412. Geometry 5.

by Virgil Nicula, Mar 20, 2015, 1:43 PM

P13. Let $\triangle ABC$ and the $A$-symmedian $AS$ where $S\in (BC).$ Construct two similar triangles $ABP\sim ACQ$ so that

$AB$ separates $\{S,P\}$ and $AC$ separates $\{S,Q\}.$ Denote $M\in SP\cap AB$ and $N\in SQ\cap AC.$ Prove that $MN\parallel PQ.$


Proof. Denote $\left\{\begin{array}{ccccc}
m\left(\widehat{PAB}\right) & = & m\left(\widehat{QAC}\right) & = & x\\\\    m\left(\widehat{PBA}\right) & = & m\left(\widehat{QCA}\right) & = & y\end{array}\right\|.$ Apply the remarkable relations $:\ \left\{\begin{array}{ccccc}
\frac {MS}{MP} & = & \frac {BS}{BP}\cdot\frac {\sin\widehat{MBS}}{\sin\widehat{MBP}} & = & \frac {BS}{BP}\cdot\frac {\sin B}{\sin y}\\\\   
\frac {NS}{NQ} & = & \frac {CS}{CQ}\cdot\frac {\sin \widehat{NCS}}{\sin\widehat{NCQ}} & = & \frac {CS}{CQ}\cdot\frac {\sin C}{\sin y}\end{array}\right\|.$ Thus, $MN\parallel PQ\iff$

$\frac {MS}{MP}=\frac {NS}{NQ}\iff$ $\frac {BS}{BP}\cdot\frac {\sin B}{\cancel{\sin y}}=\frac {CS}{CQ}\cdot\frac {\sin C}{\cancel{\sin y}}\iff$ $\frac {SB}{SC}\cdot \frac {CQ}{BP}\cdot \frac {\sin B}{\sin C}=1\iff$ $\frac {SB}{SC}\cdot \frac bc\cdot \frac bc=1\iff$ $\frac {SB}{SC}=\frac {c^2}{b^2}.$ what is true. In conclusion, $MN\parallel PQ.$


P14. Let $P$ be a point inside $\triangle ABC$ and let $x,y,z$ be the distancies from $P$ to $BC\ ,$ $CA\ ,$ $AB$ respectively. Prove that $PA \cdot PB \cdot PC \ge \frac{R}{2r}\cdot (x+y)(y+z)(z+x)\ .$

Proof. Let $D$, $E$ and $F$ be the feet of the perpendiculars from $P$ to $BC$, $CA$ and $AB$ respectively. Note that $AEPF$ is cyclic and $PA$ is its diameter. Therefore,

$AP\cdot\sin A=EF\iff$ $AP^2\sin^2A=EF^2  = PE^2 + PF^2-2\cdot PE\cdot PF\cdot\cos\widehat{EPF}=$ $y^2+z^2+2yz\cos A=$ $y^2+z^2+2yz\left(\cos^2\frac A2-\sin^2\frac A2\right)$ $\iff$

$AP^2\sin ^2A=(y+z)^2\cos^2\frac A2+(y-z)^2\sin^2\frac A2\ge (y+z)^2\cos^2\frac A2$ $\implies$ $AP\cdot\sin A\ge (y+z)\cdot\cos\frac A2$ $\implies$ $\boxed{2\cdot PA\sin\frac A2\ge (y+z)}\ (*)\ \mathrm{a.s.o.}$ Remark that

$\prod\sin\frac A2=\prod\sqrt{\frac {(s-b)(s-c)}{bc}}=$ $\frac {(s-a)(s-b)(s-c)}{abc}=\frac {sr^2}{4Rrs}=\frac r{4R}\implies$ $\boxed{\prod\sin\frac A2=\frac r{4R}}\ (1)\ .$ In conclusion, from $(*)$ obtain that $\prod\left(2\cdot PA\cdot \sin\frac A2\right)\ge $

$\prod (y+z)\ \stackrel{(1)}{\iff}\ 8\cdot \frac r{4R}\cdot\prod PA\ge \prod (y+z)\iff$ $\frac {2r}R\cdot\prod PA\ge\prod (y+z)\iff$ $\prod PA\ge \frac{R}{2r}\cdot \prod (y+z)\ .$ Observe that $R\ge 2r\implies\boxed{\prod PA\ge \prod (y+z)}\ .$


Lemma (Gemath). Let an acute $\triangle ABC$ with incircle $\omega =C(I,r)$ and circumcircle $\rho =C(O,R)$ . The circles $C_{1}=C(P,r_{1})$ and $C_{2}=(Q,r_{2})$ are tangent internally to $\rho$ in the

same point $A$ . The circle $w$ is tangent externally to $C_{1}$ and is tangent internally to $C_{2}$ . Prove that $\boxed{PQ=\frac{a^{2}(p-a)}{4S}}$, where $2p=a+b+c$ and $S\equiv [ABC]$- the area of $\triangle ABC$.


Are well known $ \left\{:\ \begin{array}{ccc}
IP = r+r_{1}& ; & IQ = r_{2}-r\\ \\ PO = R-r_{1}& ; & PA = r_{1}\\ \\ QO = R-r_{2}& ; & QA = r_{2}\\ \\ OA = R & ; &\boxed{PQ = r_{2}-r_{1}}\end{array}\right\|\ \ \wedge\ \ \left \{\begin{array}{ccc}IO^{2}= R(R-2r) & ; & IA^{2}=\frac{bc(p-a)}{p}=\frac{4Rr(p-a)}{a}\\ \\ IA^{2}-r^{2}= (p-a)^{2}& ; & IA^{2}+4Rr = bc\end{array}\right\|$ and $p(p-a)+(p-b)(p-c) = bc$ .

Proof 1. Denote $ IO = m$, $ IA = n$. Apply the Stewart's theorem in $ \triangle OIA$ for the cevian-rays $ [IP$ and $ [IQ$ :

$\left\{\begin{array}{c}m^{2}r_{1}^{2}+n^{2}(R-r_{1}) = R(r+r_{1})^{2}+Rr_{1}(R-r_{1})\\ \\ m^{2}r_{2}+n^{2}(R-r_{2}) = R(r_{2}-r)^{2}+Rr_{2}(R-r_{2})\end{array}\right\|$ $ \implies$ $ r_{1}(R^{2}+2Rr+n^{2}-m^{2}) = R(n^{2}-r^{2}) = r_{2}(R^{2}-2Rr+n^{2}-m^{2})$ $ \implies$

$ r_{1}(R^{2}+2Rr+bc-4Rr-R^{2}+2Rr) =$ $ R(p-a)^{2}=$ $ r_{2}(R^{2}-2Rr+bc-4Rr-R^{2}+2Rr)$ $ \implies$ $ r_{1}bc = R(p-a)^{2}= r_{2}(bc-4Rr)$ $ \implies$

$ PQ = r_{2}-r_{1}=$ $ \frac{4R^{2}r(p-a)^{2}}{bc(bc-4Rr)}=$ $ \frac{4R^{2}pr(p-a)^{2}}{b^{2}c^{2}(p-a)}=$ $ \frac{4R^{2}pra^{2}(p-a)^{2}}{16R^{2}p^{2}r^{2}(p-a)}$ $ \implies$ $ \boxed{\ PQ =\frac{a^{2}(p-a)}{4S}\ }$.

Proof 2. Apply the Pythagoras' theorem in the triangles :

$ \triangle\ IOP\blacktriangleright$ $ (r+r_{1})^{2}= (R-r_{1})^{2}+(R^{2}-2Rr)-2(R-r_{1})\cdot$ $ OI\cdot\frac{(R^{2}-2Rr)+R^{2}-\frac{4Rr(p-a)}{a}}{2R\cdot IO}\implies$ $ \boxed{r_{1}=\frac{R(p-a)^{2}}{bc}}\ .$

$ \triangle\ IOQ\blacktriangleright$ $ (r_{2}-r)^{2}= (R-r_{2})^{2}+(R^{2}-2Rr)-2(R-r_{2})\cdot$ $ IO\cdot\frac{(R^{2}-2Rr)+R^{2}-\frac{4Rr(p-a)}{a}}{2R\cdot IO}\implies$ $ \boxed{r_{2}=\frac{Rp(p-a)}{bc}}\ .$

Thus, $ \frac{r_{1}}{p-a}=\frac{r_{2}}{p}=\frac{R(p-a)}{bc}=\frac{PQ}{a}$, i.e. $ \boxed{PQ =\frac{aR(p-a)}{bc}}=\frac{a^{2}(p-a)}{4S}$. Observe that $ \frac{r_{1}}{r}=\frac{r_{2}}{r_{a}}$, where $ r_{a}$ is the $ A$- exradius of $ \triangle ABC$.

Remark. Prove easily that two more interesting relations : $ \boxed{\sum PQ = R+r\ }$ and $ r_{1}= R-\frac{a(4R+r)}{4p}$ , $ \boxed{r_{2}=\frac{ r_{b}+r_{c}}{4}}$.

Observe that $8\cdot \prod PQ=\frac{8(abc)^{2}(p-a)(p-b)(p-c)}{(4S)^{3}}=\frac{8(4RS)^{2}Sr}{(4S)^{3}}=$ $R^{2}\cdot 2r$ $\implies$ $\left\{\begin{array}{c}\boxed{\ r\le \sqrt [3]{\prod PQ}\le \frac{R}{2}\ }\\\\ \boxed{\ r\le\frac{1}{3}\cdot \sum PQ\le \frac{R^{2}}{4r}\ }\end{array}\right\|$



P15. Let $ABCD$ be a trapezoid with $AB\parallel CD$ and $I\in AC\cap BD$ . Construct outside $ABE$ and $CDF$ so that $ABE\sim CDF$ . Prove that $I$ belongs to $EF$ .

Proof 1. Observe that $CDF\sim ABE\iff$ $\frac {CD}{AB}=\frac {DF}{BE}\ (*)$ and $\widehat{FDC}\equiv\widehat{EBA}\ (1)$ . Thus,

$\left\{\begin{array}{ccc}
\begin{array}{ccc}
\nearrow & \widehat{CDI}\equiv\widehat{ABI} & \searrow \\\\
\searrow & \widehat{FDC}\stackrel{(1)}{\equiv}\widehat{EBA} & \nearrow\end{array}\ \bigoplus & \implies & \boxed{\widehat{IDF}\equiv\widehat{IBE}}\\\\
 \frac {DI}{BI}=\frac {CD}{AB}\stackrel{(*)}{=}\frac {DF}{BE} & \implies & \boxed{\frac {DI}{BI}=\frac {DF}{BE}}\end{array}\right\|$ $\implies$ $\triangle IDF\sim\triangle IBE\implies$ $\widehat{DIF}\equiv\widehat{BIE}\implies$ $I\in EF\ .$

Proof 2. Observe that $CDF\sim ABE\iff$ $\frac {CD}{AB}=\frac {CF}{AE}\ (*)$ and $\widehat{FCD}\equiv\widehat{EAB}\ (1)$ . Thus,

$\left\{\begin{array}{ccc}
\begin{array}{ccc}
\nearrow & \widehat{DCI}\equiv\widehat{BAI} & \searrow \\\\
\searrow & \widehat{FCD}\stackrel{(2)}{\equiv}\widehat{EAB} & \nearrow\end{array}\ \bigoplus & \implies & \boxed{\widehat{ICF}\equiv\widehat{IAE}}\\\\
 \frac {CI}{AI}=\frac {DC}{BA}\stackrel{(*)}{=}\frac {CF}{AE} & \implies & \boxed{\frac {CI}{AI}=\frac {CF}{AE}}\end{array}\right\|$ $\implies$ $\triangle ICF\sim\triangle IAE\implies$ $\widehat{CIF}\equiv\widehat{AIE}\implies$ $I\in EF\ .$



P16. Let $ABC$ be a triangle. Ascertain $r=f\left(a,r_b,r_c\right)$ . Answer: $r=\frac {-a^2+a\sqrt {a^2+4r_br_c}}{2\left(r_b+r_c\right)}$ (standard notations).

Proof. $\odot\begin{array}{ccccccc}
\nearrow & r_br_c=s(s-a) & \implies & 4r_br_c=(b+c)^2-a^2 & \implies & b+c=\sqrt {a^2+4r_br_c} & \searrow\\\\
\searrow & r\left(r_b+r_c\right)=a(s-a) & \implies & 2r\left(r_b+r_c\right)=a(b+c)-a^2 & \implies & 2r\left(r_b+r_c\right)+a^2=a(b+c) & \nearrow\end{array}\odot$ $\implies \boxed{r=\frac {-a^2+a\sqrt {a^2+4r_br_c}}{2\left(r_b+r_c\right)}}$ .

Particular case $:\ r=f\left(7,2\sqrt 3,5\sqrt 3\right)=$ $\frac {-7^2+7\sqrt {7^2+4\cdot 2\sqrt 3\cdot 5\sqrt 3}}{2\left(2\sqrt 3+5\sqrt 3\right)}=$ $\frac {-49+7\sqrt {49+120}}{2\cdot 21}=$ $\frac {-49+7\sqrt {169}}{2\cdot 7\sqrt 3}=$ $\frac {-49+7\cdot 13 }{14\sqrt 3}=$ $\frac {42}{14\sqrt 3}\implies r=\sqrt 3$.



P17. Let $ABC$ be a triangle. Ascertain $r=f\left(b,c,r_a\right)$ (standard notations).

Proof. Prove easily that $rr_a=\frac Ss\cdot\frac S{s-a}=$ $\frac {S^2}{s(s-a)}=(s-b)(s-c)\implies rr_a=(s-b)(s-c)\implies$ $4rr_a=[a-(b-c)][a+(b-c)]=a^2-(b-c)^2\implies$

$\boxed{a^2=(b-c)^2+4rr_a}\ (1)$ . On other hand, $sr=S=(s-a)r_a\implies\frac s{s-a}=\frac {r_a}r\iff$ $\frac {s+(s-a)}{s-(s-a)}=\frac {r_a+r}{r_a-r}\iff$ $\frac {b+c}a=\frac {r_a+r}{r_a-r}\iff$ $\boxed{a=\frac {(b+c)\left(r_a-r\right)}{r_a+r}}\ (2)$ .

In conclusion from the relations $(1)$ and $(2)$ obtain that $(b-c)^2\left(r_a+r\right)^2+4rr_a\left(r_a+r\right)^2=(b+c)^2\left(r_a-r\right)^2\iff$ $\boxed{(b+c)^2\cdot \left(\frac {r_a-r}{r_a+r}\right)^2=(b-c)^2+4rr_a}$ .



P18.. Let $ABCD$ be a trapezoid so that $:\ AD\parallel BC\ ,\ AD\perp AB\ ;\ AD=$ $x\ ,\ BC=y\ ,\ x<y\ ;\ K\in AC\cap BD\ ,\ L\in AB$ so that

$KL\perp AB$ and $KL=a\ ;\ \Omega=C(O,R)$ - the semicircle with the diameter $[AB]$ and which is tangent to the line $DC\ ;\ w=C(I,r)$ - the circle

which is tangent to $AB$ in $T$ and which is tangent to $W$ and $DC$ in the same point $S\ ;\ E\in BC$ so that $DE\parallel BC$ . Prove that $\frac 1R+\frac 1{2a}=\frac 1r$ .


Proof. Is well-known or prove easily that $\frac 1x+\frac 1y=\frac 1a$ , i.e. $\boxed{a(x+y)=xy}\ (1)$ and $\boxed{xy=R^2}\ (2)$ . From the similarity $\triangle  ITO\sim \triangle DEC$ obtain that $\frac {IO}{DC}=\frac {IT}{DE}\iff$

$\frac {R-r}{x+y}=\frac r{2R}\iff$ $\boxed{2R(R-r)=r(x+y)}\ (3)$ . From the product of the relations $(1)$ , $(2)$ and $(3)$ obtain that $a(x+y)\cdot  xy\cdot  2R(R-r)=xy\cdot R^2\cdot  r(x+y)$ ,

i.e. $2aR(R-r)=R^2r\iff$ $2a(R-r)=Rr\iff$ $\frac 1{2a}=\frac 1r-\frac 1R\iff$ $\frac 2R+\frac 1a=\frac 2r$ .



P19 (Miguel Ochoa Sanchez). Let $\triangle ABC$ with the incenter $I$ and the points $\left\{\begin{array}{ccc}
D\in (BC) & ; & ID\perp IB\\\\
E\in (CA) & ; & IE\perp IC\\\\
F\in (AB) & ; & IF\perp IA\end{array}\right\|$ . Prove that $\sqrt{[ABC]\cdot [DEF]}=r\sqrt {r(4R+r)}$ .

Proof 1.

$\blacktriangleright\ \left\{\begin{array}{ccc}
m\left(\widehat{BIC}\right) & = & 90^{\circ}+\frac A2\\\\
m\left(\widehat{DIC}\right) & = & \frac A2\\\\
CI^2 & = & \frac {ab(s-c)}{s}\end{array}\right\|$ $\implies$ $\triangle CID\sim\triangle CAI\implies$ $\frac {CI}b=\frac {CD}{CI}\implies $ $ CD=\frac {ab(s-c)}{bs}\implies$ $\odot\begin{array}{ccc}
\nearrow & DC=\frac {a(s-c)}s & \searrow\\\\
\searrow & DB=a-DC=\frac {ac}s & \nearrow\end{array}\odot\implies$ $\frac {DB}{DC}=\frac c{s-c}$ .

$\blacktriangleright\ \left\{\begin{array}{ccc}
m\left(\widehat{CIA}\right) & = & 90^{\circ}+\frac B2\\\\
m\left(\widehat{EIA}\right) & = & \frac B2\end{array}\right\|$ $\implies$ $\triangle AIE\sim\triangle ABI\implies$ $\frac {AI}c=\frac {AE}{AI}\implies $ $ AE=\frac {AI^2}c=\frac {bc(s-a)}{cs}\implies$ $\odot\begin{array}{ccc}
\nearrow & EA=\frac {b(s-a)}s & \searrow\\\\
\searrow & EC=b-EA=\frac {ba}s & \nearrow\end{array}\odot\implies$ $\frac {EC}{EA}=\frac a{s-a}$

$\blacktriangleright\ \left\{\begin{array}{ccc}
m\left(\widehat{AIB}\right) & = & 90^{\circ}+\frac C2\\\\
m\left(\widehat{FIB}\right) & = & \frac C2\end{array}\right\|$ $\implies$ $\triangle BIF\sim\triangle BCI\implies$ $\frac {BI}a=\frac {BF}{BI}\implies $ $ BF=\frac {BI^2}a=\frac {ca(s-b)}{as}\implies$ $\odot\begin{array}{ccc}
\nearrow & FB=\frac {c(s-b)}s & \searrow\\\\
\searrow & FA=c-FB=\frac {cb}s & \nearrow\end{array}\odot\implies$ $\frac {FA}{FB}=\frac b{s-b}$ .

Otherwise. Apply an well-known relation $\frac {DB}{DC}=\frac {IB}{IC}\cdot\frac {\sin\widehat{DIB}}{\sin\widehat{DIC}}=$ $\frac {\sin\frac C2}{\sin\frac B2}\cdot\frac {1}{\sin\frac A2}=$ $\sqrt{\frac {(s-a)(s-b)}{ab}\cdot\frac {ac}{(s-a)(s-c)}\cdot \frac {bc}{(s-b)(s-c)}}\implies$ $\frac {DB}{DC}=\frac c{s-c}$ a.s.o.

I"ll use: $\frac {[DEF]}{[ABC]}=$ $\frac {1+\frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}}{\left(1+\frac {DB}{DC}\right)\cdot\left(1+\frac {EC}{EA}\right)\cdot\left(1+\frac {FA}{FB}\right)}=$ $\frac{1+\frac c{s-c}\cdot\frac a{s-a}\cdot\frac b{s-b}}{\left(1+\frac c{s-c}\right)\left(1+\frac a{s-a}\right)\left(1+\frac b{s-b}\right)}=$ $\frac {(s-a)(s-b)(s-c)+abc}{s^3}\implies$ $\sqrt{[ABC]\cdot [DEF]}=r\sqrt {r(4R+r)}$ .

Proof 2.. $\boxed{\sum a(s-a)=2r(4R+r)}\ (*)$ and $IA^2=\frac {bc*(s-a)}{s}$ a.s.o. Thus, $2\cdot [EIF]=IE\cdot IF\cdot\sin\widehat{EIF}=$ $IC\tan\frac C2\cdot IA\tan\frac A2\cdot\cos\frac B2=$

$\sqrt {\frac {ab(s-c)}s\cdot \frac {(s-a)(s-b)}{s(s-c)}\cdot\frac {bc(s-a)}s\cdot \frac {(s-b)(s-c)}{s(s-a)}\cdot\frac {s(s-b)}{ac}}=\frac rs\cdot b(s-b)$ $\implies$ $\boxed{2\cdot [EIF]=\frac rs\cdot b(s-b)}$ . Thus, $2\cdot [DEF]=2\cdot\sum [EIF]=$

$\frac rs\cdot\sum a(s-a)\ \stackrel{(*)}{=}$ $\frac {2r^2(4R+r)}{s}\implies$ $[DEF]=\frac {r^2(4R+r)}{s}\implies$ $[DEF]\cdot [ABC]=r^3(4R+r)\implies$ $\sqrt {[DEF]\cdot [ABC]}=r\sqrt{r(4R+r)}$ .



P20. Let a trapezoid $ABCD$ with $AB\parallel CD\ .$ Denote the intersection $P$ between the exterior bisectors of $\widehat{ABC}\ ,$ $\widehat{BCD}$

and the intersection $Q$ between the exterior bisectors of $\widehat{ADC}\ ,$ $\widehat{DAB}\ .$ Prove that $2\cdot PQ=AB+BC+CD+DA\ .$


Proof. Prove easily that $\left\{\begin{array}{ccc}
\delta_{AB}(G)=\delta_{AD}(G)=\delta_{CD}(G) & \implies & G\in EF\\\\
\delta_{AB}(P)=\delta_{BC}(P)=\delta_{CD}(P) & \implies & P\in EF\end{array}\right\|$ where denoted $\delta_{XY}(Z)$ - the distance of the point $Z$ to the

line $XY\ .$ Thus, $P$ , $Q$ belong to the middle line $EF$ of the given trapezoid, where$E\in AD$ and $F\in BC\ .$ Since $GA\perp GD$ si $PB\perp PC$

obtain that $AB+BC+CD+DA=$ $(AB+CD)+AD+BC=$ $2\cdot EF+2\cdot GE+2\cdot PF=$ $2\cdot (EF+GE+PF)=2\cdot PQ\ .$



P21 (Ruben Dario). Let a parallelogram $ABCD$ with $A<90^{\circ}$ so that there is an interior point $N$ for which $\left\{\begin{array}{ccc}
m\left(\widehat{NBA}\right) & = & 2\cdot m\left(\widehat{NDA}\right)\\\\
m\left(\widehat{NCD}\right) & = & 2\cdot m\left(\widehat{NAD}\right)\end{array}\right|\ .$ Prove that $NB=NC=AB.$

Proof (R.D). Construct the parallelogram $PNDA.$ Therefore, $PBCN$ is a parallelogram, $\triangle PAB\equiv\triangle NDC$ and $\widehat{PBA}\equiv\widehat {NCD}.$ In conclusion,

the quadrilateral $PQNA$ is cyclic and $m\left(\widehat{PBN}\right)=2\cdot m\left(\widehat {PQN}\right)\implies$ the point $B$ is the circumcenter of $APQN$ $\implies$ $NB=NC=AB.$
This post has been edited 83 times. Last edited by Virgil Nicula, Nov 12, 2016, 11:37 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a