372. The distancies : OI , OI_a , ON a.s.o.

by Virgil Nicula, Apr 26, 2013, 3:39 PM

PP1. Let $\triangle ABC$ with circumcenter $O$ , incenter $I$ and $A$-excenter $I_a$ . Find $OI$ and $OI_a$ .

I used the notations: line $XY$ ; segment $[XY]$ ; the open ray $(XY$ (left) or $XY)$ (right). For example $AB$ is sideline , i.e. $[AB]\subset AB$ and it is the length of $[AB]$ .

Denote $\left\{\begin{array}{ccc}
w=C(O,R) & - & \mathrm{circumcircle}\\\\
\rho=C(I,r) & - & \mathrm{incircle}\\\\
w_a=C\left(I_a,r_a\right) & - & A-\mathrm{excircle}\end{array}\right\|$ , the midpoint $M$ of $[BC]$ , $D\in AI\cap BC$ and $\left\{\begin{array}{ccc}
A'\in (AI\cap w & ; & N\in (A'O\cap w\\\\
T\in AC\cap \rho & ; & L\in AC\cap w_a\end{array}\right\|$ .

Proof 1 (synthetic - shortest). It is well-known that $A'I=A'I_a=A'B=A'C$ , i.e. $IBI_aC$ is inscribed in circle with the diameter $[II_a]$ and $BC=II_a\cdot\cos\frac A2$ , i.e. $II_a=4R\sin\frac A2$

$\blacktriangleright\ \triangle ATI\sim\triangle NCA' \iff$ $\frac {IA}{A'N}=\frac {IT}{A'C}\iff$ $\frac {IA}{2R}=\frac {r}{IA'}\iff$ $IA\cdot IA'=2Rr\iff$ $p_w(I)=-2Rr\iff$ $OI^2-R^2=-2Rr\iff$ $\boxed{OI^2=R^2-2Rr}\ (1)$.

$\blacktriangleright\ \triangle ALI_a\sim\triangle NCA'\iff$ $\frac {I_aA}{A'N}=\frac {I_aL}{A'C}$ $\iff$ $\frac {I_aA}{2R}=\frac {r_a}{I_aA'}\iff$ $I_aA\cdot I_aA'=2Rr_a\iff$ $p_w(I_a)=2Rr_a\iff$ $OI_a^2-R^2=2Rr_a\iff$ $\boxed{OI_a^2=R^2+2Rr_a}\ (2)$ .

Proof 2. Let $d$ and $S\in d$ . For $X$ and $Y$ let $\left\{\begin{array}{c
cc}
X_0=\mathrm{pr}_dX & ; & \delta_d(X)=x\\\\
Y_0=\mathrm{pr}_dY & ; & \delta_d(Y)=y\end{array}\right\|$ . Then $\boxed{XY^2=X_0Y_0^2+(x-y)^2}$ . Here are $d:=BC$ , $X:=O$ and $Y\in\{I,I_a\}$ .

$\blacktriangleright\ OI^2=\left(R\cos A-r\right)^2+\left(\frac {b-c}{2}\right)^2=$ $(R-r)^2-R^2\sin^2A+2Rr-2Rr\cos A+\left(\frac {b-c}{2}\right)^2=$ $R^2-2Rr+r^2-\frac {a^2-(b-c)^2}{4}+2Rr\cdot 2\sin^2\frac A2=$

$R^2-2Rr+r^2-(s-b)(s-c)+\frac {4Rr(s-b)(s-c)}{bc}=$ $R^2-2Rr+\frac {(s-a)(s-b)(s-c)}{s}-(s-b)(s-c)+\frac {a(s-b)(s-c)}{s}\implies$ $\boxed{OI^2=R^2-2Rr}$ .

$\blacktriangleright\  OI_a^2=\left(r_a+R\cos A\right)^2+\left(\frac {b-c}{2}\right)^2=$ $(R+r_a)^2-R^2\sin^2A-2Rr_a+2Rr_a\cos A+\left(\frac {b-c}{2}\right)^2=$ $R^2+2Rr_a+r_a^2-\frac {a^2-(b-c)^2}{4}-2Rr_a(1-\cos A)=$

$R^2+2Rr_a+r_a^2-(s-b)(s-c)-\frac {4Rr_a(s-b)(s-c)}{bc}=$ $R^2+2Rr_a+\frac {s(s-b)(s-c)}{s-a}-(s-b)(s-c)-\frac {a(s-b)(s-c)}{s-a}\implies$ $\boxed{OI_a^2=R^2+2Rr_a}$ .

Proof 3. Let a line $d$ and $S\in d$ . For $X$ and $Y$ define $\left\{\begin{array}{c
cc}
X_0=\mathrm{pr}_dX & ; & \delta_d(X)=x\\\\
Y_0=\mathrm{pr}_dY & ; & \delta_d(Y)=y\end{array}\right\|$ . Then $\boxed{XY^2=X_0Y_0^2+(x-y)^2}$ . Here are $d:=AB$ , $X:=O$ and $Y\in \{I,I_a\}$ .

$\blacktriangleright\ OI^2=\left(r-R\cos C\right)^2+\left[(s-a)-R\sin C\right]^2=$ $r^2+R^2+(s-a)^2-2Rr+2Rr(1-\cos C)-2R(s-a)\sin C=$

$R^2+r^2+(s-a)^2-c(s-a)-2Rr+4Rr\sin^2\frac C2=$ $R^2-2Rr+\frac {(s-a)(s-b)(s-c)}{s}-(s-a)(s-b)+\frac {4Rr(s-a)(s-b)}{ab}=$

$R^2-2Rr-\frac {c(s-a)(s-b)}{s}+\frac {4Rr(s-a)(s-b)}{ab}\implies$ $\boxed{OI^2=R^2-2Rr}$ because $\frac {4Rr}{ab}=\frac cs$ .

$\blacktriangleright\ OI_a^2=\left(r_a-R\cos C\right)^2+\left(s-R\sin C\right)^2=$ $r_a^2+R^2+s^2-2Rr_a\cos C-2Rs\sin C=$ $(R+r_a)^2+s^2-2Rr_a(1+\cos C)-sc=$

$R^2+2Rr_a+r_a^2+s^2-\frac {4Rr_as(s-c)}{ab}-sc=$ $R^2+2Rr_a+r_a^2+s(s-c)-\frac {abc}{s-a}\cdot\frac {s(s-c)}{ab}=$ $R^2+2Rr_a+$ $\frac {s(s-b)(s-c)}{s-a}+s(s-c)-\frac {cs(s-c)}{s-a}=$

$R^2+2Rr_a$ because $\frac {s(s-b)(s-c)}{s-a}+s(s-c)-\frac {cs(s-c)}{s-a}=0$ . In conclusion, $\boxed{OI_a^2=R^2+2Rr_a}$ .

Remark. $IBI_aC\ \mathrm{cyclic}\implies$ $BC=II_a\cdot\sin\widehat{BIC}\implies$ $II_a=\frac {a}{\cos\frac A2}\implies$ $II_a^2=\frac {a^2bc}{(s-a)}=$ $\frac {a\cdot 4Rr_a(s-a)}{s(s-a)}=$ $4R\cdot \frac {ar_a}{s}=$ $4R\cdot \frac {s(r_a-r)}{s}\implies$ $\boxed{II_a^2=4R(r_a-r)}\ (*)$ .

Otherwise, $A'I^2=A'B^2=A'M\cdot A'N=$ $\frac {r_a-r}{2}\cdot 2R=R(r_a-r)\implies$ $A'I^2=R(r_a-r)\implies$ $II_a^2=4\cdot A'I^2\implies$ $II_a^2=4R(r_a-r)$ .

Apply theorem of median in $\triangle OII_a\ : 2\left(OI^2+OI_a^2\right)-II_a^2=$ $4\cdot A'O^2\iff$ $OI^2+OI_a^2\stackrel{(*)}{=}2R^2+2R(r_a-r)\iff$ $\boxed{OI^2+OI_a^2=2R(R+r_a-r)}$ .



PP2. Prove that $(\forall )\ ABC$ with the circumcircle $w=C(O,R)$ and the Nagel point $N$ there is the relation $\boxed{\ ON=R-2r\ }$ .

Proof 1 (metric). Let $\left\{\begin{array}{cc}
D\in AN\cap BC\\\\
E\in BN\cap CA\\\\
F\in CN\cap AB\end{array}\right\|$ . Is well-known that $\left\{\begin{array}{c}
BF=CE=s-a\\\\
CD=AF=s-b\\\\
AE=BD=s-c\end{array}\right\|$ , $\boxed{\frac {NA}a=\frac {ND}{s-a}=\frac {AD}{s}}$ and identity $\boxed{\sum a^2(s-b)(s-c)=4s^2r(R-r)}\ (*)$ .

I denoted $\{A,L\}=\{A,N\}\cap w$ . Apply the Stewart's relation to the cevian $AD$ in $\triangle ABC\ :\ \boxed{a\cdot AD^2+a(s-b)(s-c)=c^2(s-b)+b^2(s-c)}\ (1)$ .

Since $\boxed{R^2-ON^2=NA\cdot NL}\ (2)$ and $DB\cdot DC=DA\cdot DL$ obtain that $NA\cdot NL=\frac as\cdot AD\cdot(ND+DL)=$ $\frac as\cdot AD\cdot \frac {s-a}{s}\cdot AD+\frac as\cdot DB\cdot DC=$

$\frac {s-a}{s^2}\cdot a\cdot AD^2+\frac {a(s-b)(s-c)}{s}$ . Therefore, $NA\cdot NL\stackrel{(1)}{=}$ $\frac {s-a}{s^2}\cdot \left[c^2(s-b)+b^2(s-c)-a(s-b)(s-c)\right]+$ $\frac {a(s-b)(s-c)}{s}=$ $\frac {1}{s^2}\cdot\sum a^2(s-b)(s-c)\stackrel{(*)}{=}$

$4r(R-r)$ . In conclusion, $NA\cdot NL=4r(R-r)$ and from the relation $(2)$ obtain that $ON^2=R^2-NA\cdot NL=$ $R^2-4r(R-r)=(R-2r)^2\implies$ $ON=R-2r$ .

$(*)$ Remark. $\sum a^2(s-b)(s-c)=\sum a^2\left[bc-s(s-a)\right]=$ $abc\sum a-s\cdot\sum a^2(s-a)=$ $8Rs^2r-s^2\cdot \sum a^2+$ $s\cdot\sum a^3=$ $8Rs^2r-s^2\cdot 2\left(s^2-r^2-4Rr\right)+$

$s\left[8s^3-6s\left(s^2+r^2+4Rr\right)+12Rsr\right]=$ $4Rs^2r-4s^2r^2\implies$ $\boxed{\sum a^2(s-b)(s-c)=4s^2r(R-r)}$ . Otherwise. $\sum a^2(s-b)(s-c)=$ $\sum a^2bc\sin^2\frac A2=$

$abc\sum a\sin^2\frac A2=$ $abc\sum 2R\sin A\cdot \sin^2\frac A2=$ $Rabc\sum \sin A(1-\cos A)=$ $4R^2sr\left(\sum\sin A-\frac 12\sum\sin 2A\right)=$ $4R^2sr\left(\frac sR-2\prod\sin A\right)=$ $4R^2sr\left(\frac sR-\frac S{R^2}\right)=$

$4R^2sr\left(\frac sR-\frac {sr}{R^2}\right)=$ $4s^2r(R-r)\implies$ $\sum a^2(s-b)(s-c)=4s^2r(R-r)\ .$

Proof 2 (metric).
This post has been edited 47 times. Last edited by Virgil Nicula, Nov 30, 2016, 5:38 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404400
  • Total comments: 37
Search Blog
a