85. Problem "slicing" : 60-24-12.

by Virgil Nicula, Aug 10, 2010, 12:05 AM

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=359982
Quote:
Let $ABC$ be a triangle with $B=60^{\circ}$ , $C=24^{\circ}$ . Denote $D\in (BC)$ so that $m\left(\widehat{BAD}\right)=12^{\circ}$ . Prove that $\boxed{\ b=c+x+y\ }$ , where $BD=x$ , $AD=y$ .
Proof 1 (trigonometric). $b=c+x+y$ $\Longleftrightarrow$ $\frac bc=1+\frac xc+\frac yc$ $\Longleftrightarrow$ $\frac {\sin 60}{\sin 24}=$ $1+\frac {\sin 12}{\sin 72}+$ $\frac {\sin 60}{\sin 72}$ $\Longleftrightarrow$ $\sin 60\sin 72=$ $\sin 24(\sin 72+\sin 12+\sin 60)$ $\Longleftrightarrow$ $\sin 60(\sin 72-\sin 24)=$ $\sin 24(\sin 72+\sin 12)$ $\Longleftrightarrow$ $2\sin 60\sin 24\cos 48=$ $2\sin 24\sin 42\cos 30$ , what is truly.
Quote:
Generalization. Let $ABC$ be a triangle with $A=90^{\circ}+\frac C4$ . Denote $D\in (BC)$ so that $m\left(\widehat{BAD}\right)=\frac C2$ . Prove that $\boxed{AC=AB+BD+DA\ \Longleftrightarrow\ 2\sin\frac B2\sin \frac {2B-C}{4}=\sin C}$ .

Proof.[/size] $BD=x$ , $AD=y$ and $\left\|\begin{array}{c}
B=\beta\\\
C=2\alpha\\\
A=\beta +3\alpha\end{array}\right\|$ , where $2\beta+5\alpha=180^{\circ}$ . Thus, $b=c+x+y$ $\Longleftrightarrow$ $\frac bc=1+\frac xc+\frac yc$ $\Longleftrightarrow$ $\frac {\sin \beta}{\sin 2\alpha}=$ $1+\frac {\sin \alpha}{\sin (\alpha +\beta )}+$ $\frac {\sin \beta}{\sin (\alpha+\beta )}$ $\Longleftrightarrow$ $\sin \beta\sin (\alpha +\beta )=$ $\sin 2\alpha [\sin (\alpha +\beta )+\sin\alpha +\sin\beta ]$ $\Longleftrightarrow$ $\sin \beta [\sin (\alpha +\beta )-\sin 2\alpha ]=$ $\sin 2\alpha [\sin (\alpha +\beta )+\sin \alpha ]$ $\Longleftrightarrow$ $\sin \beta\sin\frac {\beta -\alpha}{2}\cos\frac {\beta +3\alpha}{2}=$ $\sin 2\alpha\sin\frac {\beta +2\alpha}{2}\cos\frac {\beta}{2}$ $\stackrel{(*)}{\Longleftrightarrow}$ $2\sin\frac {\beta}{2}\sin\frac {\beta -\alpha}{2}=\sin 2\alpha$ $\Longleftrightarrow$ $2\sin\frac B2\sin \frac {2B-C}{4}=\sin C$ .

$(*)\blacktriangleright$ I used $\frac {\beta +3\alpha }{2}+\frac {\beta +2\alpha}{2}=90^{\circ}$ $\implies$ $\cos\frac {\beta +3\alpha}{2}=\sin \frac {\beta +2\alpha}{2}$ .


Proof 2 (metric). Observe that $A=60^{\circ}$ $\Longleftrightarrow \boxed {b^2=a^2+c^2-ac}\ (*)$ . Denote $F\in (AB)$ , $\widehat{FCA}\equiv\widehat{FCB}$ , $G\in CF\cap AD$ and $E\in (BC)$ , $\widehat {DAB}\equiv\widehat {DAE}$ . Since $ACDF$ is cyclic obtain $\boxed {CA=CG}$ , $\boxed{AF=FD=DG}$ and $\boxed{CF=CD}$ . From here we can try to find a "slicing" proof ! Come back to be continued this proof. Apply theorem of bisector $CF$ in $\triangle\  ACB$ $\implies$ $\frac {FA}{b}=\frac {FB}{a}=\frac {c}{a+b}$ $\implies$ $\left\|\begin{array}{c}
FA=\frac {bc}{a+b}\\\
FB=\frac {ac}{a+b}\end{array}\right\|$ . Apply power of $B$ w.r.t. circumcircle of $ACDF$ $\implies$ $x\cdot a=\frac {ac}{a+b}\cdot c$ $\implies$ $\boxed {x=\frac {c^2}{a+b}}\ (1)$ . $\left|\begin{array}{ccccccc}

\widehat{BAE}\equiv\widehat{BCA} & \implies & BAE\sim BCA & \implies & \frac ca=\frac {AE}b=\frac {BE}c &  \implies & \left|\begin{array}{c}
AE=\frac {bc}a\\\\
BE=\frac {c^2}a\end{array}\right|\\\\

\widehat{CAE}\equiv\widehat{CDA} & \implies & CAE\sim CDA & \implies & \frac b{a-x}=\frac {AE}y=\frac {CE}b   & \implies & \left|\begin{array}{c}
AE=\frac {by}{a-x}\\\\
CE=\frac {b^2}{a-x}\end{array}\right|\end{array}\right|$

$\left\|\begin{array}{ccccc}
\frac {bc}{a}=\frac {by}{a-x} & \implies & cx+ay=ac & \implies & \boxed {\frac xa+\frac yc=1}\\\\
a=BE+EC & \implies & a=\frac {c^2}{a}+\frac {b^2}{a-x} & \stackrel {(*)}{\implies} & \boxed {x=\frac {ac(a-2c)}{a^2-c^2}}\ (2)\end{array}\right\|$ $\stackrel {(*)}{\implies}\boxed {y=\frac {b^2c}{a^2-c^2}}$ $\stackrel {(*)}{\implies}\boxed {x+y=\frac {c(2a-c)}{a+c}}$ . From relations $(1)$ , $(2)$ obtain $\frac {c^2}{a+b}=\frac {ac(a-2c)}{a^2-c^2}$ $\implies$ $a^3+c^3+a^2(b-3c)-2abc=0$ $\stackrel{(*)}{\implies}$ $b^2(a+c)+a^2(b-3c)-2abc=0$ $\implies$ $(a+c)\cdot\underline b^2+a(a-2c)\cdot\underline b-3a^2c=0$ $\implies$ $[(a+c)b-3ac](a+b)=0$ $\implies$ $b(a+c)=3ac$ , i.e. $\boxed {\frac 1a+\frac 1c=\frac 3b}$ . Thus $x+y=\frac {3ac-c(a+c)}{a+c}=$ $\frac {b(a+c)-c(a+c)}{a+c}$ $\implies$ $x+y=b-c$ .

Quote:
Proposed problem. In $\triangle ABC$ with $B=60^{\circ}$ denote length $l_b$ of the interior $B$-bisector. Prove that $\boxed{C=24^{\circ}\Longleftrightarrow\frac 1a+\frac 1c=\frac 3b\Longleftrightarrow b=l_b\cdot\sqrt 3}$ .
Proof.
$\blacktriangleright$ I"ll use the well-known relation - the length of the interior $B$-bisector : $l_b=\frac {2ac\cdot\cos\frac B2}{a+c}=$ $\frac {2\sqrt{acs(s-b)}}{a+c}\ (1)$ , where $2s=a+b+c$ . Thus, $\boxed {\frac 3b=\frac 1a+\frac 1c}$ $\Longleftrightarrow$ $b=3\cdot \frac {ac}{a+c}$ $\stackrel{(1)}{\Longleftrightarrow}$ $b=3\cdot \frac {l_a}{2\cos\frac B2}$ $\Longleftrightarrow$ $\boxed {b=l_b\sqrt 3}$ .
$\blacktriangleright$ I"ll use the well-known relation $\sin 54^{\circ}=\cos 36^{\circ}=\frac{1+\sqrt 5}{4}\ \ (2)$ . Therefore, $\boxed {\frac 3b=\frac 1a+\frac 1c}$ $\Longleftrightarrow$ $b(a+c)=3ac$ $\Longleftrightarrow$ $\sin 60\cdot [\sin (60+C)+\sin C]=$ $3\sin (60+C)\sin C$ $\Longleftrightarrow$ $\frac {\sqrt 3}{2}\cdot 2\sin (30+C)\cos 30=$ $\frac 32\cdot [\cos 60-\cos (60+2C)]$ $\Longleftrightarrow$ $\sin (30+C)=\frac 12-\cos (60+2C)$ . Denote $\sin (30+C)=t$ . Thus our relation becomes $4t^2-2t-1=0$ $\Longleftrightarrow$ $t=\frac {1+\sqrt 5}{4}$ $\stackrel{(2)}{\Longleftrightarrow}$ $\sin (30+C)=\sin 54^{\circ}$ $\Longleftrightarrow$ $\boxed {C=24^{\circ}}$ .
$\blacktriangleright$ (otherwise) I'll use $B=60^{\circ}\Longleftrightarrow a^2+c^2-ac=b^2\ (3)$ . Therefore, $\boxed {b=l_a\sqrt 3}$ $\Longleftrightarrow$ $b^2=3\cdot l_a^2$ $\stackrel{(1)}{\Longleftrightarrow}$ $b^2=3\cdot \frac {ac\left[(a+c)^2-b^2\right]}{(a+c)^2}$ $\Longleftrightarrow$ $b^2(a+c)^2=3ac\left[(a+c)^2-b^2\right]$ $\stackrel{(3)}{\Longleftrightarrow}$ $b^2(a+c)^2=3ac\left[\left(a^2+c^2+2ac\right)-\left(a^2+c^2-ac\right)\right]$ $\Longleftrightarrow$ $b^2(a+c)^2=3ac\cdot 2ac$ $\Longleftrightarrow$ $\boxed {b(a+c)=3ac}$ .

Quote:
Proposed problem. Let $ABC$ be a triangle with $A\le 90^{\circ}$ . Prove that if exists $k>0$ so that $\frac 1b+\frac 1c=\frac ka$ , then exists the chain $\frac 1b+\frac 1c=\frac ka$ $\Longleftrightarrow$ $l_a=\frac {2\cos\frac A2}{k}\cdot a$ $\Longleftrightarrow$ $\cos \frac {B-C}{2}=\frac {\sin\frac A2}{k}\cdot \left[1+\cos A+\sqrt {k^2+(1+\cos A)^2}\right]$ .
Remark. For $A=60^{\circ}$ and $k=3$ obtain upper proposed problem or from here.
This post has been edited 27 times. Last edited by Virgil Nicula, Nov 23, 2015, 2:35 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a