316. Some properties of isogonal rays in an angle of ABC.

by Virgil Nicula, Sep 8, 2011, 11:31 PM

PP1. Let $ABC$ be a triangle with circumcircle $w$ . Denote the midpoint $M$ of $[BC]$ and define the tangent $XX$ in $X\in w$

to the circle $w$ . Thus, denote $T\in AA\cap BC$ , $L\in BB\cap  CC$ and the symmedian $AS$ where $S\in BC$ . Prove that :

$\blacktriangleright\ \frac {TB}{TC}=\frac {SB}{SC}$ , i.e. $(T,B,S,C)$ is an harmonic division; $TA=\frac {abc}{\left|b^2-c^2\right|}$ and $TA$ is tangent in $A$ to $\odot AMS$ , i.e. $TA^2=TB\cdot TC=TS\cdot TM$ .

$\blacktriangleright\ S\in AL\ ;\ ABKC$ is harmonic quadrilateral, where $\{A,K\}=AL\cap w$ , i.e. $AB\cdot CK=AC\cdot BK$ and $(A,S,K,L)$ is an harmonic division.


Proof. $m\left(\widehat{TAB}\right)=C\iff$ $\triangle TAB\sim\triangle TCA\iff$ $\frac {TA}{TC}=\frac {c}{b}=\frac {BT}{AT}\iff$ $TA^2=TB\cdot TC\ \ \wedge\ \ \boxed{\frac {TB}{TC}=\left(\frac cb\right)^2}\ (*)$ . From the Steiner's relation

obtain that $\frac {SB}{SC}=\left(\frac cb\right)^2\iff$ $\frac {TB}{TC}=\frac {SB}{SC}=\left(\frac cb\right)^2$ , i.e. $(T,B,S,C)$ is an harmonic division. Suppose w.l.o.g. $b>c$ . Since $\frac {TB}{c^2}=\frac {TC}{b^2}=\frac {a}{b^2-c^2}$ obtain

$TA=\frac cb\cdot TC=\frac cb\cdot \frac {ab^2}{b^2-c^2}$ , i.e. $\boxed{TA=\frac {abc}{b^2-c^2}}$ . Denote $m\left(\widehat{MAC}\right)=m\left(\widehat{SAB}\right)=\phi$ . Observe that $m\left(\widehat{SAT}\right)=m\left(\widehat{AMT}\right)=C+\phi$ ,

i.e. $\triangle SAT\sim\triangle AMT$ $\iff$ $\frac {SA}{AM}=\frac {AT}{MT}=\frac {TS}{TA}$ , i.e. $TA$ is tangent in $A$ to $\odot AMS$ and $TA^2=TB\cdot TC=TS\cdot TM$ . Since $TS=TB+BS=$

$\frac {ac^2}{b^2-c^2}+\frac {ac^2}{b^2+c^2}$ obtain that $TS=\frac {2ab^2c^2}{b^4-c^4}$ and $\frac {AS}{AM}=$ $\frac {TS}{TA}=$ $\frac {\frac {2ab^2c^2}{b^4-c^4}}{\frac {abc}{b^2-c^2}}\iff$ $\boxed{\frac {s_a}{m_a}=\frac {2bc}{b^2+c^2}}$ , where $s_a=AS$ and $m_a=AM$ . Denote

$S'\in AL\cap BC$ . I"ll show that $S'\equiv S$ . Indeed, $\left\{\begin{array}{cc}
\triangle ABK\ : & \frac {LK}{LA}\stackrel{(*)}{=}\left(\frac {BK}{BA}\right)^2\\\\
\triangle ACK\ : & \frac {LK}{LA}\stackrel{(*)}{=}\left(\frac {CK}{CA}\right)^2\end{array}\right|\implies$ $\frac {BK}{BA}=\frac {CK}{CA}\ (**)$ , i.e. $ABKC$ is an harmonic quadrilateral.

Observe that $\frac {S'B}{S'C}=\frac {BA\cdot BK}{CA\cdot CK}\stackrel{(**)}{=}\left(\frac cb\right)^2$ , i.e. $S'\equiv S\iff$ $S\in AL$ and $\frac {SA}{SK}=\frac {LA}{LK}=\left(\frac {CA}{CK}\right)^2$ , i.e. the division $(A,S,K,L)$ is harmonically.


PP2. Let $ABC$ be a triangle with the incenter $I$ and the circumcircle $w=C(O,R)$ . Consider two points

$\{D,E\}\subset BC$ so that the ray $[AI$ is the bisector of the angle $\widehat{DAE}$ . The lines $AD$ , $AE$ meet again $w$

in the points $X$ , $Y$ respectively. Prove that $\left\{\begin{array}{cc}
AD\cdot AY=AE\cdot AX=AB\cdot AC & (1)\\\\
AE\cdot \left(b^2\cdot DB+c^2\cdot DC\right)=abc\cdot AD & (2)\end{array}\right|$ .

Study some particular cases, for example the remarkable pairs of the isogonal points $\{I,I\}$ , $\{H,O\}$ and $\{G,S\}$ , where

$I$ - incenter, $H$ - orthocenter, $O$ - circumcenter, $G$ - centroid and $S$ - Lemoin's point (symmedian center) for the triangle $ABC$ .


Proof. $XY\parallel BC$ , i.e. $\frac {AD}{AY}=\frac {AE}{AX}$ and $\left\{\begin{array}{ccccc}
\triangle ABE\sim\triangle AXC & \implies & \frac {AB}{AX}=\frac {AE}{AC} & \implies & AE\cdot AX=AB\cdot AC\\\\
\triangle ACD\sim\triangle AYB & \implies & \frac {AC}{AD}=\frac {AY}{AB} & \implies & AD\cdot AY=AB\cdot AC\end{array}\right|\implies$

$AD\cdot AY=AE\cdot AX=AB\cdot AC$ , i.e. the relation $(1)$ . Using the power of $D$ w.r.t. $w$ , i.e. $DA\cdot DX=DB\cdot DC$ and

the Stewart's relation $a\cdot\left(AD^2+DB\cdot DC\right)=b^2\cdot DB+c^2\cdot DC$ obtain that $bc=AE\cdot AX=$ $AE\cdot (AD+DX)=$

$AE\cdot \left(AD+\frac {DB\cdot DC}{AD}\right)=$ $\frac {AE}{AD}\cdot\left(AD^2+DB\cdot DC\right)=$ $\frac {AE}{AD}\cdot\frac {b^2\cdot DB+c^2\cdot DC}{a}$ . In conclusion, we have

$AE\cdot \left(b^2\cdot DB+c^2\cdot DC\right)=abc\cdot AD$ , i.e. the relation $(2)$ and for $DB=m\cdot DC$ obtain that $\boxed{\ AE=\frac {(m+1)bc}{mb^2+c^2}\cdot AD\ }$ .

Some remarkable particular cases.

$\blacktriangleleft\mathrm{PC1}\blacktriangleright\ \{I,I\}$ . In this case $E\equiv D$ , $Y\equiv X$ and $I\in [AD$ . Thus, $\boxed{AD\cdot AX=bc}$ and $bc=AD(AD+DX)=$

$AD^2+DB\cdot DC\implies$ $\boxed{AD^2=bc-DB\cdot DC}$ . From $\frac {DB}{c}=\frac {DC}{b}=\frac {a}{b+c}$ obtain that $AD^2=bc-\frac {a^2bc}{(b+c)^2}\iff$

$AD^2=\frac {4bcs(s-a)}{(b+c)^2}$ , i.e. $\boxed{AD=\frac {2\sqrt{bcs(s-a)}}{b+c}=\frac {2bc\cdot\cos\frac A2}{b+c}}$ .

$\blacktriangleleft\mathrm{PC2}\blacktriangleright\ \{H,O\}$ . In this case, $H\in AD$ , $O\in AE$ , $AD=h_a$ , $AY=2R$ . Thus, the first relation becomes

$\boxed{2Rh_a=bc}$ . From here obtain $S=[ABC]=\frac {ah_a}{2}\iff$ $S=\frac {a\frac {bc}{2R}}{2}\implies$ $\boxed{abc=4RS}\iff$ $abc=4Rsr$ .

$\blacktriangleleft\mathrm{PC3}\blacktriangleright\ \{G,S\}$ . In this case $G\in AD$ , $S\in AE$ , $AD=m_a$ , $AE=s_a$ . Thus, the second relation becomes $s_a=\frac {2bc}{b^2+c^2}\cdot m_a$ .



PP3. Let $ABC$ be a triangle with the incenter $I$. Denote $D\in AI\cap BC$ , $E\in BI\cap CA$ ,

$F\in CI\cap AB$ and $M\in BE\cap DF$ , $N\in CN\cap DE$ . Prove that $\widehat{IAM}\equiv\widehat{IAN}$ .


Proof. Using an well-known relation obtain that $\left\{\begin{array}{ccc}
\frac {MF}{MD}=\frac {EA}{EC}\cdot\frac {BF}{BD}\cdot\frac {BC}{BA} & \implies & \frac {MF}{MD}=\frac{b+c}{a+b}\\\\
\frac {NE}{ND}=\frac {FA}{FB}\cdot\frac {CE}{CD}\cdot\frac {CB}{CA} & \implies & \frac {NE}{ND}=\frac{b+c}{a+c}\end{array}\right|$ . Denote $X\in AM\cap BC$ and $Y\in AN\cap BC$ .

Using Menelaus' theorem for the transversals in the mentioned triangles $\left\{\begin{array}{ccccc}
\overline{AMX}/\triangle BDF\ : & XB=\frac {ac}{2b+c} & \implies & \frac {XB}{XC}=\frac {c}{2b}\\\\
\overline{ANY}/\triangle CDE\ : & YC=\frac {ab}{b+2c} & \implies & \frac {YB}{YC}=\frac {2c}{b}\end{array}\right|\implies$

$\frac {XB}{XC}\cdot\frac {YB}{YC}=\left(\frac {AB}{AC}\right)^2$ . From the Steiner's theorem obtain that $\widehat{DAX}\equiv\widehat{DAY}$ , i.e. $\widehat{IAM}\equiv\widehat{IAN}$ .



PP4. Let $ ABC$ be a triangle with the circumcircle $ w$ . Denote the following points : the middlepoint $ M$ of the side $ [BC]$ ; the point $ D\in (BC)$ for which $ \angle DAB\equiv\angle DAC$ ; the point $ E$

for which $ \{A,E\} = AD\cap w$ ; the $ A$-symmedian $ AL$ , where $ L\in (BC)$ ; the point $ S$ for which $ \{A,S\} = AL\cap w$ . Then $ SD\perp SE$ , i.e. the quadrilateral $ MDSE$ is cyclically.


Proof. Let $ XX$ - the tangent in $ X\in w$ to $ w$ and $ T\in BB\cap CC$ . Thus, $ \overline {MET}\perp BC$ and $ \widehat{ASB}\equiv\widehat{ACB}$ . From the first well-known property, $ T\in \overline {ALS}$ and $ \overline{ALST}$

is the $ A$-symmedian in $ \triangle ABC$ $ \Longrightarrow$ $ \left\|\begin{array}{c} \widehat{BAS}\equiv\widehat{MAC}\\\\
\ \widehat{SAE}\equiv\widehat{DAM}\end{array}\right\|$ . From the second well-known property, the division $ \{A,S;L,T\}$ is harmonically. Since $ ML\perp MT$ results

$ \widehat{DMA}\equiv\widehat{DMS}$ . Show easily that $ \triangle BAS\sim\triangle MAC$ (a.a.) . Thus, $ \frac {AB}{AS} = \frac {AM}{AC}$ , i.e. $ AS\cdot AM = AB\cdot AC$ . From the third well-known property $ AD\cdot AE = AB\cdot AC$ get

$ \boxed {AS\cdot AM = AD\cdot AE = AB\cdot AC}$ , i.e. $ \frac {AS}{AE} = \frac {AD}{AM}$ . Since $ \widehat{SAE}\equiv\widehat{DAM}$ obtain $ \triangle SAE\sim\triangle DAM$ and $ \widehat{DMA}\equiv\widehat{SEA}$ . Since $ \widehat{DMA}\equiv\widehat{DMS}$ and $ \widehat{SEA}\equiv\widehat{ SED}$

obtain $ \widehat{DMS}\equiv\widehat{SED}$ , i.e. the quadrilateral $ MDSE$ is cyclically. In conclusion, $ SD\perp SE$ .

Remark. Here are another interesting metrical relations : $ \left\|\begin{array}{ccc} ABS\sim CMS & \implies & \boxed {SB\cdot SC = SA\cdot SM} \\
 \\
AMC\sim CMS & \implies & \boxed {MA\cdot MS = MB^2}\end{array}\right\|$ .
This post has been edited 62 times. Last edited by Virgil Nicula, Nov 25, 2016, 6:32 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a