435. Geometry problems in space.

by Virgil Nicula, Dec 4, 2015, 12:13 PM

P1 (Relatiile lui Euler). Intr-un tetraedru $ABCD$ suma intre patratele a doua muchii opuse si de patru ori patratul bimedianei corespunzatoare este egal cu suma patratelor celorlalte muchii.

Proof. Notam $\left\{\begin{array}{ccc}
AB=a\ ; & BC=b\ ; & CD=c\\\\
DA=d\ ; & AC=e\ ; & BD=f\end{array}\right\|$ si alegem muchiile opuse $AC$ si $BD$ ale caror mijloace le notam $M\ ,$ $N$ respectiv. Aplicam teorema medianei in triunghiurile

$\left\{\begin{array}{ccccc}
\triangle ABC\ :  & 4\cdot MB^2 =2\cdot\left(BA^2+BC^2\right)-AC^2 & \iff & 4\cdot MB^2=2\left(a^2+b^2\right)-e^2 & (1)\\\\
\triangle ADC\ :  & 4\cdot MD^2 =2\cdot\left(DA^2+DC^2\right)-AC^2 & \iff & 4\cdot MD^2=2\left(d^2+c^2\right)-e^2 & (2)\end{array}\right\|$ si in triunghiul $BMD\ :\ \boxed{4\cdot MN^2 =2\cdot\left(MB^2+MD^2\right)-f^2}\ (3)\ .$

Adunam relatiile $(1)$ si $(2)$ la relatia $(3)$ inmultita cu doi $:\ 8\cdot MN^2=2\left(a^2+b^2\right)+2\left(c^2+d^2\right)-2\left(e^2+f^2\right)\ ,$ adica $\boxed{e^2+f^2+4\cdot MN^2=a^2+b^2+c^2+d^2}\ (*)\ .$

Observatie. In particular, daca un varf al tetraedrului este "tras" in planul fetei opuse se obtin trei identitati pentru un patrulater oarecare din plan. Astfel, daca

$ABCD$ este un patrulater convex cu mijloacele $(E,F,X,Y,Z,T)$ ale diagonalelor $[AC]\ ,$ $[BD]$ si ale laturilor $[AB]\ ,$ $[BC]\ ,$ $[CD]\ ,$ $[DA]$ respectiv,

atunci exita relatiile $:\ \left\{\begin{array}{cccc}
AC^2+BD^2+4\cdot EF^2 & = & AB^2+BC^2+CD^2+DA^2 & (1)\\\\
AB^2+CD^2+4\cdot XZ^2 & = & BC^2+AD^2+AC^2+BD^2 & (2)\\\\
AD^2+BC^2+4\cdot YT^2 & = & AB^2+CD^2+AC^2+BD^2 & (3)\end{array}\right\|\ .$ Daca $ABCD$ este un trapez cu $AB\parallel CD\ ,$

atunci exista relatia $\boxed{e^2+f^2=2ac+b^2+d^2}\ (*)\ .$ Daca $ABCD$ este un paralelogram, atunci exista relatia $\boxed{e^2+f^2=2\left(a^2+b^2\right)}\ (**)\ .$


P2. I"ll use the notations from the previous problem. Prove that in any tetrahedron $ABCD$ there are the equivalencies $:\ \left\{\begin{array}{cccccc}
a^2+c^2 & = & b^2+d^2 & \iff & AC\perp BD & (1)\\\\
a^2+c^2 & = & e^2+f^2 & \iff & AD\perp BC & (2)\\\\
b^2+d^2 & = & e^2+f^2 & \iff & AB\perp CD & (3)\end{array}\right\|\ .$

Proof. Equivalence $(1)\ .$ Let the midpoints $(M,N,P,R)$ of $([AB]\ ,\ [BC]\ ,\ [CD]\ ,\ [DA])\ .$ Apply the Euler's relations $\left\{\begin{array}{cccc}
a^2+c^2+4\cdot MP^2 & = & b^2+d^2+e^2+f^2\\\\
b^2+d^2+4\cdot NR^2 & = & a^2+c^2+e^2+f^2\end{array}\right\|\ .$

Thus, $a^2+c^2=b^2+d^2\iff$ $\left\{\begin{array}{cccc}
4\cdot MP^2 & = & e^2+f^2\\\\
4\cdot NR^2 & = & e^2+f^2\end{array}\right\|\iff$ $MP=NR\iff$ the parallelogram $MNPR$ is a rectangle $\iff$ $MN\perp MR\iff$ $AC\perp BD\ .$


Application. Ascertain the area of the trapezoid $ABCD\ ,$ where $AB\parallel CD$ and $AB=52\ ,$ $BC=12\ ,$ $CD=39\ ,$ $DA=5\ .$

Proof 1. Notam $E\in AB\ ,\ CE\parallel AD\ .$ Thus, $AE=39\ ,\ EB=13\ ,\ EB=13\ ,\ CE=5\ , BC=12\ ,$ i.e. $BCE$ is $C$-right triangle and

$AE=3\cdot BE\implies [AECD]=6\cdot [BCE]\ .$ In conclusion, $[BCE]=30$ and $[ABCD]=[BCE]+[AECD]=7\cdot [BCE]=210\ .$

Proof 2. Denote $X\in D\cap BC$ and suppose w.l.o.g. $CD<AB\ .$ I"ll use the standard notations for a convex quadrilateral. Denote $XD=x\ ,$ $XC=y\ .$ Observe that

$\frac {XD}{XA}=\frac {XC}{XB}=$ $\frac {DC}{AB}\iff$ $\frac {x}{x+5}=\frac {y}{y+12}=$ $\frac {39}{52}=\frac 34$ $\odot\begin{array}{ccccc}
\nearrow & x=15 & \iff & XA=20 & \searrow\\\\
\searrow & y=36 & \iff & XB=48 & \nearrow\end{array}\odot$ Observe that $XD^2+XC^2=CD^2\ ,$ i.e. $XA\perp XB$ a.s.o.

Proof 3. Calculate $\left\{\begin{array}{ccccccc}
e^2+f^2 & = & 2ac+b^2+d^2 & = & (24+1)\cdot \cdot 13^2 & = & 5^2\cdot 13^2\\\\
a^2+c^2 & = & 39^2+52^2 & = & \left(3^2+4^2\right)\cdot 13^2 & = & 5^2\cdot 13^2\end{array}\right\|\implies$ $e^2+f^2=a^2+c^2\iff$ $AD\perp BC$ a.s.o.


P3. Let a plane $\pi\ ,$ $\{B,C\}\subset\pi$ and $A\not\in \pi$ for which denote $P\in\pi$ so that $AP\perp \pi$ and $P\not\in BC\ .$ Let $\left\{\begin{array}{ccccccc}
m\left(\widehat{BAC}\right) & = & \alpha & ; & m\left(\widehat{BPC}\right) & = & \phi\\\\
m\left(\widehat{ABP}\right) & = & \beta & ; & m\left(\widehat{ACP}\right) & = & \gamma\end{array}\right\|\ .$

Prove that the relation $\boxed{\cos\alpha =\cos\beta\cos\gamma\cos\phi +\sin\beta\sin\gamma}\ (*)\ .$ Particular case. If $AB\parallel\pi\ ,$ i.e. $\beta =0\ ,$ then the relation $(*)$ becomes $\boxed{\cos\alpha =\cos\gamma\cos\phi}\ .$


Proof. Apply generalized Pythagoras's theorem to $[BC]$ in $:\ \left\{\begin{array}{cccc}
\triangle BAC\ : & AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos\alpha & = & BC^2\\\\
\triangle BPC\ : & PB^2+PC^2-2\cdot PB\cdot PC\cdot\cos\phi & = & BC^2\end{array}\right\|$ $\implies$ $AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos\alpha =$

$PB^2+PC^2-2\cdot PB\cdot PC\cdot\cos\phi$ $\iff$ $\left(AB^2-PB^2\right)+\left(AC^2-PC^2\right)-2\cdot AB\cdot AC\cdot\cos\alpha =$ $-2\cdot PB\cdot PC\cdot\cos\phi$ $\iff$ $2\cdot AP^2-2\cdot AB\cdot AC\cdot\cos\alpha =$

$-2\cdot PB\cdot PC\cdot\cos\phi$ $\iff$ $AB\cdot AC\cdot\cos\alpha=$ $AP^2+PB\cdot PC\cdot\cos\phi$ $\iff$ $\cos\alpha =$ $\frac {AP}{AB}\cdot\frac {AP}{AC}+\frac {PB}{AB}\cdot \frac {PC}{AC}\cdot\cos\phi$ $\iff$ $\cos\alpha=\sin\beta\sin\gamma+\cos\beta\cos\gamma\cos\phi\ .$


P4. Let a cube $ABCDA'B'C'D'$ with $AB=1$ , where the base is $[ABCD]$ and the vertical edges are $[AA']\ ,$

$[BB']\ ,\ [CC']$ and $[DD']\ .$ Prove that the distance between the diagonals $AC$ and $D'B$ is equally to $\boxed{\frac {\sqrt 6}6}$ .


Proof 1. Observe that $AC=\sqrt 2$ and $D'B=\sqrt 3$ . Let $I\in AC\cap BD$ and $J\in D'B$ so that $IJ\perp D'B$ . Prove easily that $AC\perp (BD'D)\ ,$

$IJ$ is common perpendicular line of the choice diagonals and $\triangle BIJ\sim\triangle BD'D\ .$ Hence $\frac {IJ}{D'D}=\frac {BI}{BD'}$ $ \implies$ $\frac {IJ}1=\frac {\frac {\sqrt 2}2}{\sqrt 3}=\frac 1{\sqrt 6}\implies$ $\boxed{IJ=\frac {\sqrt 6}6}$ .

Remark. Can obtain $IJ$ with the "power" of $B$ w.r.t. the circumcircle of $IDD'J$ which has the diameter $[D'I]\ :\ BI\cdot BD=BJ\cdot  BD'\implies$ $\frac {\sqrt 2}2\cdot \sqrt 2=$

$BJ\cdot \sqrt 3\implies$ $BJ=\frac 1{\sqrt 3}\ .$ Using the Pitagora' theorem in $J$-right $\triangle BIJ$ obtain that $IJ^2=IB^2-BJ^2=\frac 12-\frac 13=\frac 16\implies$ $IJ=\frac {\sqrt 6}6$ .

Proof 2. Let $O\in AC\cap BD$ and the midpoint $M$ of the edge $[DD']$ . Thus, $BD'\parallel MO$ and $MO\subset (AMC)\implies$ $BD'\parallel (AMC)$ . Denote the distance

$d$ between the diagonals $AC\ ,\ BD'$ and now preserve from figure only the tetrahedron $\tau\equiv ABCM$ . Prove easily that $3\cdot V(\tau )=\frac 14$ and $MA=MC=\frac {\sqrt 5}2\ ,$

$AC=\sqrt 2\ ,$ $\delta_{AC}(M)=\frac {\sqrt 3}2\implies$ the area of the face $AMC$ is $S=[AMC]=\frac {\sqrt 6}4$ . The distance $d$ between the choice diagonals is in fact the distance from

the vertex $B$ to the plane $(AMC)$ . In conclusion, $3\cdot V(\tau )=d\cdot S\implies\frac 14=d\cdot \frac {\sqrt 6}4\implies d=\frac 1{\sqrt 6} \implies\boxed{d=\frac {\sqrt 6}6}\ .$


Extension. Let a rectangular parallelipipedon $ABCDA'B'C'D'$ with the base $[ABCD]$ and the vertical edges $[AA']$ , $[BB']$ , $[CC']$ , $[DD']$ so that

$\left\{\begin{array}{ccc}
AB & = & a\\BC & = & b\\\
AA' & = & c\end{array}\right\|$ . Prove that the distance $d(c)$ between the diagonals $AC$ si $D'B$ is given by the relation $\boxed{d(c)=\frac {abc}{\sqrt{4a^2b^2+c^2\cdot \left(a^2+b^2\right)}}}\ .$


Proof. Let $O\in AC\cap BD$ and the midpoint $M$ of the edge $[DD']$ . Thus, $BD'\parallel MO$ and $MO\subset (AMC)\implies$ $BD'\parallel (AMC)$ . Now preserve from the figure only

the tetrahedron $\tau\equiv ABCM$ . Observe that $\left\{\begin{array}{ccc}
MA^2 & = & b^2+\frac {c^2}4\\\\
MC^2 & = & a^2+\frac {c^2}4\\\\
AC^2 & = & a^2+b^2\end{array}\right\|\ .$ The distance of $M$ to the plane $(ABC)$ is $\delta_{ABC}(M)=\frac c2$ and $\boxed{V(\tau )=\frac {abc}{12}}$ . Let $d=d(c)$

be the distance between choice diagonals $AC$ , $BD'$ is in fact the distance from the vertex $B$ to the face $(AMC)$ . Prove easily that the area $S$ of the face $(AMC)$ is

$\boxed{S=\frac 14\cdot \sqrt{4a^2b^2+c^2\left(a^2+b^2\right)}}\ (*)\ .$ In conclusion, $\boxed{3\cdot V(\tau )=d\cdot S}\implies\frac {abc}4=$ $\frac {d\cdot \sqrt{4a^2b^2+c^2\left(a^2+b^2\right)}}4\implies$ $\boxed{d(c)=\frac {abc}{\sqrt{4a^2b^2+c^2\cdot \left(a^2+b^2\right)}}}\ .$

Remark 1. I"ll prove the relation $(*)$ with the well known identity $16S^2=2\cdot \sum b^2c^2-\sum a^4$ for any $\triangle ABC$ . Indeed, in our case

$16S^2=2\left(b^2+\frac {c^2}4\right)\left(a^2+\frac {c^2}4\right)+2\left(a^2+b^2\right)\left(a^2+b^2+\frac {c^2}2\right)-$ $\left(a^2+b^2\right)^2-\left(a^2+\frac {c^2}4\right)^2-\left(b^2+\frac {c^2}4\right)^2=$

$2a^2b^2+\left[\frac {c^2}2\cdot\left(a^2+b^2\right)+\frac {c^4}8\right]+2\left(a^2+b^2\right)^2+c^2\left(a^2+b^2\right)-\left(a^2+b^2\right)^2-\left(a^4+b^4\right)-\left[\frac {c^2}2\cdot\left(a^2+b^2\right)+\frac {c^4}8\right]=$

$2a^2b^2+\left(a^2+b^2\right)^2+c^2\left(a^2+b^2\right)-\left(a^4+b^4\right)=$ $4a^2b^2+c^2\left(a^2+b^2\right)\implies$ $4S=\sqrt{4a^2b^2+c^2\left(a^2+b^2\right)}$ .

Remark 2. I"ll prove the relation $(*)$ with the remarkable identity (prove easily!) $16S^2=\sum a^2\left(b^2+c^2-a^2\right)$ for any $\triangle ABC$ . Indeed, in our case

$16S^2=2b^2\left(a^2+\frac {c^2}4\right)+2a^2\left(b^2+\frac {c^2}4\right)+\frac {c^2}2\cdot\left(a^2+b^2\right)\implies$ $16S^2=4a^2b^2+c^2\left(a^2+b^2\right)\implies$ $4S=\sqrt{4a^2b^2+c^2\left(a^2+b^2\right)}\ .$


P5 (29th IMO 1988 shortlist). $ABCD$ is a tetrahedron. Show that any plane through the midpoints of $[AB]$ and $[CD]$ divides the tetrahedron into two parts of equal volume.

Proof. Denote the given plane $\pi$ and suppose w.l.o.g. $\{M,N,P,Q,R,S\}\subset\pi$ , where $M$ , $N$ are the midpoints of $[AB]$ , $[CD]$ respectively , $P\in (BC)$ so that $\boxed{\frac {PB}{PC}=p>1}$ ,

i.e. $\boxed{\frac {PB}p=\frac {PC}1=\frac {BC}{p+1}}\ (*)$ , $R\in (AD)$ , $Q\in AC$ so that $C\in (AQ)$ and $S\in BD$ so that $D\in (BS)$ . Observe that $\left\{\begin{array}{ccc}
Q & \in & MP\cap NR\cap AC\\\\
S & \in & MR\cap NP\cap BD\end{array}\right\|$ . Apply the Menelaus'

theorem
to $:\ \left\{\begin{array}{ccccccc}
\overline{MPQ}/\triangle ABC\ : & \frac {QC}{QA}\cdot\frac {MA}{MB}\cdot\frac {PB}{PC}=1 & \implies & \frac {QA}{QC}=p & \implies & \frac {QA}p=\frac {QC}1=\frac {AC}{p-1} & (1)\\\\
\overline{RNQ}/\triangle ACD\ : & \frac {QA}{QC}\cdot\frac {NC}{ND}\cdot\frac {RD}{RA}=1 & \implies & \frac {RA}{RD}=p & \implies & \frac {RA}p=\frac {RD}1=\frac {AD}{p+1} & (2)\end{array}\right\|$ . Let $\delta_{XYZ}(P)$ be the distance of $P$ to the plane $XYZ\ ;$

let $v_1$ , $v_2$ be the volumes of the pyramids $QAMR$ , $QCPN$ . Therefore, $\left\{\begin{array}{ccccc}
\frac {v_1}{[ABCD]}=\frac {[AMR]\cdot \delta_{ABD}(Q)}{[ABD]\cdot\delta_{ABD}(C)}=\frac {AM}{AB}\cdot\frac {AR}{AD}\cdot\frac {QA}{CA} & \stackrel{1\wedge 2}{=} & \frac 12\cdot\frac p{p+1}\cdot\frac p{p-1} & \implies & v_1=\frac {p^2}{2\left(p^2-1\right)}\cdot [ABCD]\\\\
\frac {v_2}{[ABCD]}=\frac {[CPN]\cdot \delta_{BCD}(Q)}{[CBD]\cdot\delta_{BCD}(A)}=\frac {CP}{CB}\cdot\frac {CN}{CD}\cdot\frac {QC}{AC} & \stackrel{1\wedge 2}{=} & \frac 1{p+1}\cdot\frac 12\cdot \frac 1{p-1} & \implies & v_2=\frac {1}{2\left(p^2-1\right)}\cdot [ABCD]\end{array}\right\|$

In conclusion, the required volume is $v=v_1-v_2$ , where $\frac {v}{[ABCD]}=\frac {p^2}{2\left(p^2-1\right)}- \frac {1}{2\left(p^2-1\right)}=\frac 12$ , i.e. $[ABCD]=2\cdot v$ . The case $p<1$ is similarly with upper case. Suppose

now $p=1$ , i.e. $MPNR$ is a parallelogram. Let the midpoint $X$ of $[AC]$ . In this case $\frac v{[ABCD]}=\frac {v(PCNMXR)+v(MXRA)}{[ABCD]}=\frac 38+\frac 18=\frac 12\implies$ $[ABCD]=2\cdot v\ .$
This post has been edited 120 times. Last edited by Virgil Nicula, Jun 18, 2016, 6:09 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a