, using the generalized Ptolemy formula


![$2abcd [1+\cos (A+C)]=$](http://latex.artofproblemsolving.com/b/f/6/bf60831e35eeacf1a3764ca661104d746b615c1e.png)




obtain the Brahmagupta's formula:



Remark. Let

![$\left\{\begin{array}{c}
4RS=4R([ABC]+[ADC])=e(ab+cd)\\\\
4RS=4R([BAD]+[BCD])=f(ad+bc)\end{array}\right\|$](http://latex.artofproblemsolving.com/3/3/f/33fb59e6ea678a4005528d7e0630dd5c3c3bb0ee.png)

Direct proof of the Brahmagupta's formula. Suppoese w.l.o.g.












![$\frac {[ABE]}{[CDE]}=\left(\frac ac\right)^2$](http://latex.artofproblemsolving.com/d/0/e/d0ec7a12fa40d9499b5b67a75a426a0d827e0bc7.png)
![$16\cdot [CDE]^2=[(x+y)+c][(x+y)-c][(x-y)+c][c-(x-y)]$](http://latex.artofproblemsolving.com/4/2/4/4249e753629bdd8dd1c3a8574849d4615d8a2dcc.png)
![$16\cdot [CDE]^2=\left[(x+y)^2-c^2\right]\left[c^2-(x-y)^2\right]$](http://latex.artofproblemsolving.com/1/c/4/1c48bd236061bdba5d809377fa2670bd3b712367.png)
In conclusion,
![$S\equiv [ABCD]=[CDE]-[ABE]=$](http://latex.artofproblemsolving.com/4/4/5/44555da1b5cedff0bfe3a1e9b04a2d5e6b1ed531.png)
![$[CDE]\left(1-\frac {a^2}{c^2}\right)\implies$](http://latex.artofproblemsolving.com/8/d/3/8d320291b73191c8e918d6ad7f5b5048f1f5f99a.png)
![$[ABCD]=\frac {c^2-a^2}{4c^2}\cdot\sqrt{\left[(x+y)^2-c^2\right]\left[c^2-(x-y)^2\right]}=$](http://latex.artofproblemsolving.com/b/2/3/b231467ed671c53cf10a378f9e03bdb0ecdfd53f.png)
![$\frac {(c+a)(c-a)}{4}\cdot\sqrt{\left[\left(\frac {b+d}{c-a}\right)^2-1\right]\left[1-\left(\frac {b-d}{c+a}\right)^2\right]}=$](http://latex.artofproblemsolving.com/2/4/1/241818b000c5143aa11e5cf0f5a59e536103c498.png)
![$\frac 14\cdot\sqrt{\left[(b+d)^2-(c-a)^2\right]\left[(c+a)^2-(b-d)^2\right]}\implies$](http://latex.artofproblemsolving.com/1/a/7/1a7a9b9d529047946e4079e79eea4615654bd7d2.png)

App. 1 (China Team Selection 2003). Let


Prove that
![$[ABCD]\cdot\csc\frac {A+C}2=OA\cdot OC+OB\cdot OD=\sqrt {AB\cdot BC\cdot CD\cdot DA}$](http://latex.artofproblemsolving.com/5/c/7/5c7e0bb4a3dc9088946901976fd50330a70217b0.png)
Proof. Denote



Therefore,

![$[ABCD]=\sqrt {(s-a)(s-b)(s-c)(s-d)-abcd\cos^2\frac {A+C}{2}}$](http://latex.artofproblemsolving.com/6/2/4/62434c3490f7603fc707582a88549924be57b2af.png)
![$\boxed{[ABCD]=\sqrt {abcd}\cdot \sin\frac {A+C}{2}}\ (*)$](http://latex.artofproblemsolving.com/c/6/2/c62217e2916b1bed92e9b6ac8fd51933239e258c.png)


obtain that

![$[ABCD]\cdot\csc\frac {A+C}{2}\stackrel{(*)}{\implies}$](http://latex.artofproblemsolving.com/d/0/9/d09b4b76d5e962ed0df15924e538521d6e751df5.png)

App. 2 (Leo Giugiuc). Let




Proof. Apply the generalized Ptolemy's_formula


Relatia Van Aubel. Fie




Demonstratie. Notam



Observatie. Stim relatia lui Ptolemeu generalizata intr-un patrulater convex

Cazuri particulare.




















App. 3. Prove for



Proof 1. Denote

![$b\cdot AP+c\cdot AN=b\cdot MN+c\cdot MP=2\cdot [AMC]+2\cdot [AMB]=2\cdot [ABC]=bc\implies$](http://latex.artofproblemsolving.com/5/c/8/5c841feed41ef377268ee5ad65f319158e3863d9.png)




Remark. Another proof of the relation




Proof 2. In the triangle


![$([BC],[CA],[AB])$](http://latex.artofproblemsolving.com/f/2/5/f25000944ae05d06f52ffa17d5fad2fb6a8a6329.png)



separates










and





Therefore,





Proof 3. Let






i.e.



From the relations




This post has been edited 78 times. Last edited by Virgil Nicula, Sep 20, 2017, 3:00 PM