429. Bretschneider's_formula

by Virgil Nicula, Oct 4, 2015, 10:09 AM

The generalized Ptolemy's formula. Let $ABCD$ be a convex quadrilateral with $\left\{\begin{array}{ccc}
AB=a & ; & BC=b\\\\
CD=c & ; & DA=d\\\\
AC=e & ; & BD=f\end{array}\right\|$ . Prove that $\boxed{(ef)^2=(ac)^2+(bd)^2-2abcd\cos (A+C)}$ .

Proof. Construct outside $\triangle CDE\sim CBA$ , i.e. $\left\{\begin{array}{ccc}\widehat {CDE} & \equiv  & \widehat {CBA}\\\\
m\left(\widehat {DCE}\right) & \equiv & \widehat {BCA}\end{array}\right\|$ . Thus, $\frac {AB}{ED}=\frac {BC}{DC}=\frac {CA}{CE}\iff$ $\frac a{ED}=\frac bc=\frac e{CE}\iff$ $\odot\begin{array}{cccc}
\nearrow & CE=\frac {ce}b & (0) & \searrow\\\\
\searrow & \boxed{DE=\frac {ac}b} & (1) & \nearrow\end{array}\odot$

Observe that $\left\{\begin{array}{ccc}
\frac {CB}{CA} & = & \frac {CD}{CE}\\\\
\widehat {BCD} & \equiv & \widehat {ACE}\end{array}\right\|\iff$ $\triangle BCD\sim\triangle ACE\iff$ $\frac {CB}{CA}=\frac {BD}{AE}\iff$ $\frac be=\frac f{AE}\iff$ $\boxed{AE=\frac {ef}b}\ (2)$ . Apply the generalized Pythagoras'

theorem
to the side $[AE]$ of $\triangle ADE\ :\ AE^2=DA^2+DE^2-2\cdot DA\cdot DE\cdot\cos \widehat{ADE}\iff$ $\left(\frac {ef}b\right)^2=d^2+\left(\frac {ac}b\right)^2-2d\cdot\frac {ac}b\cdot \cos (A+C)\iff$

$(ef)^2=(ac)^2+(bd)^2-2abcd\cos (A+C)\ .$ Remark two particular cases $:\ \left\{\begin{array}{ccc}
A+C=180^{\circ} & \implies & \boxed{ac+bd=ef}\  (3)\\\\
A+C\in \left\{90^{\circ},270^{\circ}\right\} & \implies & (ef)^2=(ac)^2+(bd)^2\end{array}\right\|$ . The relation $(3)$ is the Ptolemy's formula.



Bretschneider's formula. Let a quadrilateral $ABCD$ with the area $S=[ABCD]$ and $a+b+c+d=2s\implies$ $\boxed{S^2=(s-a)(s-b)(s-c)(s-d)-abcd\cos^2\frac{A+C}{2}}$ .

Remark. Let $I\in AC\cap BD$ . If $ABCD$ is cyclic, then $\frac {IA}{da}=\frac {IB}{ab}=$ $\frac {IC}{bc}=\frac {ID}{cd}=$ $\frac e{ad+bc}=\frac f{ab+cd}=$ $\sqrt{\frac {ef}{(ab+cd)(ad+bc)}}=$ $\sqrt{\frac {R^2-OI^2}{abcd}}=\frac {ef}{4RS}=\frac {ac+bd}{4RS}$ .

Proof. Observe that $\left\{\begin{array}{ccc}
[ABCD]=[ABD]+[CBD] & \iff & 2S=ad\sin A+bc\sin C\\\\
a^2+d^2-2ad\cos A=b^2+c^2-2bc\cos C & \implies & a^2+d^2-\left(b^2+c^2\right)=2ad\cos A-2bc\cos C\end{array}\right\|$ $\implies$

$4S^2+\frac 14\cdot\left[\left(a^2+d^2\right)-\left(b^2+c^2\right)\right]^2=a^2d^2+b^2c^2-2abcd\cos (A+C)=$ $(ad+bc)^2-4abcd\cos^2\frac {A+C}{2}\implies$

$16S^2=\left[2(ad+bc)\right]^2-\left[\left(a^2+d^2\right)-\left(b^2+c^2\right)\right]^2-16abcd\cos^2\frac {A+C}{2}\implies$ $16S^2=\left[(b+c)^2-(a-d)^2\right]\left[(a+d)^2-(b-c)^2\right]-16abcd\cos\frac {A+C}{2}\implies$

$16S^2=(b+c+a-d)(b+c-a+d)(a+d-b+c)$ $(a+d+b-c)-16abcd\cos\frac {A+C}{2}\implies$ $S=\sqrt {(s-a)(s-b)(s-c)(s-d)-abcd\cos^2\frac{A+C}{2}}$ .

Remark (
Coolidge's formula). $\boxed{S=\sqrt {(s-a)(s-b)(s-c)(s-d)-\frac 14\cdot (ac+bd+ef)(ac+bd-ef)}}$ , what means $4abcd\cos^2\frac {A+C}{2}=(ac+bd+ef)(ac+bd-ef)$

Indeed, using the generalized Ptolemy formula $2abcd\cos (A+C)=b^2d^2+a^2c^2-e^2f^2$ obtain that $4abcd\cos^2\frac {A+C}{2}=$ $2abcd [1+\cos (A+C)]=$

$2abcd+\left(b^2d^2+a^2c^2-e^2f^2\right)=$ $(ac+bd+ef)(ac+bd-ef)$ . Also can prove easily that $2\sqrt {e^2f^2-4S^2}=\left|\left(b^2+d^2\right)-\left(a^2+c^2\right)\right|$ . For $A+C=B+D$

obtain the Brahmagupta's formula: $\boxed{S=\sqrt {(s-a)(s-b)(s-c)(s-d)}}$ . If $ABCD$ is cyclic and tangential, then $\boxed{S=\sqrt {abcd}}$ .


Remark. Let $ABCD$ be a convex cyclical quadrilateral. Thus, $\left\{\begin{array}{c}
4RS=4R([ABC]+[ADC])=e(ab+cd)\\\\
4RS=4R([BAD]+[BCD])=f(ad+bc)\end{array}\right\|$ $\bigodot\implies\boxed{16R^2S^2=(ab+cd)(ad+bc)(ac+bd)}$ .

Direct proof of the Brahmagupta's formula. Suppoese w.l.o.g. $E\in AD\cap BC$ and denote $EC=x\ ,\ ED=y$ . Thus, $\left\{\begin{array}{ccc}
AE=y-d\\\\
BE=x-b\end{array}\right\|$ and $\triangle ABE\sim\triangle CDE$ $\implies$

$\frac {AB}{CD}=\frac {BE}{DE}=\frac {AE}{CE}$ $\implies$ $\frac ac=\frac {x-b}y=\frac {y-d}x$ $\implies$ $\left\{\begin{array}{ccc}
ax-cy & = & -cd\\\\
cx-ay & = & bc\end{array}\right\|$ $\begin{array}{c}
\uparrow -\\\
\implies\\\
+\end{array}$ $\left\{\begin{array}{ccc}
x+y & = & \frac {c(b+d)}{c-a}\\\\
x-y & = & \frac {c(b-d)}{c+a}\end{array}\right\|$ . Observe that

$\frac {[ABE]}{[CDE]}=\left(\frac ac\right)^2$ , where $16\cdot [CDE]^2=[(x+y)+c][(x+y)-c][(x-y)+c][c-(x-y)]$ , i.e. $16\cdot [CDE]^2=\left[(x+y)^2-c^2\right]\left[c^2-(x-y)^2\right]$ .

In conclusion, $S\equiv [ABCD]=[CDE]-[ABE]=$ $[CDE]\left(1-\frac {a^2}{c^2}\right)\implies$ $[ABCD]=\frac {c^2-a^2}{4c^2}\cdot\sqrt{\left[(x+y)^2-c^2\right]\left[c^2-(x-y)^2\right]}=$

$\frac {(c+a)(c-a)}{4}\cdot\sqrt{\left[\left(\frac {b+d}{c-a}\right)^2-1\right]\left[1-\left(\frac {b-d}{c+a}\right)^2\right]}=$ $\frac 14\cdot\sqrt{\left[(b+d)^2-(c-a)^2\right]\left[(c+a)^2-(b-d)^2\right]}\implies$

$\boxed{4S=\sqrt {(b+d+c-a)(b+d-c+a)(c+a+b-d)(c+a-b+d)}}$ .



App. 1 (China Team Selection 2003). Let $ABCD$ be a tangential quadrilateral (admits a incircle $w$).

Prove that $[ABCD]\cdot\csc\frac {A+C}2=OA\cdot OC+OB\cdot OD=\sqrt {AB\cdot BC\cdot CD\cdot DA}$ .


Proof. Denote $\left\{\begin{array}{c}
AB=a\ ;\ BC=b\\\\
CD=c\ ;\ DA=d\end{array}\right\|\ ,\ 2s=a+b+c+d$ . Define $\left\{\begin{array}{cc}
M\in AB\cap w\ ;\ N\in BC\cap w\\\\
P\in CD\cap w\ ;\ Q\in DA\cap w\end{array}\right\|$ , where $\left\{\begin{array}{ccc}
AM=AQ=m & ; & BM=BN=n\\\\
CN=CP=p & ; & DP=DQ=q\end{array}\right\|$ .

Therefore, $\left\{\begin{array}{ccc}
a=s-c=m+n\ ;\ b=s-d=n+p\\\\
c=s-a=p+q\ ;\ d=s-b=q+m\\\\
s=m+n+p+q\end{array}\right\|$ . Using the Bretschneider's formula $[ABCD]=\sqrt {(s-a)(s-b)(s-c)(s-d)-abcd\cos^2\frac {A+C}{2}}$ obtain that

$\boxed{[ABCD]=\sqrt {abcd}\cdot \sin\frac {A+C}{2}}\ (*)$ . Since $\sin\frac {A+C}{2}=\sin\frac {B+D}{2}$ , where $\left\{\begin{array}{c}
\sin\frac {A+C}{2}=\sin\frac A2\cos\frac C2+\cos\frac A2\sin\frac C2=\frac r{OA}\cdot\frac p{OC}+\frac m{OA}\frac r{OC}=\frac {r(m+p)}{OA\cdot OC}\\\\
\sin\frac {B+D}{2}=\sin\frac B2\cos\frac D2+\cos\frac B2\sin\frac D2=\frac r{OB}\cdot\frac q{OD}+\frac n{OB}\frac r{OD}=\frac {r(n+q)}{OB\cdot OD}\end{array}\right\|$

obtain that $OA\cdot OC+OB\cdot OD=\frac {r(m+n+p+q)}{\sin\frac {A+C}{2}}=$ $[ABCD]\cdot\csc\frac {A+C}{2}\stackrel{(*)}{\implies}$ $OA\cdot OC+OB\cdot OD=\sqrt {abcd}$ .



App. 2 (Leo Giugiuc). Let $ABCD$ be a convex quadrilateral so that $ac=bd$ and $A+C=60^{\circ}$ . Prove that $ac=ef$ (standard notations).

Proof. Apply the generalized Ptolemy's_formula $:\ (ef)^2=(ac)^2+(bd)^2-2(ac)(bd)\cos (A+C)=$ $2(ac)^2-(ac)^2=(ac)^2\implies ef=ac$ .


Relatia Van Aubel. Fie $\triangle ABC$ cu $A=90^{\circ}\ .$ Demonstrati ca pentru orice punct $M \in (BC)$ are loc relatia $:\ AB^2\cdot{MC^2}+AC^2\cdot{MB^2}=BC^2\cdot{MA^2}\ .$

Demonstratie. Notam $\phi=m(\angle MAB)\ .$ Se observa ca $\left\|\begin{array}{c}
 \frac {MB}{MA}=\frac {\sin\phi}{\sin B}=\frac {a\cdot\sin\phi}{b}\\\\
 \frac {MC}{MA}=\frac {\cos\phi}{\sin C}=\frac {a\cdot\cos\phi}{c}\end{array}\right\|\ .$ Acum identitatea Van Aubel este evidenta, adica $c^2\cdot \left(\frac {MC}{MA}\right)^2+b^2\cdot\left(\frac {MB}{MA}\right)^2=a^2\ .$

Observatie. Stim relatia lui Ptolemeu generalizata intr-un patrulater convex $ABCD\ :\ \boxed{\ AC^2\cdot BD^2=AB^2\cdot CD^2+AD^2\cdot BC^2-2\cdot AB\cdot BC\cdot CD\cdot DA\cdot\cos (A+C)\ }\ .$

Cazuri particulare.

$1\blacktriangleright$ Daca $A+C=180^{\circ}$ , adica $ABCD$ este inscriptibil , atunci $AC\cdot BD=AB\cdot CD+AD\cdot BC$ (relatia lui Ptolemeu).

$2\blacktriangleright$ Daca $A+C\in\left\{90^{\circ}\ ,\ 270^{\circ}\right\}$ , atunci $AC^2\cdot BD^2=AB^2\cdot CD^2+AD^2\cdot BC^2\ .$

$3\blacktriangleright$ Relatia Van Aubel este cazul particular $(2)$ aplicat la $ABMC$ degenerat , unde $A+m\left(\widehat{BMC}\right)=90^{\circ}+180^{\circ}=270^{\circ}\ :\ AB^2\cdot MC^2+AC^2\cdot MB^2=BC^2\cdot AM^2\ .$

$4\blacktriangleright$ Fie un triunghi equilateral $ABC$ si un punct $E$ situat in interiorul unghiului $\widehat{ABC}$ astfel incat $AC$ separa $B ,$ $E$ si $m\left(\widehat{AEC}\right)=30^{\circ}\ .$ Atunci exista relatia $EB^2=EA^2+EC^2\ .$



App. 3. Prove for $\triangle ABC$ the following equivalence $:\ (\exists )M\in (BC)$ so that $a^2\cdot MA^2=b^2\cdot MB^2+c^2\cdot MC^2\iff A=90^{\circ}\ .$

Proof 1. Denote $\left\{\begin{array}{ccc}
N\in (AC) & ; & MN\parallel AB\\\\
P\in (AB) & ; & MP\parallel AC\end{array}\right\|\ .$ Observe that $b\cdot AP+c\cdot AN=b\cdot MN+c\cdot MP=2\cdot [AMC]+2\cdot [AMB]=2\cdot [ABC]=bc\implies$

$\boxed{b\cdot AP+c\cdot AN=bc}\ (*)\ .$ Apply the generalized Pytagoras's theorem to $\left\{\begin{array}{ccccc}
MB/\triangle AMB\ : & MB^2=c^2+MA^2-2c\cdot AP\\\\
MC/\triangle AMC\ : & MC^2=b^2+MA^2-2b\cdot AN\end{array}\right|\begin{array}{ccc}\odot & b^2 & \searrow\\\\
\odot & c^2 & \nearrow\end{array}\bigoplus \implies$

$b^2\cdot MB^2+c^2\cdot MC^2=2b^2c^2+\left(b^2+c^2\right)\cdot MA^2-2bc\cdot (b\cdot AP+c\cdot AN)\ \stackrel{(*)}{=}\ a^2\cdot MA^2\implies$ $b^2\cdot MB^2+c^2\cdot MC^2=a^2\cdot MA^2\ .$

Remark. Another proof of the relation $(*)\ :\ AC\cdot AP+AB\cdot AN=AC\cdot AB\iff$ $\frac {AP}{AB}+\frac {AN}{AC}=1\iff$ $\frac {MC}{BC}+\frac {MB}{BC}=1\iff$ $\frac {MC+MB}{BC}=1,$ what is true.

Proof 2. In the triangle $ABC$ denote $(a,b,c)\ -$ the lengths of the sides $([BC],[CA],[AB])$ and $(A,B,C) -$ the measures of their opposite angles respectively. Construct the point $N$ so that $BC$

separates $A$, $N$ and $\triangle ABC\sim\triangle MNC\ ,$ i.e. $\frac {AB}{MN}=\frac {BC}{NC}=\frac {AC}{MC}$ $\iff$ $\frac {c}{MN}=\frac {a}{NC}=\frac {b}{MC}$ $\implies$ $\left\{\begin{array}{c}
CN=\frac ab\cdot MC\\\\
MN=\frac cb\cdot MC\end{array}\right\|$ and $\left\{\begin{array}{ccc}
m\left(\widehat{CMN}\right) & = & A\\\\
m\left(\widehat{CNM}\right) & = & B\end{array}\right\|\ .$ Observe that $\frac {AC}{BC}=\frac {CM}{CN}$

and $m\left(\widehat{ACM}\right)=m\left(\widehat{BCN}\right)=C\implies$ $\triangle ACM\sim\triangle BCN\implies$ $\frac ba=\frac {CM}{CN}=\frac {AM}{BN}\implies$ $\left\{\begin{array}{c}
CN=\frac ab\cdot MC\\\\
BN=\frac ab\cdot AM\end{array}\right\|$ and $\left\{\begin{array}{ccccc}
m\left(\widehat{CAM}\right) & = & m\left(\widehat{CBN}\right) & = & \delta\\\\
m\left(\widehat{AMC}\right) & = & m\left(\widehat{BNC}\right) & = & B+A-\delta\end{array}\right\|\ .$

Therefore, $a^2\cdot MA^2=b^2\cdot MB^2+c^2\cdot MC^2\iff$ $\frac {a^2}{b^2}\cdot MA^2=\frac {c^2}{b^2}\cdot MC^2+MB^2\iff$ $BN^2=MN^2+MB^2\iff$ $m\left(\widehat{BMN}\right)=90^{\circ}\iff$ $m\left(\widehat{CMN}\right)=90^{\circ}\iff A=90^{\circ}\ .$

Proof 3. Let $MB=ua$ and $MC=va\ ,$ where $\{u,v\}\subset (0,1)$ and $u+v=1\ 
 .$ I"ll prove only the direct implication, i.e. suppose that $(\exists )\ M\in (BC)$ so that $a^2\cdot MA^2=b^2\cdot MB^2+c^2\cdot MC^2\ ,$

i.e. $\cancel{a^2}\cdot MA^2=u^2\cancel {a^2}b^2+v^2\cancel {a^2}c^2\iff \boxed{MA^2=u^2b^2+v^2c^2}\ (1)\ .$ Apply Stewart's relation to $AM/\triangle ABC\ :\ a\cdot MA^2+uva^3=uab^2+vac^2\iff$ $\boxed{MA^2+uva^2=ub^2+vc^2}\ (2)\ .$

From the relations $1\wedge 2\implies u^2b^2+v^2c^2+uva^2=ub^2+vc^2\iff$ $uva^2=u(1-u)b^2+v(1-v)c^2\iff$ $\cancel{uv}a^2=\cancel{uv}b^2+\cancel{vu}c^2\iff$ $a^2=b^2+c^2\iff A=90^{\circ}$
This post has been edited 78 times. Last edited by Virgil Nicula, Sep 20, 2017, 3:00 PM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
An introduction to the Ptolemy's theorem :
Attachments:
An Introduction to Ptolemy Theorem.pdf (203kb)
This post has been edited 3 times. Last edited by Virgil Nicula, Sep 14, 2016, 2:23 AM

by Virgil Nicula, Sep 14, 2016, 2:20 AM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a