398. Geometry problems (II).

by Virgil Nicula, Sep 9, 2014, 7:11 PM

PP1 (Miguel Ochoa Sanchez). Let an equilateral $\triangle ABC$ with the circumcircle $w$ . Consider two circles $w_1,w_2$ exterior tangent one to other and which are interior tangent to $w$ and

together are tangent to $BC$ . Denote the length $p$ of the exterior common tangent for $w_1$ and $w_2$ and the lengths $m,n$ of the tangents from $A$ to $w_1,w_2$ respectively. Prove that $2p=m+n$


Proof. Denote $\left\{\begin{array}{c}
X\in BC\cap w_1\  ;\ BX=x\\\\
Y\in BC\cap w_2\ ;\ CY=y\\\\
AB=a\ ;\ (x+y)+p=a\end{array}\right\|$ . Apply the Casey's theorem to: $\left\{\begin{array}{c}
\{A,B,C,w_1\}\ :\ a(a-x)=ax+am\ ;\ m+2x=a\\\\
\{A,B,C,w_2\}\ :\ a(a-y)=ax+an \ ;\ n+2y=a\end{array}\right\|$ $\implies$ $2p=m+n$ . Thus,

An easy extension. Let $\triangle ABC$ with the circumcircle $w$ . Consider two circles $w_1,w_2$ exterior tangent one to other and which are interior tangent to $w$ and together are tangent to $BC$ .

Denote the length $p$ of the exterior common tangent for $w_1$ and $w_2$ and the lengths $m,n$ of the tangents from $A$ to $w_1,w_2$ respectively. Prove that exist the relation $\boxed{p(b+c)=a(m+n)}$



PP2 (J. Orihuela). Let $w=C(O,R)$ with diameter $[AB]$ , its chord $[CD]$ so that $AB$ doesn't separate $C$ , $D$ and the midpoint $F$ of $[CD]$ and $E$ so $\left\{\begin{array}{c}
CE\perp AB\\\
EF\perp FB\\\
EF=FB\end{array}\right\|$ . Find $m\left(\widehat{COD}\right)$

Proof 1. Denote $G\in AB\cap CE$ . Since $BEGF$ is cyclically obtain that $\widehat{CGF}\equiv\widehat{EBF}$ . Since $CGOF$ is cyclically obtain that $\widehat{CGF}\equiv\widehat{COF}$ , i.e. $OC\perp OD$ .

Proof 2. Prove easily that $\triangle ECF\equiv\triangle BOF$ . Therfore, $OF=CF=FD$ , i.e. $\triangle COD$ is $O$-right-angled. In conclusion, $OC\perp OD$ .



PP3 (Ruben Dario Auqui). Let $ABCD$ be a rectangle with $AB=1$ . Denote the midpoint $E$ of $[CD]$ . Prove that the circles $C(A,1)$ and $C\left(E,\frac 12\right)$ are tangent iff $BC=\sqrt 2$ .

and in this case calculate the lengths $x$ and $y$ of the radii for the circles what belong to inside of $ABCD$ and are tangent to the given circles and to $BC$ , $AD$ respectively.


Proof. The circles $C(A,1)$ and $C\left(E,\frac 12\right)$ are tangent iff $BC^2=\left(1+\frac 12\right)^2-\left(\frac 12\right)^2=\left[\left(1+\frac 12\right)+\frac 12\right]\cdot\left[\left(1+\frac 12\right)-\frac 12\right]\iff$ $BC=\sqrt 2$ .

Otherwise. The given circles are tangent $\iff$ $BC$ is common tangent to given circles $\iff BC=2\sqrt{1\cdot \frac 12}\iff$ $BC=\sqrt 2$ .

$\blacktriangleright\ \sqrt 2=\sqrt {(1+x)^2-x^2}+\sqrt {\left(\frac 12+x\right)^2-\left(\frac12-x\right)^2}\iff$ $\sqrt 2=\sqrt {2x+1}+\sqrt {2x}\iff$ $\sqrt 2-\sqrt {2x}=\sqrt {2x+1}\iff$ $2+2x-4\sqrt x=2x+1\iff$ $\boxed{x=\frac 1{16}}$ .

$\blacktriangleright\ \sqrt 2=\sqrt {(1+y)^2-(1-y)^2}+\sqrt {\left(\frac 12+y\right)^2-\left(\frac12-y\right)^2}\iff$ $\sqrt 2=\sqrt {4y}+\sqrt {2y}\iff$ $\sqrt y=\frac {1}{\sqrt 2+1}\iff$ $y=\frac 1{3+2\sqrt 2}\iff$ $\boxed{y=3-2\sqrt 2}$ .



PP4 (Ruben Dario Auqui). Let $\triangle ABC$ with the incircle $w=C(I,r)$ what touches $AB$ , $AC$ at $F$ , $E$ respectively. Denote the incircle $w_b=C\left(I_b,r_b\right)$ ,

the projection $K$ of $I_b$ on $EF$ and the point $L\in EF\cap w_b$ such that $K\in (EL)$ . Prove that $EF=2\cdot KL\iff C=90^{\circ}$ .


Proof. Denote the midpoint $M$ of $[EF]$ . Since $AIKI_b$ is a rectangle obtain that $AM=I_bK$ and $EF=2\cdot KL\iff$ $ME=KL\iff$ $\triangle AME\equiv\triangle I_bKL\iff$

$AE=I_bL\iff$ $s-a=r_b\iff$ $(s-a)(s-b)=S\iff$ $(s-a)(s-b)=s(s-c)\iff$ $\tan\frac C2=\sqrt {\frac {(s-a)(s-b)}{s(s-c)}}=1\iff C=90^{\circ}$ . Remark. $A=90^{\circ}\iff$

$a=2R\iff$ $S=(s-b)(s-c)\iff$ $S=s(s-a)\iff$ $s(s-a)=(s-b)(s-c)\iff$ $r=s-a\iff$ $r_a=s\iff$ $r_b=s-c\iff$ $r_c=s-b$ .



PP5. Let an interior $X$ of $\triangle ABC$ so that $XA\cdot BC=XB\cdot CA=XC\cdot AB$ and the incenters $I_1$ , $I_2$ , $I_3$ of $\triangle BXC$ , $\triangle CXA$ , $\triangle AXB$. Prove that $AI_1\cap BI_2\cap CI_3\ne\emptyset$ .

Proof. $XA\cdot BC=XB\cdot CA=XC\cdot AB\iff$ $(\exists )\ m>0$ so that $\frac {XA}{bc}=\frac {XB}{ca}=\frac {XC}{ab}=m$ . Let $D\in BC$ so that $\widehat{DXB}\equiv\widehat{DXC}$ . Thus, $\frac {XB}{XC}=\frac {DB}{DC}\iff$

$\frac {DB}{DC}=\frac cb\iff D\in AI$ , where $I$ is the incentre of $\triangle ABC$ . Let $S\in AI_1\cap IX$ and apply the Menelaus' teorem to $\overline{ASI_1}/\triangle IXD\ :\ \frac{AI}{AD}$ $\cdot\frac {I_1D}{I_1X}\cdot\frac {SX}{SI}=1\iff$

$\frac {SI}{SX}=\frac {AI}{AD}\cdot\frac {I_1D}{I_1X}=$ $\frac {b+c}{2s}\cdot \frac {a}{XB+XC}=$ $\frac {b+c}{2s}\cdot \frac {a}{am(b+c)}\implies$ $\frac {SI}{SX}=\frac 1{2ms}$ , what is symetrically w.r.t. $\{a,b,c\}$ . So $S\in AI_1\cap BI_2\cap CI_3$ (Sharygin G.O. - 2013).



PP6 (MIguel Ochoa Sanchez). Let $\triangle ABC$ with the excentre $I_c$ . Denote the midpoint $M$ of $[BC]$ , the foot $V\in (AC)$ of the $B$-bisector $BV$ ,

the midpoint $H$ of $[BV]$ and the intersections $O\in HC\cap AM$ , $P\in AH\cap VO$ . Prove that $P\in I_cB\iff a=2c$ (an easy extension).


Proof. Apply the Menelaus' theorem to $:\ \left\{\begin{array}{ccccccc}
\overline{AHT}/\triangle BVC\ : & \frac {AV}{AC}\cdot\frac {TC}{TB}\cdot\frac {HB}{HV}=1 & \iff & \frac {TB}{TC}=\frac {c}{a+c}\ & \iff & \frac {TB}{c}=\frac {TC}{a+c}=\frac {a}{a+2c}=\frac {MC}{\frac {a+2c}{2}}=\frac {MT}{\frac a2} & (1)\\\\
\overline{AVC}/\triangle BHT\ : & \frac {AT}{AH}\cdot\frac {VH}{VB}\cdot\frac {CB}{CT}=1 & \stackrel{(1)}{\iff} & \frac {AT}{AH}=\frac {2(a+c)}{a+2c}\ & \iff & \frac {AT}{2(a+c)}=\frac {AH}{a+2c}=\frac {HT}{a} & (2)\\\\
\overline{AOM}/\triangle HTC\ : & \frac {AH}{AT}\cdot\frac {MT}{MC}\cdot\frac {OC}{OH}=1 & \stackrel{(1\ \wedge\ 2)}{\iff} & \frac {OC}{OH}=\frac {2(a+c)}{a+2c}\cdot\frac {a+2c}{a}\ & \iff & \frac {OC}{2(a+c)}=\frac {OH}{a}=\frac {HC}{3a+2c} & (3)\\\\
\overline{POV}/\triangle AHC\ : & \frac {PH}{PA}\cdot\frac {VA}{VC}\cdot\frac {OC}{OH}=1 & \stackrel{(3)}{\iff} & \frac {PA}{PH}=\frac ca\cdot \frac {2(a+c)}{a}\ & \iff & \frac {PA}{2c(a+c)}=\frac {PH}{a^2}=\frac {AH}{2c^2+2ac-a^2} & (4)\end{array}\right\|$ .

Let $S\in I_cB\cap AH$ . Thus, the division $\{A,T;H,S\}$ is harmonically, i.e. $\frac {SA}{ST}=\frac {HA}{HT}\stackrel{(2)}{\iff}$ $\frac {SA}{ST}=\frac {a+2c}{a}\iff$ $\frac {SA}{a+2c}=\frac {ST}{a}=\frac {AT}{2c}\ \ (5)$ . So $\frac {SA}{AH}=\frac {SA}{AT}\cdot\frac {AT}{AH}\stackrel{(2\ \wedge\ 5)}{=}$

$\frac {a+2c}{2c}\cdot \frac {2(a+c)}{a+2c}\iff$ $\frac {SA}{AH}=\frac {a+c}{c}\ (6)$ . In conclusion, $P\in I_cB\iff$ $S\equiv P\iff$ $\frac {SA}{AH}=$ $\frac{PA}{AH}\stackrel{(4\ \wedge\ 6)}{\iff}\ \frac {a+c}{c}=$ $\frac {2c(a+c)}{2c^2+2ac-a^2}\iff$ $a^2=2ac\iff a=2c$ .



PP7 (Carnot). Let $\triangle ABC$ with the circumcircle $w=C(O,R)$ and the midpoints $M,N,P$ of $[BC]$ , $[CA]$ , $[AB]$ respectively. Prove that $\boxed{OM+ON+OP=R+r}$ .

Proof. Apply the Ptolemy's theorem to the cyclical quadrilaterals $OPAN$ , $OMBP$ and $ONCM$ . Appear two cases, when $\triangle ABC$ is acute or nonacute:

$\blacktriangleright\ \triangle ABC\ \mathrm{is\ acute}\ :\ \left\{\begin{array}{cccc}
OPAN\ : & R\cdot \frac a2=OP\cdot\frac b2+ON\cdot \frac c2 & \implies & b\cdot OP+c\cdot ON=aR\\\\
OMBP\ : & R\cdot\frac b2=OM\cdot \frac c2+OP\cdot\frac a2 & \implies & c\cdot OM+a\cdot OP=bR\\\\
ONCM\ : & R\cdot\frac c2=ON\cdot \frac a2+OM\cdot\frac b2 & \implies & a\cdot ON+b\cdot OM=bR\\\\
& [OBC]+[OCA]+[OAB]=2S & \implies & a\cdot OM+b\cdot ON+c\cdot OP=2sr\end{array}\right\|$ $\bigoplus$ $\implies$ $\boxed{OM+ON+OP=R+r}$ .

$\blacktriangleright\ A\ge 90^{\circ}\ :\ \left\{\begin{array}{cccc}
OPAN\ : & R\cdot \frac a2=OP\cdot\frac b2+ON\cdot \frac c2 & \implies & b\cdot OP+c\cdot ON=aR\\\\
OMBP\ : & R\cdot\frac b2=-OM\cdot \frac c2+OP\cdot\frac a2 & \implies & -c\cdot OM+a\cdot OP=bR\\\\
ONCM\ : & R\cdot\frac c2=ON\cdot \frac a2-OM\cdot\frac b2 & \implies & a\cdot ON-b\cdot OM=cR\\\\
& -[OBC]+[OCA]+[OAB]=2S & \implies & -a\cdot OM+b\cdot ON+c\cdot OP=2sr\end{array}\right\|$ $\bigoplus$ $\implies$ $\boxed{-OM+ON+OP=R+r}$ .



PP8 (Ruben Dario). Let an $A$-isosceles $\triangle ABC$ for which denote $D\in (AC)\ ,\ BD\perp AC$ and the bisector $[BM$

of $\widehat{ABD}$ , where $M\in (AD)$ . Prove that $AM=m\cdot AB\iff \frac {DM}{DC}=\frac {m(1+m)}{1-m}\iff\tan\widehat{ABM}=m$.


Proof. Denote $AB=AC=b$ , $MD=x$ and $N\in (AB)$ so that $MN\perp AB$ . Apply the theorem of the $B$-bisector in $\triangle ABD\ :\ \frac {BA}{BD}=$ $\frac {MA}{MD}\iff$ $\frac b{BD}=\frac {mb}x\iff$

$\boxed{BD=\frac xm}$ . Observe that $\left\{\begin{array}{c}
MN=MD=x\\\\
BN=BD=\frac xm\end{array}\right\|$ and $BN=b-\frac xm\ ,\ DC=(1-m)b-$ $x\ ,\ \tan\widehat{ABM}=$ $\frac {DM}{DB}=\frac x{\frac xm}=m\iff $ $\boxed{\tan\widehat{ABM}=m}$ . Therefore,

$BNMD$ is cyclical deltoid $\implies$ $AN\cdot AB=AM\cdot AD\iff$ $b\left(b-\frac xm\right)=mb\cdot (mb+x)\iff$ $bm-x=m^2(mb+x)\iff$ $\boxed{\frac bx=\frac {1+m^2}{m\left(1-m^2\right)}}\ (*)$ . Otherwise,

apply the Pythagoras' theorem in the $N$-right $\triangle ANM\ :\ NA^2+NM^2=AM^2\iff$ $\left(b-\frac xm\right)^2+x^2=(mb)^2\iff$ $(x-mb)^2+m^2x^2=m^4b^2\iff$

$f(x)\equiv \left(1+m^2\right)x^2-2mbx+m^2b^2\left(1-m^2\right)=0$ , where $\Delta'=m^6b^2\iff$ $f(x)=0$ $\odot\begin{array}{ccccc}
\nearrow & x_1 & = & bm\ (\mathrm{abs.}) & \searrow\\\\
\searrow & x_2 & = & \frac {bm\left(1-m^2\right)}{1+m^2} & \nearrow\end{array}\odot$ . Therefore, $\boxed{x=\frac {mb\left(1-m^2\right)}{1+m^2}}$ . In conclusion,

$\frac {DC}{DM}=\frac {b(1-m)-x}{x}=$ $(1-m)\cdot\frac bx-1\ \stackrel{(*)}{=}\ \frac {1+m^2}{m(1+m)}-1=$ $\frac {1-m}{m(1+m)}\implies$ $\boxed{\frac {DM}{DC}=\frac {m(m+1)}{1-m} }$ . Particular case. $m=\frac 12\iff$ $\frac{DM}{DC}=\frac 32\iff $ $\tan\widehat{ABM}=\frac 12$ .



PP9 (Ruben Dario). Let an $A$-right $\triangle ABC$ with $\left\{\begin{array}{c}
M\in (BC)\\\\
N\in (CA)\\\\
P\in (AB)\end{array}\right\|$ so that $\left\{\begin{array}{ccccc}
BP & = & CN & = & x\\\\
AN & = & BM & = & z\\\\
AP & = & CM & = & y\end{array}\right\|$ . Prove that $m\left(\widehat{NMP}\right)=135^{\circ}$ .

Proof 1. Prove easily that $\left\{\begin{array}{ccccccc}
x & = & s-a\\\\
y & = & s-b\\\\
z & = & s-c\end{array}\right\|$ and $AM\cap BN\cap CP\ne\emptyset$ . The area $[NMP]=\frac {1+\frac zy\cdot \frac xz\cdot \frac yx}{\left(1+\frac zy\right)\left(1+\frac xz\right)\left(1+\frac yx\right)}\cdot [ABC]=$

$\frac {2xyz}{(y+z)(z+x)(x+y)}\cdot\frac {(x+y)(x+z)}2\implies$ $\boxed{[NMP]=\frac{xyz}{y+z}}$ . Apply the identity for any $\triangle ABC\ :\ \boxed{4S=\left(b^2+c^2-a^2\right)\tan A}$ . Thus, $m\left(\widehat{NMP}\right)=135^{\circ}\iff$

$\tan\widehat{NMP}=-1\iff$ $4\cdot [NMP]=$ $-\left(MN^2+NP^2-NP^2\right)\iff$ $\frac {4xyz}{y+z}=$ $-\left(x^2+y^2-2xy\cos C\right)-\left(x^2+z^2-2xz\cos B\right)+\left(y^2+z^2\right)\iff$

$2yz=(y+z)(-x+y\cos C+z\cos B)\iff$ $2yz=-x(y+z)+y(x+z)+z(x+y)$ , what is truly.

Proof 2. Denote $\left\{\begin{array}{ccc}
m\left(\widehat{BMP}\right)=u\\\\
 m\left(\widehat{CMN}\right)=v\\\\
m\left(\widehat{NMP}\right)=\phi\end{array}\right\|$ , where $(u+v)+\phi =180^{\circ}$ and $\left\{\begin{array}{ccc}
U\in (BM) & ; & PU\perp BC\\\\
V\in (CM) & ; & NV\perp BC\end{array}\right\|$ . Observe that $AB\perp AC\iff$ $b^2+c^2=a^2\iff$

$(x+y)^2+(x+z)^2=(y+z)^2\iff$ $x^2+x(y+z)=yz\iff$ $(x+y)(x+z)=2yz\iff$ $\left\{\begin{array}{cccc}
x(x+y) & = & z(y-x) & (1)\\\\
x(x+z) & = & y(z-x) & (2)\end{array}\right\|$ . Therefore,

$\blacktriangleright\ \tan u=\frac {UP}{UM}=\frac {x\sin B}{z-x\cos B}=$ $\frac {x\cdot \frac {x+z}{y+z}}{z-x\cdot\frac {x+y}{y+z}}=$ $\frac {x(x+z)}{z(y+z)-x(x+y)}\ \stackrel{(1\wedge 2)}{=}\  \frac {y(z-x)}{z(y+z)-z(y-x)}$ $\implies \boxed{\tan u=\frac {y(z-x)}{z(z+x)}}$ .

$\blacktriangleright\ \tan v=\frac {VN}{VM}=\frac {x\sin C}{y-x\cos C}=$ $\frac {x\cdot \frac {x+y}{y+z}}{y-x\cdot\frac {x+z}{y+z}}=$ $\frac {x(x+y)}{y(y+z)-x(x+z)}\ \stackrel{(1\wedge 2)}{=}\ \frac {z(y-x)}{y(y+z)-y(z-x)}$ $\implies \boxed{\tan v=\frac {z(y-x)}{y(y+x)}}$ .

$\tan (u+v)=\frac {\tan u+\tan v}{1-\tan u\tan v}=\frac {\frac {y(z-x)}{z(z+x)}+\frac {z(y-x)}{y(y+x)}}{1-\frac {y(z-x)}{z(z+x)}\cdot \frac {z(y-x)}{y(y+x)}}=$ $\frac {y^2(z-x)(y+x)+z^2(z+x)(y-x)}{yz[(z+x)(y+x)-(z-x)(y-x)]}=$ $\frac {y^2[(yz+xz)-x(x+y)]+z^2[(yz+xy)-x(x+z)]}{2xyz(y+z)}\ \stackrel{(1\wedge 2)}{=}$

$\frac {y^2[(yz+xz)-z(y-x)]+z^2[(yz+xy)-y(z-x)]}{2xyz(y+z)}=$ $\frac {2y^2xz+2z^2xy}{2xyz(y+z)}=\frac {2xyz(y+z)}{2xyz(y+z)}=1$ $\implies$ $\tan\phi=-\tan(u+v)=-1\implies$ $m\left(\widehat{NMP}\right)=135^{\circ}\ .$


An easy extension (own). Let $\triangle ABC$ with $\left\{\begin{array}{c}
M\in (BC)\\\\
N\in (CA)\\\\
P\in (AB)\end{array}\right\|$ so that $\left\{\begin{array}{ccccc}
BP & = & CN & = & x\\\\
AN & = & BM & = & z\\\\
AP & = & CM & = & y\end{array}\right\|$ and $m\left(\widehat{NMP}\right)=\phi$ . Prove that $r\cot\phi +2R\cot A+r\cot\frac A2=0$ .


Lemma. $\triangle ABC\ \ \wedge\ \ \left\{\begin{array}{cc}
D\in (BC)\ ; & DB=xa\\\\
E\in (CA)\ ; & EC=yb\\\\
F\in (AB)\ ; & FA=zc\end{array}\right\|$ , where $\{x,y,z\}\subset (0,1)$ . Prove that $\left\{\begin{array}{ccc}
[DEF] & = & f(x,y,z)\cdot [ABC]\ \ \mathrm{where}\\\\
f(x,y,z) & = & (1-x)(1-y)(1-z)+xyz\end{array}\right\|\ .$

Proof. $\left\{\begin{array}{c}
DC=(1-x)a\\\\
EA=(1-y)b\\\\
FB=(1-z)c\end{array}\right\|$ and $\frac {[DEF]}{[ABC]}=\frac {[ABC]-[AEF]-[BFD]-[CDE]}{[ABC]}=1-\frac {[AEF]}{[ACB]}-\frac {[BFD]}{BAC]}-\frac {[CDE]}{[CBA]}=$ $1-\frac {AE}{AC}\cdot\frac {AF}{AB}-\frac {BF}{BA}\cdot\frac {BD}{BC}-$

$\frac {CD}{CB}\cdot\frac {CE}{CA}=$ $1-(1-y)z-(1-z)x-(1-x)y=1-(x+y+z)+(xy+yz+zx)\implies$ $\boxed{\frac {[DEF]}{[ABC]}=(1-x)(1-y)(1-z)+xyz}\ (*)$ .


Application. Let $\triangle ABC$ and $\left\{\begin{array}{cc}
\{D,M\}\subset (BC)\ ; & DB=MC=xa\\\\
\{E,N\}\subset (CA)\ ; & EC=NA=yb\\\\
\{F,P\}\subset (AB)\ ; & FA=PB=zc\end{array}\right\|$ , where $\{x,y,z\}\subset (0,1)$ . Prove that $[DEF]=[MNP]$ .

Proof. Apply the relation $(*)$ of the upper lemma using the evident remark $f(1-x,1-y,1-z)=f(x,y,z)$ for any $\{x,y,z\}\subset\mathbb R$ .


Lema. Let $\triangle ABC$ with $\left\{\begin{array}{c}
AB=AC=1\\\\
A\ <\ 90^{\circ}\end{array}\right\|$ and the orthocentre $H$ . For a line $d$ , $H\in d$ denote

$\left\{\begin{array}{c}
D\in (AB)\cap d\\\\
E\in (AC)\cap d\end{array}\right\|$ and $P$ so that $\left\{\begin{array}{c}
PD=CD\\\\
PE=BE\end{array}\right\|$ . Prove that $\frac 1{AD}+\frac 1{AE}=1+\frac 1{\cos A}=\frac {\tan A}{\tan\frac A2}$ .


Proof. Denote the midpoint $M$ of $[BC]\ ,\ BC=a$ and I"ll apply an well-known relation $\frac {DB}{DA}\cdot MC+\frac {EC}{EA}\cdot MB=\frac {HM}{HA}\cdot BC\ .$ Denote $AD=x$ , $AE=y$ and the previous

relation becomes $\frac {1-x}x+\frac {1-y}y=$ $2\cdot\frac {HM}{HA}\iff$ $\frac 1x+\frac 1y=2\cdot \frac {AM}{AH}= $ $\frac {2\cos \frac A2}{\frac {\cos A}{\cos\frac A2}}=$ $\frac {2\cos^2\frac A2}{\cos A}=$ $\frac {1+\cos A}{\cos A}\iff$ $\frac 1x+\frac 1y=$ $1+\frac 1{\cos A}\ ,$ i.e. $\frac 1{AD}+\frac 1{AE}=1+\frac 1{\cos A}\ (*)\ .$


PP10. Let $\triangle ABC$ with $AB=AC\ ,\ A<90^{\circ}$ and the orthocentre $H$ . For $d\ ,\ H\in d$ let $\left\{\begin{array}{c}
D\in (AB)\cap d\\\\
E\in (AC)\cap d\end{array}\right\|$ and $P$ so that $\left\{\begin{array}{ccc}
PD & = & CD\\\\
PE & = & BE\end{array}\right\|$ . Prove that $PH\perp DE
\ .$

Proof. Denote w.l.o.g. $DE$ separate $A$ , $P$ and $AB=AC=1\ .$ Thus, $\left\{\begin{array}{ccc}
AD=x & \implies & BD=1-x\\\\
AE=y & \implies & CE=1-y\end{array}\right\|\implies$ $DE^2=x^2+y^2-2xy\cos A\ ,\ \frac {HD}x=\frac {HE}y=\frac {DE}{x+y}$ and

$\boxed{HD^2-HE^2=\frac {x-y}{x+y}\cdot \left(x^2+y^2-2xy\cos A\right)}\ (1)\ .$ . Therefore, $\left\{\begin{array}{ccccc}
PD^2 & = & CD^2 & = & x^2+1-2x\cos A\\\\
PE^2 & = & BE^2 & = & y^2+1-2y\cos A\end{array}\right\| \implies$ $\boxed{PD^2-PE^2=(x-y)(x+y-2\cos A)}\ (2)\ .$

In conclusion, $PH\perp DE\iff$ $PD^2-PE^2=HD^2-HE^2\iff$ $xy(1+\cos A)=(x+y)\cos A\iff$ $\frac 1x+\frac 1y=1+\frac 1{\cos A}$ , what is truly from the previous lemma.



PP11. Let $ABCD$ be a quadrilateral with $m\left(\widehat{ADC}\right)=m\left(\widehat{BCD}\right)\neq 90^{\circ}\ .$ Denote the points $\left\{\begin{array}{ccc}
E\in AC & ; & BE\parallel AD\\\\
F\in BD & ; & AF\parallel BC\end{array}\right\|\ .$ Prove that $EF\parallel CD\ .$

Proof 1. Denote $I\in AC\cap BD\ .$ Thus, $\left\{\begin{array}{cccc}
BE\parallel AD & \implies & \frac {IE}{IA}=\frac {IB}{ID}\\\\
AF\parallel BC & \implies & \frac {IA}{IC}=\frac {IF}{IB}\end{array}\right\|$ $\implies$ $IE\cdot ID=IA\cdot IB=IF\cdot IC\implies$ $\frac {IE}{IC}=\frac {IF}{ID}\implies EF\parallel CD\ .$

Proof 2. Denote $I\in AC\cdot BD\ .$ Thus, $\left\{\begin{array}{ccccccc}
BE\parallel AD & \implies & [ABD]=[AED] & \implies & [DIE]=[AIB] & \implies & ID\cdot IE=IA\cdot IB\\\\
AF\parallel BC & \implies & [BAC]=[BFC] & \implies & [CIF]=[AIB] & \implies & IC\cdot IF=IA
\cdot IB\end{array}\right\|$ $\implies$

$IE\cdot ID=IA\cdot IB=IF\cdot IC\implies$ $\frac {IE}{IC}=\frac {IF}{ID}\implies EF\parallel CD\ .$ I used the notation $[XYZ]$ - the area of the triangle $XYZ$ .[/color]


PP12. Let $\triangle ABC$ with $A=120^{\circ}$ , the incircle $w=\mathbb C(I,r)$ and $\left\{\begin{array}{ccc}
D\in BC\cap w\\\\
E\in CA\cap w\\\\
F\in AB\cap w\end{array}\right\|$ . Prove that $DE\perp DF$ .

Proof 1. Denote $\left\{\begin{array}{c}
K\in EF\cap AD\\\\
L\in EF\cap BC\end{array}\right\|$ . Thus, $\left\{\begin{array}{ccc}
\widehat{FCB}\equiv \widehat{FCA} & \implies & \frac {FA}{FB}=\frac ba\\\\
\frac {DB}c=\frac {DC}b=\frac a{b+c} & \implies & DB=\frac {ac}{b+c}\\\\
DA=\frac {2bc\cos\frac A2}{b+c}\ \wedge\ A=120^{\circ} & \implies & DA=\frac {bc}{b+c}\ (*)\end{array}\right\|$ $\implies$ $\frac {DA}{DB}=\frac ba=\frac {FA}{FB}\implies$

$\boxed{\frac {DA}{DB}=\frac {FA}{FB}}\implies$ the ray $[DF$ is the bisector of the angle $\widehat{BDA}$ . Prove analogously that the ray $[DE$ is the bisector of the angle $\widehat{CDA}$ .

Remark. Since the division $(E,K,F,L)$ is harmonically and using an well-known property obtain that $\widehat{FDB}\equiv\widehat{FDA}\implies DE\perp DF$ . Can easily prove the relation $(*)$ . Let

$X\in AB$ so that $A\in (BX)$ and $AX=AC$ . Observe that $\triangle ACX$ is an equilaterally, $CX=b$ and $AD\parallel CX\implies\frac {AD}{CX}=\frac {BA}{BX}\implies$ $\frac {AD}b=\frac {c}{b+c}\implies$ $\boxed{AD=\frac {bc}{b+c}}$ .

Proof 2 (Mihai Miculiţa). Observe that the ray $[AB$ is the exterior $A$-bisector and the ray $[CF$ is the interior $C$-bisector of $\triangle ADC$ . Thus, the point $F$ is the $C$-excenter of $\triangle ADC$

and belongs to the $D$-exterior bisector of $\triangle ADC$ , i.e. the ray $[DF$ is the bisector of $\widehat{ADB}$ . Prove analogously that the ray $[DE$ is the bisector of $\widehat{ADC}$ .

Remarca. Superba solutie, dle profesor ! Deseori prof. N.N. Mihaileanu (l-am avut profesor la facultate) spunea ca "geometria

este o "fantana cu apa vie " si daca vrei sa mai descoperi ceva in matematica intoarce-te la ea pentru a-ti potoli setea"
.



PP13 (GMB1 - 2015). Let $\triangle ABC$ and the cevian $\triangle DEF$ of the interior point $P$ , where $D\in BC$ , $E\in CA$ , $F\in AB$ .

Denote: the midpoint $M$ of the side $[BC]\ ;\ S\in FM\cap AC\ ;$ the point $R\in AB$ so that $SR\parallel BC$ . Prove that $R\in DE$ .


Proof. Apply the Menelaus' theorem to the transversal $\overline{FMS}/\triangle ABC\ :\ \frac {SC}{SA}\cdot\frac {FA}{FB}\cdot\frac {MB}{MC}=1\implies$ $\boxed{\frac {SC}{SA}=\frac {FB}{FA}}\ (1)$ . Observe that $SR\parallel BC\iff$ $\frac {RB}{RA}=\frac {SC}{SA}\ \stackrel{(1)}{\iff}$

$\boxed{\frac {RB}{RA}=\frac {FB}{FA}}\ (2)$ . Therefore, $\frac {RB}{RA}\cdot\frac {EA}{EC}\cdot \frac {DC}{DB}\ \stackrel{(2)}{=}\ \frac {FB}{FA}\cdot\frac {EA}{EC}\cdot \frac {DC}{DB}=1$ because $\triangle DEF$ is the cevian triangle of $P$ . In conclusion, $\frac {RB}{RA}\cdot\frac {EA}{EC}\cdot \frac {DC}{DB}=1$ , i.e. $R\in DE$ .



PP14. Let a square $ABCD$ with $AB=1$ and the equilateral $\triangle DEF$ so that $D\in (AF)$ and $AD$ doesn't

separate $B$ and $E$ . Prove that $(\exists )\ P\in (CD)$ so that $P\in AE\cap BF\implies m\left(\widehat{AED}\right)=45^{\circ}$ .


Proof 1. Denote $DF=a$ , $PD=x<1$ , the midpoint $G$ of $[DF]$ and $m\left(\widehat{AED}\right)=\phi$ . Thus, $(\exists )\ P\in (CD)\ ($denote $PD=x)$ so that $\{P\}=AE\cap BF\implies$

$\left\{\begin{array}{ccccccc}
PD\parallel AB & \iff & \frac {PD}{AB}=\frac {FD}{FA} & \iff & \frac x1=\frac a{a+1} & \iff & x=\frac a{a+1}\\\\
PD\parallel EG & \iff & \frac {PD}{EG}=\frac {AD}{AG} & \iff & \frac {x}{a\sqrt 3}=\frac 1{a+2} & \iff & x=\frac {a\sqrt 3}{a+2}\end{array}\right\|$ $\implies \frac a{a+1}=x=\frac {a\sqrt 3}{a+2}\implies$ $\left\{\begin{array}{ccc}
a=\frac {2-\sqrt 3}{\sqrt 3-1} & \implies & a=\frac {\sqrt 3-1}2\\\\
x=\frac {\sqrt 3-1}{\sqrt 3+1} & \implies & x=2-\sqrt 3\end{array}\right\|$ $\implies$

$\tan\widehat{DAP}=\frac {PD}{AD}=\frac x1=x=2-\sqrt 3\implies$ $m\left(\widehat{DAP}\right)=15^{\circ}\implies$ $\phi =m\left(\widehat{FDE}\right)-m\left(\widehat{DAP}\right)=$ $60^{\circ}-15^{\circ}\implies$ $\phi =45^{\circ}$ .

Proof 2. Denote $DF=a$ and $m\left(\widehat{AED}\right)=\phi$ . Thus, $PD\parallel AB\iff \frac {PD}{AB}=\frac {FD}{FA}\iff$ $\boxed{PD=\frac a{a+1}}\ (*)$ . Hence $\tan\left(60^{\circ}-\phi\right)=\tan\widehat{PAD}=$ $\frac {DP}{DA}\ \stackrel{(*)}{=}\ \frac a{a+1}=$

$\frac {FE}{FA}=\frac {\sin\widehat{EAF}}{\sin\widehat{AEF}}=$ $\frac {\sin\left(60^{\circ}-\phi\right)}{\sin\left(60^{\circ}+\phi\right)}\implies$ $\tan\left(60^{\circ}-\phi\right)=$ $\frac {\sin\left(60^{\circ}-\phi\right)}{\sin\left(60^{\circ}+\phi\right)}\implies$ $\cos \left(60^{\circ}-\phi\right)=\cos \left(30^{\circ}-\phi\right)\implies$ $\left(60^{\circ}-\phi\right)+ \left(30^{\circ}-\phi\right)=0\implies \phi =45^{\circ}$ .



PP15 (M. O. Sanchez). Let $\triangle$ $ABC$ with the centroid $G,$ the circumcircle $w$ and $\left\{\begin{array}{ccc}
D\in AG\cap BC & ; & P\in AD\cap w\\\
E\in BG\cap CA & ; & Q\in BE\cap w\\\
F\in CG\cap AB & ; & R\in CF\cap w\end{array}\right\|\ .$ Prove that $AD\cdot AP+BE\cdot BQ+CF\cdot CR =a^2+b^2+c^2.$

Proof. Observe that $AD\cdot AP=AD\cdot (AD+DP)=$ $AD^2+DA\cdot DP=m_a^2+DB\cdot DC=$ $m_a^2+\left(\frac a2\right)^2=$ $\frac {4m_a^2+a^2}4=$

$\frac {2\left(b^2+c^2\right)-\cancel{a^2}+\cancel{a^2}}4=$ $\frac {b^2+c^2}2$ $\implies$ $\sum AD\cdot AP=\sum\frac {b^2+c^2}2=$ $\sum a^2$ $\implies $ $\boxed{AD\cdot AP+BE\cdot BQ+CF\cdot CR =a^2+b^2+c^2}\ .$


PP16. Let $\triangle$ $ABC$ with the incenter $I,$ the circumcircle $w$ and $\left\{\begin{array}{ccc}
D\in AI\cap BC & ; & P\in AD\cap w\\\
E\in BI\cap CA & ; & Q\in BE\cap w\\\
F\in CI\cap AB & ; & R\in CF\cap w\end{array}\right\|\ .$ Prove that $AD\cdot AP+BE\cdot BQ+CF\cdot CR =bc+ca+ab.$

Proof. Observe that $\triangle ABP\sim\triangle ADC\iff$ $\frac {AB}{AD}=\frac {AP}{AC}\iff$ $AD\cdot AP=bc\implies$ $\boxed{AD\cdot AP+BE\cdot BQ+CF\cdot CR =bc+ca+ab}\ ..$

Extension. Let $\triangle$ $ABC$ with the circumcircle $w$ and for an interior point $M$ with the barycentrical coordinates $(x,y,z)\ ,\ x+y+z=1$

w.r.t. $\triangle ABC$ denote $\left\{\begin{array}{ccc}
D\in AM\cap BC & ; & P\in AD\cap w\\\
E\in BM\cap CA & ; & Q\in BE\cap w\\\
F\in CM\cap AB & ; & R\in CF\cap w\end{array}\right\|\ .$ Prove that $AD\cdot AP+BE\cdot BQ+CF\cdot CR=\sum\frac {c^2y+b^2z}{y+z}\ .$


Proof. $\frac {DB}{DC}=\frac zy\iff$ $\frac {DB}z=\frac {DC}y=\frac a{y+z}\ .$ Apply the Stewart's relation to the cevian $AD$ in $\triangle ABC$ and obtain that $a\cdot AD^2+a\cdot DB\cdot DC=c^2\cdot DC+b^2\cdot DB\implies$

$\cancel a\cdot AD^2+\cancel a\cdot\frac {az}{y+z}\cdot \frac {ay}{y+z}=c^2\cdot \frac {\cancel ay}{y+z}+b^2\cdot  \frac {\cancel az}{y+z}\implies$ $(y+z)^2\cdot AD^2+a^2yz=$ $(y+z)\left(c^2y+b^2z\right).$ Therefore, $AD\cdot AP=$ $AD^2+DA\cdot DP=$

$AD^2+DB\cdot DC=$ $\frac {c^2y+b^2z}{(y+z)}-\frac {a^2yz}{(y+z)^2}+\frac {az}{y+z}\cdot\frac {ay}{y+z}\implies$ $AD\cdot AP=\frac {c^2y+b^2z}{(y+z)}\implies$ $AD\cdot AP+BE\cdot BQ+CF\cdot CR=\sum\frac {c^2y+b^2z}{y+z}\ .$

Particular cases $:$

$1\blacktriangleright\ G\left(\frac 13,\frac 13,\frac 13\right)\implies$ $\sum AD\cdot AP=\sum 
\frac {b^2+c^2}2=a^2+b^2+c^2.$

$2\blacktriangleright\ I\left(\frac a{2s},\frac b{2s},\frac c{2s}\right)\implies$ $\sum AD\cdot AP=\sum\frac {c^2b+b^2c}{b+c}=ab+ bc+ca.$
This post has been edited 428 times. Last edited by Virgil Nicula, Feb 11, 2018, 3:05 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a