435. Geometry problems in space.
by Virgil Nicula, Dec 4, 2015, 12:13 PM
P1 (Relatiile lui Euler). Intr-un tetraedru
suma intre patratele a doua muchii opuse si de patru ori patratul bimedianei corespunzatoare este egal cu suma patratelor celorlalte muchii.
Proof. Notam
si alegem muchiile opuse
si
ale caror mijloace le notam
respectiv. Aplicam teorema medianei in triunghiurile
si in triunghiul 
Adunam relatiile
si
la relatia
inmultita cu doi
adica 
Observatie. In particular, daca un varf al tetraedrului este "tras" in planul fetei opuse se obtin trei identitati pentru un patrulater oarecare din plan. Astfel, daca
este un patrulater convex cu mijloacele
ale diagonalelor
si ale laturilor
respectiv,
atunci exita relatiile
Daca
este un trapez cu 
atunci exista relatia
Daca
este un paralelogram, atunci exista relatia
P2. I"ll use the notations from the previous problem. Prove that in any tetrahedron
there are the equivalencies
Proof. Equivalence
Let the midpoints
of
Apply the Euler's relations 
Thus,
the parallelogram
is a rectangle
Application. Ascertain the area of the trapezoid
where
and

Proof 1. Notam
Thus,
i.e.
is
-right triangle and
In conclusion,
and ![$[ABCD]=[BCE]+[AECD]=7\cdot [BCE]=210\ .$](//latex.artofproblemsolving.com/d/f/f/dff43805dca03e94f584c086cab771412965de0f.png)
Proof 2. Denote
and suppose w.l.o.g.
I"ll use the standard notations for a convex quadrilateral. Denote
Observe that
Observe that
i.e.
a.s.o.
Proof 3. Calculate
a.s.o.
P3. Let a plane
and
for which denote
so that
and
Let 
Prove that the relation
Particular case. If
i.e.
then the relation
becomes 
Proof. Apply generalized Pythagoras's theorem to
in



P4. Let a cube
with
, where the base is
and the vertical edges are ![$[AA']\ ,$](//latex.artofproblemsolving.com/7/8/3/78330a2fef298d82e7f042e49e307d781f6f1ff5.png)
and
Prove that the distance between the diagonals
and
is equally to
.
Proof 1. Observe that
and
. Let
and
so that
. Prove easily that 
is common perpendicular line of the choice diagonals and
Hence
.
Remark. Can obtain
with the "power" of
w.r.t. the circumcircle of
which has the diameter

Using the Pitagora' theorem in
-right
obtain that
.
Proof 2. Let
and the midpoint
of the edge
. Thus,
and
. Denote the distance
between the diagonals
and now preserve from figure only the tetrahedron
. Prove easily that
and 
the area of the face
is
. The distance
between the choice diagonals is in fact the distance from
the vertex
to the plane
. In conclusion, 
Extension. Let a rectangular parallelipipedon
with the base
and the vertical edges
,
,
,
so that
. Prove that the distance
between the diagonals
si
is given by the relation 
Proof. Let
and the midpoint
of the edge
. Thus,
and
. Now preserve from the figure only
the tetrahedron
. Observe that
The distance of
to the plane
is
and
. Let 
be the distance between choice diagonals
,
is in fact the distance from the vertex
to the face
. Prove easily that the area
of the face
is
In conclusion,

Remark 1. I"ll prove the relation
with the well known identity
for any
. Indeed, in our case

![$2a^2b^2+\left[\frac {c^2}2\cdot\left(a^2+b^2\right)+\frac {c^4}8\right]+2\left(a^2+b^2\right)^2+c^2\left(a^2+b^2\right)-\left(a^2+b^2\right)^2-\left(a^4+b^4\right)-\left[\frac {c^2}2\cdot\left(a^2+b^2\right)+\frac {c^4}8\right]=$](//latex.artofproblemsolving.com/a/d/3/ad3829fac2b7d2ff85e1e77a9374ead0ac4c154f.png)
.
Remark 2. I"ll prove the relation
with the remarkable identity (prove easily!)
for any
. Indeed, in our case

P5 (29th IMO 1988 shortlist).
is a tetrahedron. Show that any plane through the midpoints of
and
divides the tetrahedron into two parts of equal volume.
Proof. Denote the given plane
and suppose w.l.o.g.
, where
,
are the midpoints of
,
respectively ,
so that
,
i.e.
,
,
so that
and
so that
. Observe that
. Apply the Menelaus'
theorem to
. Let
be the distance of
to the plane 
let
,
be the volumes of the pyramids
,
. Therefore, ![$\left\{\begin{array}{ccccc}
\frac {v_1}{[ABCD]}=\frac {[AMR]\cdot \delta_{ABD}(Q)}{[ABD]\cdot\delta_{ABD}(C)}=\frac {AM}{AB}\cdot\frac {AR}{AD}\cdot\frac {QA}{CA} & \stackrel{1\wedge 2}{=} & \frac 12\cdot\frac p{p+1}\cdot\frac p{p-1} & \implies & v_1=\frac {p^2}{2\left(p^2-1\right)}\cdot [ABCD]\\\\
\frac {v_2}{[ABCD]}=\frac {[CPN]\cdot \delta_{BCD}(Q)}{[CBD]\cdot\delta_{BCD}(A)}=\frac {CP}{CB}\cdot\frac {CN}{CD}\cdot\frac {QC}{AC} & \stackrel{1\wedge 2}{=} & \frac 1{p+1}\cdot\frac 12\cdot \frac 1{p-1} & \implies & v_2=\frac {1}{2\left(p^2-1\right)}\cdot [ABCD]\end{array}\right\|$](//latex.artofproblemsolving.com/7/b/b/7bb8d7f0c779465e73b1c2711fa38b0e162bbe9c.png)
In conclusion, the required volume is
, where
, i.e.
. The case
is similarly with upper case. Suppose
now
, i.e.
is a parallelogram. Let the midpoint
of
. In this case
![$[ABCD]=2\cdot v\ .$](//latex.artofproblemsolving.com/f/d/e/fde6ab194fab125eb45f5e2bdb079551561dbfd7.png)

Proof. Notam







Adunam relatiile





Observatie. In particular, daca un varf al tetraedrului este "tras" in planul fetei opuse se obtin trei identitati pentru un patrulater oarecare din plan. Astfel, daca


![$[AC]\ ,$](http://latex.artofproblemsolving.com/6/e/1/6e12d67d19cbed5cac0510150cbffc8f6fdc8ce9.png)
![$[BD]$](http://latex.artofproblemsolving.com/3/2/6/3261e689901bce018ecdef47b9bc60a78ead3746.png)
![$[AB]\ ,$](http://latex.artofproblemsolving.com/b/a/3/ba35a1c584b9f3786aaed51acf1cbc01ce2968a4.png)
![$[BC]\ ,$](http://latex.artofproblemsolving.com/6/5/6/6563ca77d31eb676ef646fa9c37ea181b812d864.png)
![$[CD]\ ,$](http://latex.artofproblemsolving.com/5/f/7/5f745def914e8ed03d2015c00e2d98fd458adcab.png)
![$[DA]$](http://latex.artofproblemsolving.com/7/b/e/7be1ee9448ef63ac6f1f6b8dd6982c30bad9bb31.png)
atunci exita relatiile



atunci exista relatia



P2. I"ll use the notations from the previous problem. Prove that in any tetrahedron


Proof. Equivalence


![$([AB]\ ,\ [BC]\ ,\ [CD]\ ,\ [DA])\ .$](http://latex.artofproblemsolving.com/5/f/0/5f050f3d6bdc6b80070d6d7dc641457bfb14c292.png)

Thus,







Application. Ascertain the area of the trapezoid






Proof 1. Notam




![$AE=3\cdot BE\implies [AECD]=6\cdot [BCE]\ .$](http://latex.artofproblemsolving.com/4/4/c/44ca8e79589ae57ccf4badc2d1201f99a6b9241e.png)
![$[BCE]=30$](http://latex.artofproblemsolving.com/b/c/b/bcb75bb9b2f15e44033edda31dfa61ec26b1ab23.png)
![$[ABCD]=[BCE]+[AECD]=7\cdot [BCE]=210\ .$](http://latex.artofproblemsolving.com/d/f/f/dff43805dca03e94f584c086cab771412965de0f.png)
Proof 2. Denote











Proof 3. Calculate



P3. Let a plane







Prove that the relation





Proof. Apply generalized Pythagoras's theorem to
![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)


















P4. Let a cube


![$[ABCD]$](http://latex.artofproblemsolving.com/c/d/3/cd3361fb9586094387d885d23e9efce948e8b291.png)
![$[AA']\ ,$](http://latex.artofproblemsolving.com/7/8/3/78330a2fef298d82e7f042e49e307d781f6f1ff5.png)
![$[BB']\ ,\ [CC']$](http://latex.artofproblemsolving.com/9/e/f/9ef798822cc55728a5708b346e4eb8e8c0b409e0.png)
![$[DD']\ .$](http://latex.artofproblemsolving.com/8/6/0/860443b3b43ba09dbdca18adaf951454079ff984.png)



Proof 1. Observe that












Remark. Can obtain



![$[D'I]\ :\ BI\cdot BD=BJ\cdot BD'\implies$](http://latex.artofproblemsolving.com/3/0/a/30a34e2d6d2e700731c4c76ff6156261c48bcfe4.png)







Proof 2. Let


![$[DD']$](http://latex.artofproblemsolving.com/2/4/1/241460ea7bd49d07230366a7880e525ad678dc80.png)











![$S=[AMC]=\frac {\sqrt 6}4$](http://latex.artofproblemsolving.com/1/4/3/14301a4fad757c0c2fd1d616d7455ca7279bbe95.png)

the vertex



Extension. Let a rectangular parallelipipedon

![$[ABCD]$](http://latex.artofproblemsolving.com/c/d/3/cd3361fb9586094387d885d23e9efce948e8b291.png)
![$[AA']$](http://latex.artofproblemsolving.com/f/8/3/f83bdc8e170d3bc867097c603fa03cf6edefbb4b.png)
![$[BB']$](http://latex.artofproblemsolving.com/c/0/d/c0ddaebfdb98e7f3547c20b86a61b060dc528f24.png)
![$[CC']$](http://latex.artofproblemsolving.com/a/8/1/a81ee27e589c3262d8fb37e72a84a363bca0eb34.png)
![$[DD']$](http://latex.artofproblemsolving.com/2/4/1/241460ea7bd49d07230366a7880e525ad678dc80.png)





Proof. Let


![$[DD']$](http://latex.artofproblemsolving.com/2/4/1/241460ea7bd49d07230366a7880e525ad678dc80.png)



the tetrahedron







be the distance between choice diagonals










Remark 1. I"ll prove the relation





![$2a^2b^2+\left[\frac {c^2}2\cdot\left(a^2+b^2\right)+\frac {c^4}8\right]+2\left(a^2+b^2\right)^2+c^2\left(a^2+b^2\right)-\left(a^2+b^2\right)^2-\left(a^4+b^4\right)-\left[\frac {c^2}2\cdot\left(a^2+b^2\right)+\frac {c^4}8\right]=$](http://latex.artofproblemsolving.com/a/d/3/ad3829fac2b7d2ff85e1e77a9374ead0ac4c154f.png)



Remark 2. I"ll prove the relation






P5 (29th IMO 1988 shortlist).

![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)
![$[CD]$](http://latex.artofproblemsolving.com/e/7/0/e70960e9e5738a46ad23f794e796ef3cb4ad7e2c.png)
Proof. Denote the given plane




![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)
![$[CD]$](http://latex.artofproblemsolving.com/e/7/0/e70960e9e5738a46ad23f794e796ef3cb4ad7e2c.png)


i.e.







theorem to




let




![$\left\{\begin{array}{ccccc}
\frac {v_1}{[ABCD]}=\frac {[AMR]\cdot \delta_{ABD}(Q)}{[ABD]\cdot\delta_{ABD}(C)}=\frac {AM}{AB}\cdot\frac {AR}{AD}\cdot\frac {QA}{CA} & \stackrel{1\wedge 2}{=} & \frac 12\cdot\frac p{p+1}\cdot\frac p{p-1} & \implies & v_1=\frac {p^2}{2\left(p^2-1\right)}\cdot [ABCD]\\\\
\frac {v_2}{[ABCD]}=\frac {[CPN]\cdot \delta_{BCD}(Q)}{[CBD]\cdot\delta_{BCD}(A)}=\frac {CP}{CB}\cdot\frac {CN}{CD}\cdot\frac {QC}{AC} & \stackrel{1\wedge 2}{=} & \frac 1{p+1}\cdot\frac 12\cdot \frac 1{p-1} & \implies & v_2=\frac {1}{2\left(p^2-1\right)}\cdot [ABCD]\end{array}\right\|$](http://latex.artofproblemsolving.com/7/b/b/7bb8d7f0c779465e73b1c2711fa38b0e162bbe9c.png)
In conclusion, the required volume is

![$\frac {v}{[ABCD]}=\frac {p^2}{2\left(p^2-1\right)}- \frac {1}{2\left(p^2-1\right)}=\frac 12$](http://latex.artofproblemsolving.com/3/a/f/3af8cdb902d787476bf7af9285f9039e3c578070.png)
![$[ABCD]=2\cdot v$](http://latex.artofproblemsolving.com/7/0/a/70ae4c7e8698b9b993803137161b5218cbbd3aee.png)

now



![$[AC]$](http://latex.artofproblemsolving.com/0/9/3/0936990e6625d65357ca51006c08c9fe3e04ba0c.png)
![$\frac v{[ABCD]}=\frac {v(PCNMXR)+v(MXRA)}{[ABCD]}=\frac 38+\frac 18=\frac 12\implies$](http://latex.artofproblemsolving.com/4/d/0/4d00b15b24eea07cbb88166a8adb8500e07fdffb.png)
![$[ABCD]=2\cdot v\ .$](http://latex.artofproblemsolving.com/f/d/e/fde6ab194fab125eb45f5e2bdb079551561dbfd7.png)
This post has been edited 120 times. Last edited by Virgil Nicula, Jun 18, 2016, 6:09 PM