178. Some nice and simple geometry problems.

by Virgil Nicula, Nov 25, 2010, 2:04 PM

PP1. Let $\triangle ABC$ with $C=30^{\circ}\ ,\ \sin B=\frac {1}{2\sqrt{\lambda}}$ and $D\in (AC)$ so that $AD=\lambda\cdot AC$ , where $\frac 14\le \lambda$ . Ascertain $m\left(\angle ABD\right)$ .

Proof. $\frac {AC}{AB}=\frac {\sin B}{\sin C}=\frac {\frac {1}{2\sqrt{\lambda}}}{\frac 12}=$ $\frac {1}{\sqrt {\lambda}}$ $\implies$ $\lambda\cdot AC^2=AB^2$ $\implies$ $AB^2=AD\cdot AC$ $\implies$ $\triangle ABD\sim \triangle ACB$ $\implies$ $\widehat{ABD}\equiv \widehat{ACB}$ $\implies$ $m\left(\angle ABD\right)=30^{\circ}$ .

Remark. For $\lambda =\frac 12$ obtain the proposed problem from
here. For $\lambda =\frac 13$ obtain the following simple problem :

Given are an $A$-right $\triangle ABC$ with $BC=2\cdot AB$ . Denote $D\in (AC)$ for which $DC=2\cdot AD$ . Ascertain the measure of the angle $\angle ABD$ .


PP2. Let $ABC$ be a triangle with the incircle $w=C(I,r)$ which touches the sidelines $BC$ , $CA$ at $D$ , $E$ .

Denote the midpoints $M$ , $N$ of the sides $[AB]$ , $[AC]$ respectively . Prove that $MN\cap BI\cap DE\ne\emptyset$ .


Proof. Denote $X\in BI\cap MN$ and $Y\in DE\cap MN$ . Since the triangle $BMX$ is $M$-isosceles obtain that $NX=MX-MN=$

$MB-MN=\frac c2-\frac a2\implies \boxed{NX=\frac {c-a}{2}}$ . Since the triangle $ENY$ is $N$-isosceles obtain that $NY=NE=NC-CE=$

$\frac b2-(s-c)\implies \boxed {NY=\frac {c-a}{2}}$ . In conclusion, $NX=NY=\frac {c-a}{2}$ $\implies$ $X\equiv Y$ $\implies$ $MN\cap BI\cap DE\ne\emptyset$ .



PP3. Let $ABC$ be a triangle with the circumcircle $w=C(O,R)$ . Denote $D\in AA\cap BC$ , where I am using often the notation

$AA$ - the tangent to the circle $w$ in $A\in w$ . Denote the points $E$ , $F$ for which $\left\{\begin{array}{ccc}
EB\perp BC & ; & OE\perp AB\\\\
FC\perp CB & ; & OF\perp AC\end{array}\right\|$ . Prove that $D\in EF$ .


Proof. Show easily that $\left\{\begin{array}{ccc}
m\left(\widehat{OEB}\right)=B & \implies & EB=\frac {c}{2\sin B}\\\
m\left(\widehat{OFC}\right)=C & \implies & FC=\frac {b}{2\sin C}\end{array}\right\|\ \implies\ \frac {EB}{FC}=\left(\frac cb\right)^2$ and $\frac {DB}{DC}=\left(\frac cb\right)^2\implies$ $\frac {DB}{DC}=\frac {EB}{FC}$ $\implies$ $\triangle DBE\sim\triangle DCF$ $\implies$ $D\in EF$ .

PP4 (USA, 1975). Let $w_1$ , $w_2$ be two secant circles in the points $A$ , $B$ . Consider two mobile points $M\in w_1$ , $N\in w_2$ so that $A\in MN$ .

Ascertain the maximum value of the product $AM\cdot AN$ and the position of the line $MN$ when the maximum of this product is touched.


Proof. Denote $w_1=C(O_1, r_1)$ , $w_2=C(O_2,r_2)$ and $x=m(\angle ABM)$ , $y=m(\angle ABN)$ . Observe that $x+y=k$ (constant) and $\begin{array}{c}
AM=2r_1\cdot\sin x\\\
AN=2r_2\cdot \sin y\end{array}$ . Therefore, $AM\cdot AN=4r_1r_2\cdot\sin x\sin y$ is maximum iff $x=y=\frac k2$ . Denote the intersection $L$ of $O_1O_2$ with a common (exterior) tangent of $w_1$ , $w_2$ .

Define the second intersections $M_0$ , $N_0$ of $LA$ with the circles $w_1$ , $w_2$ respectively. Prove easily that $AM\cdot AN$ is maximum $\iff$ $M:=M_0$ and $N:=N_0$ .

Remark. Show easily that for $x+y=k$ (constant) the product $\sin x\sin y=\frac 12\cdot\left[\cos (x-y)-\cos k\right]$ is maximum $\iff$

$\cos (x-y)$ is maximum $\iff$ $x=y=\frac k2$ . If denote $AB=d$ , then $k=\arccos\frac {d^2-\sqrt {\left(4r_1^2-d^2\right)\left(4r_2^2-d^2\right)}}{4r_1r_2}$ .



PP5 (Lituania, 1994). Let $ABCD$ be a cyclical quadrilateral. Denote the midpoints $U$ , $V$ of the sides $[AB]$ , $[CD]$ respectively

and $I\in AC\cap BD$ . Prove that the perpendiculars from $I$ , $U$ , $V$ to the lines $AD$ , $BD$ , $AC$ respectively are concurrently.


Proof. Denote the points $\{X,M\}\subset BD$ for which $AX\perp BD$ , $UM\perp BD$ , the points $\{Y,N\}\subset AC$ for which $DY\perp AC$ , $VN\perp AC$ and the intersections

$S\in UM\cap VN$ , $H\in AX\cap DY$ . Observe that $\widehat {BXY}\equiv\widehat {CAD}\equiv\widehat {CBX}$ $\implies$ $XY\parallel BC$ . Since $UM\parallel AX$ and $VN\parallel DY$ obtain that $MN$ is

middleline in the trapezoid $BCXY$ and $MN\parallel XY$ . But and $SM\perp HX$ , $SN\perp HY$ . Therefore, since the triangles $MNS$ , $XYH$ are Desarque-

correspondently obtain that $MX\cap NY\cap SH\ne\emptyset$ , i.e. $I\in SH$ . Observe that $HI\perp AD$ . In conclusion, $S\in HI\implies SI\perp AD$ , i.e. the perpendiculars from

$I$ , $U$ , $V$ to the lines $AD$ , $BD$ , $AC$ respectively are concurrently.



PP6 (nice !). Let $ABC$ be a triangle. For three given points $D\in (BC)$ , $E\in (CA)$ and $F\in (AB)$

construct the point $L$ so that the sideline $BC$ separates $L$ , $A$ and $\begin{array}{c}
\widehat{BCL}\equiv\widehat{DFE}\\\
\widehat{CBL}\equiv\widehat{DEF}\end{array}$ . Prove that $[AELF]=[ABC]$ .


Proof (oneplusone). Denote the second intersection $S$ between the circumcircle of $\triangle DEF$ and the sideline $BC$ . Observe that

$\begin{array}{ccccccc}
\widehat{SBL}\equiv\widehat{DEF}\equiv \widehat{BSF} & \implies & \widehat{SBL}\equiv \widehat{BSF} & \implies & BL\parallel SF & \implies & [LFB]=[LSB]\\\\
\widehat{SCL}\equiv\widehat{DFE}\equiv \widehat{CSE} & \implies & \widehat{SCL}\equiv \widehat{CSE} & \implies & CL\parallel SE & \implies & [LEC]=[LSC]\end{array}$ .

Denote $U\in LF\cap BC$ and $V\in LE\cap BC$ . Therefore, $[AELF]=[AEVUF]+[LUV]=$ $\left([ABC]-\underline{[BFU]}-\underline {\underline{[CEV]}}\right)+$

$\left([LBC]-\underline{[LBU]}-\underline{\underline{[LCV]}}\right)=$ $[ABC]+[LBC]-[LBF]-[LCE]=[ABC]$ . In conclusion, $[AELF]=[ABC]$ .



PP7 (Valentin Vornicu). Let $ABC$ be a triangle and the points $M$ and $N$ on the sides $AB$ respectively $BC$, such that $2 \cdot \frac{CN}{BC} = \frac{AM}{AB}$.

Let $P$ be a point on the line $AC$. Prove that the lines $MN$ and $NP$ are perpendicular if and only if $PN$ is the interior angle bisector of $\angle MPC$.



Lemma. Given are the triangle $ABC$ and the points $M\in (AB)$, $N\in (BC)$ so that $2\cdot \frac{CN}{CB}=\frac{AM}{AB}$.

Denote the intersection $R\in MN\cap AC$. Then the point $N$ is the middlepoint of the segment $MR$.


First proof (grade 7). Denote $S\in AC$ so that $MS\parallel BC$. From Thales' theorem applied to the lines $MS\parallel BC$, $NC\parallel MS$ in $\triangle ABC$ and $\triangle RMS$ respectively

we obtain the relations $\frac{MS}{BC}=\frac{AM}{AB}$ and $\frac{NC}{MS}=\frac{RN}{RM}$. Therefore, $\frac{MS}{BC}\cdot \frac{NC}{MS}=$ $\frac{AM}{AB}\cdot \frac{RN}{RM}$ $\Longrightarrow$ $\frac{RN}{RM}=\frac{NC}{BC}\cdot \frac{AB}{AM}$ $\Longrightarrow$ $RM=2\cdot RN$ $\Longrightarrow$ $RN=MN$.

Second proof (
grade 9). I"ll apply the Menelaus' theorem to the transversal $\overline {ACR}$ for $\triangle BMN\ :\ \frac{AM}{AB}$ $\cdot\frac{CB}{CN}\cdot \frac{RN}{RM}=1$ $\Longrightarrow$ $RM=2\cdot RN$ $\Longrightarrow$ $RN=MN$.

Remark. The first method is in point of fact the proof of the Menelaus's theorem in this particular case. The proposed problem has in addition ... a short tail !



PP8 (own). Let an $A$-right $\triangle ABC$ with the circumcircle $w$ and the incircle $(I)$ . Denote $D\in (BC)$ for which $AD\perp BC$ . Consider the circles $w_1$ , $w_2$

which are tangent to altitude $[AD]$ , interior tangent to $w$ and to side $[BC]$ in the points $E\in (BD)$ , $F\in (DC)$ respectively. Prove that $BE\cdot CF=IA^2$ .


Proof.Let $X\in w\cap w_1$ , $N\in AD\cap w_1$ . From an well-known property $N\in XC$ and $CE^2=$ $CN\cdot CX=CD\cdot CB=$ $CA^2$ ,

i.e. $CE=b$ . Prove analogously that $BF=c$ . Thus $BE\cdot CF=(a-b)(a-c)=2(s-a)^2=IA^2$ , i.e. $BE\cdot CF=IA^2$ .



PP9. $AB$ is a chord of a circle $w$ and the tangents at $A$ and $B$ meet at $C$. If $P$ is any point on the circle and $PL\ ,$

$PM\ ,\ PN$ are perpendiculars from $P$ to $AB\ ,\ BC\ ,\ CA$ respectively, then prove that $PL^2=PM\cdot PN$ .


Proof. Observe that $ALPN$ and $BLPM$ are cyclically and $\left\|\begin{array}{c}
\widehat{CAB}\equiv\widehat {CBA}\\\
\widehat{LAP}\equiv\widehat {MBP}\\\
\widehat{LBP}\equiv\widehat {NAP}\end{array}\right\|$ . Thus $\widehat{LPN}\equiv\widehat{LPM}$ and $\widehat{LNP}\equiv\widehat{LAP}\equiv$

$\widehat{MBP}\equiv\widehat{MLP}$ $\implies$ $\widehat{LNP}\equiv\widehat{MLP}$ . In conclusion, $\triangle PLN\sim\triangle PML$ $\implies$ $\frac {PL}{PM}=\frac {PN}{PL}$ $\implies$ $PL^2=PM\cdot PN$ .


PP10. Let $ABC$ be a triangle. Prove that $\frac A4=\frac B2=\frac C1\ \implies\ \frac{1}{AB}=\frac{1}{BC}+\frac{1}{AC}$ .

Proof 1 (trigonometric). $\frac A4=\frac B2=\frac C1=\frac {\pi}{7}\implies A=4C\ \wedge\ B=2C$ and $C=\frac {\pi}{7}$ . Thus $\frac{1}{AB}=\frac{1}{BC}+\frac{1}{AC}\implies \frac{1}{\sin C}=\frac{1}{\sin 4C}+\frac{1}{\sin 2C}$ $\implies$

$\sin C(\sin 4C+\sin 2C)=\sin 4C\sin 2C$ $\implies$ $\sin C\cdot 2\sin 3C\cos C=\sin 4C\sin 2C$ $\implies$ $\sin 3C=\sin 4C\ ,\ C\ne\frac {\pi}{2}$ $\implies$ $C=\frac {\pi}{7}$ , what is truly.


Lemma. Prove that in any triangle $ABC$ there is the equivalence $\boxed {\ B=2C\ \iff\ b^2=c(c+a)\ }$ . Indeed, if denote $D\in (AC)\ ,$

$\widehat{DBA}\equiv\widehat{DBC}$ , then $DA=\frac{bc}{a+c}$ and $\triangle ABD\sim \triangle ACB\iff AB^2=AD\cdot AC\iff c^2=\frac {b^2c}{a+c}\iff b^2=c(c+a)$ .

Proof 2 of PP10. $\left\|\begin{array}{ccccc}
B=2C & \iff & b^2=c(c+a) & \iff & b^2-c^2=ac\\\
A=2B & \iff & a^2=b(b+c) & \iff & b(b+c)=a^2\end{array}\right\|$ $\implies$ $\frac {b-c}{b}=\frac ca\iff$ $c(a+b)=ab\iff$ $\frac 1c=\frac 1a+\frac 1b$ .

Proof 3. Let $P_1P_2P_3P_4P_5P_6P_7$ be consecutive vertices of a regular heptagon. Note that $\triangle P_1P_2P_4$ satisfies $\angle P_1P_2P_4=$ $2\angle P_2P_1P_4=$ $4\angle P_1P_4P_2$ . By the

Ptolemy's theorem for cyclic quadrilateral $P_1P_2P_3P_5$ obtain that $P_1P_2 \cdot ( P_3P_5+P_1P_5)  =P_1P_3 \cdot P_2P_5$ . Since $P_1P_4=P_1P_5=P_2P_5$ and

$P_1P_3=P_2P_4=P_3P_5$ , it follows that $P_1P_2 \cdot (P_2P_4+P_1P_4)=P_2P_4 \cdot P_1P_4$ $\Longrightarrow \ \frac{1}{P_1P_2}=\frac{1}{P_2P_4}+\frac{1}{P_1P_4}$ .



PP11. Let $\alpha$ , $\beta$ be two secant circles for which denote $\{P,Q\}=\alpha\cap\beta$ . For a common secant line $l$ denote

$\{A,B\}=l\cap\alpha$ and $\{C,D\}=\beta\cap l$ so that $C\in (AB)$ and $B\in (CD)$ . Prove that $\widehat{APC}\equiv\widehat{BQD}$ .


Proof. Denote $\{P,E\}=AP\cap\beta$ and $\{Q,F\}=DQ\cap\alpha$ . Observe that $AF\parallel DE$ and $\widehat{APC}\equiv\widehat{ADE}\equiv\widehat{FAD}\equiv\widehat{BQD}$ , i.e. $\widehat{APC}\equiv\widehat{BQD}$ .
This post has been edited 80 times. Last edited by Virgil Nicula, Dec 1, 2015, 9:20 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a