414. Geometry 7.

by Virgil Nicula, Mar 21, 2015, 1:44 PM

PP1. Let a convex quadrilateral $ABCD$ with $AC\perp BD$ , $P\in AC\cap BD$ , the projections $(K,L,M,N)$ of $P$ on $(AB,BC,CD,DA)$ respectively

and $X\in KP\cap CD$ , $Y\in LP\cap DA$ , $Z\in MP\cap AB$ and $T\in NP\cap BC$ . Prove that there is a circle $w$ so that $\{K,L,M,N;X,Y,Z,T\}\subset w$ .


Proof 1. Let $\left\{\begin{array}{ccccccc}
AB=a & ; & BC=b & ; & CD=c & ; & DA=d\\\\
PA=m & ; & PB=n & ; & PC=p & ; &PD=r\end{array}\right\|$ . Observe that $BKPL$ is cyclic $\implies$ $\widehat{BLK}\equiv\widehat{BPK}\equiv\widehat{KAC}$ $\implies$

$\widehat{BLK}\equiv\widehat{KAC}$ $\implies$ $ACLK$ is cyclic. Prove analogously that $BDML$ , $CANM$ and $DBKN$ are cyclically.

$\blacktriangleright$ Let $U\in KN\cap BD$ , $U'\in LM\cap BD$ . Apply the Menelaus' theorem to $:$

$\left\{\begin{array}{cccc}
\overline{UKN}/\triangle ABD\ : & \frac {UB}{UD}\cdot\frac{ND}{NA}\cdot\frac {KA}{KB}=1 & \implies & \frac {UB}{UD}=\frac {NA}{ND}\cdot\frac {KB}{KA}=\left(\frac mr\right)^2\cdot\left(\frac nm\right)^2=\left(\frac nr\right)^2\\\\
\overline{U'LM}/\triangle BCD\ : & \frac {U'B}{U'D}\cdot\frac{MD}{MC}\cdot\frac {LC}{LB}=1 & \implies & \frac {U'B}{U'D}=\frac {MC}{MD}\cdot\frac {LB}{LC}=\left(\frac pr\right)^2\cdot\left(\frac np\right)^2=\left(\frac nr\right)^2\end{array}\right\|$ $\implies$ $U'\equiv U$ where $\frac {UB}{UD}=\left(\frac nr\right)^2\implies$ $\boxed{U\in KN\cap ML\cap BD}$ .

$\blacktriangleright$ Let $V\in KL\cap AC$ , $V'\in MN\cap AC$ . Apply the Menelaus' theorem to $:$

$\left\{\begin{array}{cccc}
\overline{VKL}/\triangle ABC\ : & \frac {VA}{VC}\cdot\frac{LC}{LB}\cdot\frac {KB}{KA}=1 & \implies & \frac {VA}{VC}=\frac {LB}{LC}\cdot\frac {KA}{KB}=\left(\frac np\right)^2\cdot\left(\frac mn\right)^2=\left(\frac mp\right)^2\\\\
\overline{V'NM}/\triangle ACD\ : & \frac {V'A}{V'C}\cdot\frac{MC}{MD}\cdot\frac {ND}{NA}=1 & \implies & \frac {V'A}{V'C}=\frac {MD}{MC}\cdot\frac {NA}{ND}=\left(\frac rp\right)^2\cdot\left(\frac mr\right)^2=\left(\frac mp\right)^2\end{array}\right\|$ $\implies$ $V'\equiv V$ where $\frac {VA}{VC}=\left(\frac mp\right)^2\implies$ $\boxed{V\in KL\cap MN\cap AC}$ .

$\blacktriangleright$ Thus, $\left\{\begin{array}{ccc}
BKND\ \mathrm{cyclic} & \implies & UK\cdot UN=UB\cdot UD\\\\
BTMD\ \mathrm{cyclic} & \implies & UL\cdot UM=UB\cdot UD\end{array}\right\|$ $\implies$ $UK\cdot UN=UL\cdot UM\implies$ $KLMN$ is cyclically. Denote $\left\{\begin{array}{c}
m\left(\widehat{ABD}\right)=\alpha\\\\
m\left(\widehat{ACD}\right)=\beta\\\\
m\left(\widehat{KXD}\right)=\phi\end{array}\right\|$ where $\alpha +\beta =\phi$ and

$\left\{\begin{array}{cc}
\sin\alpha =\frac ma\ ; & \cos\alpha =\frac na\\\\
\sin\beta =\frac rc\ ; & \cos\beta =\frac pc\end{array}\right\|$ $\implies$ $\sin\phi =\sin(\alpha +\beta )=$ $\sin\alpha \cos\beta +\sin\beta\cos\alpha =$ $\frac ma\cdot \frac pc+\frac rc\cdot\frac na\implies$ $\boxed{\sin\phi =\frac {mp+nr}{ac}}\ (*)$ . Apply the theorem of Sines in $\triangle PXD\ :$

$\frac {PX}{\sin\widehat{PDX}}=\frac {PD}{\sin\widehat{PXD}}\implies$ $\frac {PX}{\frac pc}=\frac {r}{\sin\phi}\implies$ $PX=\frac {pr}c\cdot \frac {ac}{mp+nr }\implies$ $PX=\frac {apr}{mp+nr }\implies$ $PK\cdot PX=\frac {mn}a\cdot \frac {apr}{mp+nr }\implies$ $\boxed{PK\cdot PX=\frac {mnpr}{mp+nr}}$ .

In conclusion, $PK\cdot PX=PL\cdot PY=PM\cdot  PZ=PN\cdot PT=\frac {mnpr}{mp+nr}$ , i.e. there is a circle $w$ so that $\{K,L,M,N;X,Y,Z,T\}\subset w$ .

Remark. If the quadrilateral $ABCD$ is cyclically, then the points $X,Y,Z,T$ are the midpoints of the sides $[CD]\ ,\ [DA]\ ,\ [AB]\ ,\ [BC]$ respectively.



PP2. Let a scalene $\triangle{ABC}$ with incentre $I$ and circumcircle $w=\mathbb C(O)$ . Lines $AI, BI, CI$ intersect again $w$ at $D, E, F$ respectively.

The parallel lines from $I$ to $BC, AC, AB$ intersect $EF, DF, DE$ at $K, L, M$ respectively. Prove that $M\in KL$ (B.M.O. 2015 - Cyprus).


Proof. $\widehat{FEI}\equiv \widehat{ICB}\equiv \widehat{FIK}\implies KI $ is tangent to the circumcircle of $\triangle EFI$ at $ I \Longrightarrow KI^2 =KE \cdot KF $ . Hence $ K $ belongs

to the radical axis $d$ of $w$ and degenerate circle $I$ . Can prove similarly that $ \{L,M\}\subset d$ , i.e. $M\in KL$ . Remark that $ \overline{KLM} \perp OI$ .



PP3. Let the parallelogram $ABCD$ where denote $\left\{\begin{array}{ccc}
B\in (AE) & ; & BE=BC\\\\
H\in (BD) & ; & CH\perp BD\\\\
F\in CH & ; &FE\perp AB\end{array}\right\|$ . Prove that the ray $[AF$ is the $A$-bisector of $\triangle BAD$ (O.N.M. - Mexic).

Proof 1. Let $K\in AD\cap CE$ and $\left\{\begin{array}{c}
AB=CD=a\\\\
AD=BC=b\end{array}\right\|$ . Thus, $\left\{\begin{array}{c}
DK=DC=a\\\\
AK=AE=a+b\end{array}\right\|$ . Define the point $G$ so that $GK\perp AD$ and $GE\perp AB$ .

Therefore, $GK=GE$ , i.e. $E$ belongs to the bisector of $\widehat{BAD}$ . Therefore, $GD^2-GB^2=$ $\left(KG^2+KD^2\right)-\left(EG^2+EB^2\right)=$ $KD^2-EB^2=$

$CD^2-CB^2\iff$ $GD^2-GB^2=$ $CD^2-CB^2\iff$ $CG\perp BD\iff $ $G\in CH\iff G\equiv F\iff$ $[AF$ is the $A$-bisector of $\triangle BAD$ .

Proof 2. Let $L\in AD$ so $FL\perp AD\ ,\ DL=x$ and $\left\{\begin{array}{ccc}
AB=CD=a\\\\ and 
AD=BC=b\end{array}\right\|$ . So $CH\perp BD\iff HB^2-HD^2=b^2-a^2$ . Apply the Carnot's lemma to $\triangle ABD$ and

$\left\{\begin{array}{ccc}
E\in AB & ; & FE\perp AB\\\\
H\in BD & ; & FH\perp BD\\\\
L\in DA & ; & FL\perp DA\end{array}\right\|\ :\ \left(EA^2-EB^2\right)+$ $\left(HB^2-HD^2\right)+\left(LD^2-LA^2\right)=0\iff$ $\left[(b+a)^2-b^2\right]+\left(b^2-a^2\right)+\left[x^2-(x+b)^2\right]=0\iff$

$2ba-2xb=0\iff \boxed{x=a}\ (*)$ . In conclusion, $AE=AL=a+b\implies$ the ray $[AF$ is the $A$-bisector of $\triangle BAD$ .



PP4. A trapezoid $ABCD\ ,\ AD\parallel BC$ with $I\in AC\cap BD\ ;\ P\in (AB)\ ,\ R\in (CD)$ so that $I\in PR\ ;\ S\in AR\cap BD$ . Prove that $CS\parallel AB\iff \frac {PB}{PA}+\frac {BC}{AD}=1$ .

Proof. Denote $:\ K\in CS\cap AD\ ,\ L\in PR$ $\cap AD\ ;\ AD=a\ ,\ BC=b$ . Is well-known that the division $(A,K,D,L)$ is harmonically, i.e. $\frac {LD}{LA}=\frac {KD}{KA}$ .

Apply the Menelaus' theorem to the transversal $\overline{LIP}$ and $\triangle ABD\ :\ \frac {LD}{LA}\cdot\frac {PA}{PB}\cdot\frac {IB}{ID}=1\ \stackrel{(*)}{\iff}\ \frac {KD}{KA}$ $\cdot\frac {PA}{PB}\cdot\frac ba=1\iff$ $\frac {PB}{PA}=\frac ba\cdot\frac {KD}{KA}\ (1)$ .

Thus, $CS\parallel AB\iff$ $AK=b\iff$ $\frac {KD}{KA}=\frac {a-b}b\ \stackrel{(1)}{\iff}\ \frac {PB}{PA}=$ $\frac ba\cdot \frac {a-b}b\iff$ $\frac {PB}{PA}=\frac {a-b}a\iff$ $\frac {PB}{PA}+\frac ba=1\iff$ $\frac {PB}{PA}+\frac {BC}{AD}=1$ .
.


PP5. Let $ABC$ be an $A$-isosceles triangle with $AB=AC=b$ , $BC=2a$ and its incircle $w=\mathbb C(I,r)$ . Define the midpoint $D$ of $[BC]$ , its projection $T$ on $AB$ and the

circle $\alpha =\mathbb C(D,\rho )$ , where $DT=\rho$ . Consider the point $Q\in \alpha\cap w$ so that $AD$ separates $\{Q,C\}$ and $\{P,Q\}=AQ\cap w$ . Prove that $\boxed{AP=(b-a)\sqrt{\frac b{a+b}}}\ (*)$ .


Proof. Denote $F\in AB\cap w$ and $AD=h$ . Observe that $\boxed{b^2=h^2+a^2}\ (1)$ and $\left\{\begin{array}{cccc}
ah=2\cdot [ABD]=b\rho & \implies & \boxed{\rho =\frac {ah}b} & (2)\\\\
\triangle AFI\sim \triangle ADB & \implies & \boxed{r=\frac {a(b-a)}h} & (3)\end{array}\right\|$ . Thus, $IQ=ID\implies$

$m\left(\widehat{IQD}\right)=m\left(\widehat{IDQ}\right)=\phi\implies$ $\rho =QD=2r\cos\phi\implies$ $\cos\phi =\frac {\rho}{2r}\ \stackrel{(2\wedge 3)}{=}\ \frac {ah}b\cdot $ $\frac h{2a(b-a)}\stackrel{(1)}{=}\ \frac {b^2-a^2}{2b(b-a)}$ $\implies$ $\boxed{\cos\phi =\frac {a+b}{2b}}\ (4)$ . Apply the generalized

Pythagoras's theorem
to the side $AQ$ of $\triangle ADQ\ :\ AQ^2=QD^2+QA^2-2\cdot QD\cdot QA\cdot\cos\phi =$ $\rho^2+h^2-2\rho h\cos\phi =$ $\left(\frac {ah}b\right)^2+h^2-2\frac {ah}b\cdot h\cdot \frac {a+b}{2b}\implies$ $b^2\cdot AQ^2=h^2\left(a^2+b^2-a^2-ab\right)\implies$ $b\cdot AQ=h\sqrt{b(b-a)}\implies$ $\boxed{AQ=h\cdot \sqrt{\frac {b-a}b}}\ (5)$ . Since $AP\cdot AQ=AF^2=(b-a)^2$ obtain that

$AP=\frac {(b-a)^2}h\cdot\sqrt{\frac b{b-a}}=$ $(b-a)^2\cdot \sqrt{\frac b{\left(b^2-a^2\right)(b-a)}}\implies$ $AP=(b-a)\sqrt{\frac b{a+b}}$ .



PP6. Let $m,n$ be two lines (which can be parallels or concurrently) and a circle $w=C(I,r)$ which is tangent to the lines $m,n$ in the points $A\in m$, $B\in n$ respectively.

Prove that for any points $M\in m$, $N\in n$ the following sentencies are equivalently: $1^{\circ}.\ IM\perp AN\ ;\ \ \ \ 2^{\circ}.\ IN\perp BM\ ;\ \ \ \ 3^{\circ}.\ AM^2+BN^2=MN^2.$

A particular cases.

$a).\ m\parallel n$. Let $AMNB$ be a trapezoid ($AM\parallel BN$) and the middlepoint $I$ of the side $[AB]$. Prove that $IM\perp AN\Longleftrightarrow IN\perp BM\Longleftrightarrow AM^2+BN^2=MN^2.$

$b).\ P\in m\cap n$ . Let $\triangle ABC$ with the incircle $w=C(I,r)$ which touches its sides in $D\in BC$ , $E\in CA$ , $F\in AB$ . Its exincircle $w_a=C(I_a,r_a)$ touches its sides in $D_1\in BC$ ,

$E_1\in CA$ and $F_1\in AB$ . Denote $L\in BC\cap EF$ and $L_1\in BC\cap E_1F_1$ . Prove that $:\ \left\{\begin{array}{ccc}
IL\perp AD & \iff & LA^2=LD^2+AE^2\\\\
I_aL_1\perp AD_1 & \iff & L_1A^2=L_1D_1^2+AE_1^2\end{array}\right\|$ . A remarkable property !


Proof.

$\bullet\ \ (1^{\circ})\Longleftrightarrow IA^2-IN^2=$ $MA^2-MN^2\Longleftrightarrow$ $r^2-(r^2+BN^2)=MA^2-MN^2\Longleftrightarrow$ $AM^2+BN^2=MN^2\Longleftrightarrow (3^{\circ})$. Thus, $(1^{\circ})\Longleftrightarrow (3^{\circ}).$

$\bullet\ \ (2^{\circ})\Longleftrightarrow IB^2-IM^2=$ $NB^2-NM^2\Longleftrightarrow$ $r^2-(r^2+AM^2)=NB^3-NM^2\Longleftrightarrow$ $AM^2+BN^2=MN^2\Longleftrightarrow (3^{\circ})$. Thus, $(2^{\circ})\Longleftrightarrow (3^{\circ}).$

Therefore, $(1^{\circ})\Longleftrightarrow (2^{\circ})\Longleftrightarrow (3^{\circ}).$



Lemma. In a right trapezoid $ABCD$ with $AB\parallel CD\ ,\ AB\perp AD$ and $BA=BC$ there is the relation $AC^2=2\cdot BA\cdot CD$ .

Proof 1. Let $M$ be the midpoint of $[AC]$ . Therefore, $\triangle ABM\sim \triangle CAD\implies$ $\frac {AB}{CA}=\frac {AM}{CD}\implies$ $\frac {AB}{CA}=\frac {AC}{2\cdot CD}\implies$ $\boxed{AC^2=2\cdot AB\cdot CD}$ .

Proof 2. Apply the Euler's in $ABCD\ :\ BD^2+AC^2=AD^2+BC^2+2\cdot CD\cdot AB\iff$

$AD^2+AB^2+AC^2=$ $AD^2+BC^2+2\cdot AB\cdot CD$ $\iff$ $\boxed{AC^2=2\cdot AB\cdot CD}$ .

Proof 3. Let $E\in AB$ so that $CE\perp AB$ . Thus, $CB^2=CE^2+EB^2\iff$ $AB^2=AD^2+(AB-DC)^2\iff$ $AD^2+DC^2=2\cdot AB\cdot CD\iff$ $\boxed{AC^2=2\cdot AB\cdot CD}$ .

Proof 4. Let $E\in AB$ so that $CE\perp CA$ . Construct the rectangle $DAEF$ and $G\in (CF)$ so that $GF=CD$ . Thus, $DA^2=DC\cdot DG\iff$ $AC^2-DC^2=DC\cdot DG\iff$

$AC^2=DC(DC+DG)\iff$ $AC^2=DC(DC+CF)\iff$ $\AC^2=CD\cdot DF\iff$ $AC^2=CD\cdot AE\iff$ $\boxed{AC^2=2\cdot AB\cdot CD}$ .


PP7. Let the incircle $w=C(I,r)$ of $\triangle ABC$ and $\left|\begin{array}{c}
D\in w\cap BC\\\\
E\in w\cap CA\\\\
F\in w\cap AB\end{array}\right|$ . For $P\in \overarc[]{EF}$ denote

$\left\{\begin{array}{ccc}
X\in BC\ ,\ PX\perp BC & ; & PX=x\\\\
Y\in CA\ ,\ PY\perp CA & ; & PY=y\\\\
Z\in AB\ ,\ PZ\perp AB & ; & PZ=z\end{array}\right\|$ . Prove that $\boxed{\sqrt x\cdot\cos\frac A2=\sqrt y\cdot\cos\frac B2+\sqrt z\cdot\cos\frac C2}$ .


Proof (Miguel O. Sanchez). Apply the upper lemma to the trapezoids $PIDX$ , $PIEY$ and $PIFZ$ $\implies \boxed{\frac {PD}{\sqrt x}=\frac {PE}{\sqrt y}=\frac {PF}{\sqrt z}=\sqrt{2r}}\ (1)$ .

Observe that $\boxed{\frac {EF}{\cos\frac A2}=\frac {FD}{\cos \frac B2}=\frac {DE}{\cos\frac C2}=2r}\ (2)$ . Apply the Ptolemy's theorem to the cyclical quadrilateral $DEPF$ and

the proportions $(1)$ and $(2)\ :\ \underline{PD}\cdot EF=$ $\underline{PE}\cdot DF+\underline{PF}$ $\cdot DE\ \stackrel{(1\wedge 2)}{\iff}\ \sqrt x$ $\cdot\cos\frac A2=\sqrt y\cdot\cos\frac B2+\sqrt z\cdot\cos\frac C2$ .



PP8. Let the circles $\left\{\begin{array}{ccc}
w_1=C\left(O_1,R\right) & ; & O_1(0,R)\\\\
w_2=C\left(O_2,R\right) & ; & O_2\left(R,0\right)\\\\
w_3=C\left(O_3,\rho\right) & ; & O_3\left(2R-\rho ,0\right)\end{array}\right\|$ , where $\rho <2R$ and $w_3$ is exterior tangent to $w_1$ .

Find the length $r$ of the radius for the circle $w=C(I,r)$ which is exterior tangent to $\left\{w_1,w_3\right\}$ and is interior tangent to $w_2$ .


Proof. Suppose w.l.o.g. $R=3$ , i.e. $\left\{\begin{array}{ccc}
w_1=C\left(O_1,3\right) & ; & O_1(0,3)\\\\
w_2=C\left(O_2,3\right) & ; & O_2\left(3,0\right)\\\\
w_3=C\left(O_3,\rho\right) & ; & O_3\left(6-\rho ,0\right)\end{array}\right\|\ ,\ \rho <6$ . So $w_3$ is exterior tangent to $w_1\iff$ $O_1O_3=3+\rho$ $\iff$

$(3+\rho )^2=3^2+(6-\rho )^2\iff$ $\boxed{\rho =2}$ . Let $I(x,y)$ . $\left\{\begin{array}{cccccccc}
IO_1=3+r & \implies & x^2+(y-3)^2=(3+r)^2 & \implies & x^2+y^2-6y & = & r^2+6r & (1)\\\\
IO_2=3-r & \implies & (x-3)^2+y^2=(3-r)^2 & \implies & x^2+y^2-6x & = & r^2-6r & (2)\\\\
IO_3=2+r & \implies & (x-4)^2+y^2=(2+r)^2 & \implies & x^2+y^2-8x & = & r^2+4r-12 & (3)\end{array}\right\|$ $\implies$

$\odot\begin{array}{cccccc}
\nearrow & (1)-(2)\ : & 6(x-y)=12r & \implies & x-y=2r & \searrow\\\\
\searrow & (2)-(3)\ : & 2x=-10r+12 & \implies & \boxed{x=6-5r} & \nearrow\end{array}\odot$ $\implies$ $\boxed{y=6-7r}$ . Using the relation $(1)$ obtain that

$(6-5r)^2+(6-7r)^2-6(6-7r)=r^2+6r\iff$ $(6-5r)^2+(6-7r)(-7r)=r^2+6r\iff$ $25r^2-60r+36-42r+49r^2-r^2-6r=0\iff$

$73r^2-108r+36=0$ with $\Delta^{\prime}=$ $54^2-73\cdot 36=36(81-73)=$ $36\cdot 8=12^2\cdot 2$ . Thus, $r=\frac {54-12\sqrt 2}{73}$ , i.e. $\boxed{r=\frac {6\left(9-2\sqrt 2\right)}{73}}$ .



PP9. Let a semicircle $w=\mathbb S(O,r)$ with the diameter $[AB]$ and $\{F,E\}\subset w$ for which $F\in\overarc[]{AE}$ . Let

$\left\{\begin{array}{cc}
P\in FF\cap AB\ ; & Q\in EE\cap AB\\\\
X\in PE\cap QF\ ; & Y\in AE\cap BF\end{array}\right\|$ so that $A\in (FB)$ and $B\in (AQ)$ . Prove that $XY\perp AB$ .


Proof. I denoted by $TT$ - the tangent to $w$ in the point $T\in w$ . Let $\left\{\begin{array}{ccc}
C\in AF\cap BE & ; & Z\in PF\cap QE\\\\
\left|\begin{array}{c}
D\in (AB)\\\\
CD\perp AB\end{array}\right| & ; & OA=OB=r\end{array}\right\|$ . Observe that $Y$ is the orthocenter of $\triangle ABC$ .

Denote $\left\{\begin{array}{c}
U\in PF\cap AY\\\\
V\in QE\cap AY\end{array}\right\|$ . Thus, $\left\{\begin{array}{ccccc}
\widehat{UCF}\equiv\widehat{FBA}\equiv\widehat{AFP}\equiv \widehat{UFC} & \implies & \widehat{UCF}\equiv \widehat{UFC} & \stackrel{(FC\perp FY)}{\implies} & UF=UC=UY\\\\
\widehat{VCE}\equiv\widehat{EAB}\equiv\widehat{BEQ}\equiv \widehat{VEC} & \implies & \widehat{VCE}\equiv \widehat{VEC} & \stackrel{(FC\perp FY)}{\implies} & VE=VC=VY\end{array}\right\|$ $\implies$

$U\equiv V\equiv Z$ - the midpoint of $CY$ . Therefore, $\left\{\begin{array}{cccc}
\triangle ZDP\sim \triangle OFP & \iff & \frac {PD}{PF}=\frac {ZD}{OF} & (1)\\\\
\triangle ZDQ\sim \triangle OEQ & \iff & \frac {QD}{QE}=\frac {ZD}{OE} & (2)\end{array}\right\|$ . Apply the Ceva's theorem to $\triangle PZQ$ and the points

$\{D,E,F\}\ :\  \frac {DP}{DQ}$ $\cdot\frac {EQ}{EZ}\cdot\frac {FZ}{FP}\ \stackrel{(EZ=FZ)}{=}\ \frac {DP}{FP}\cdot$ $\frac {EQ}{DQ}\ \stackrel{(1\wedge 2)}{=}\ \frac {ZD}{OF}\cdot \frac {OE}{ZD}\ \stackrel{(OE=OF)}{=}\ 1\ \implies$ $X\in PE\cap QF\cap ZD$ , i.e. $XY\perp AB$ .
An equivalent enunciation.

Let $\triangle ABC$ with the orthocenter $H$ . Denote the midpoint $M$ of $[AH]$ and $\left\{\begin{array}{ccc}
E\in BH\cap CA & ; & F\in CH\cap AB\\\\
P\in MF\cap BC & ; & Q\in ME\cap BC\end{array}\right\|$ . Prove that $PE\cap QF\cap AH\ne\emptyset$ .



PP10. Let $\triangle ABC$ with circumcircle $w=\mathbb C(O,R)$ . Let the projections $E$ , $F$ of $B$ , $C$ on $AC$ , $AB$ . Prove that $\boxed{O\in EF\iff b^2+c^2=4R^2+a^2\iff [ABC]=R^2\tan A}$ .

Proof 1. Let $S\in EF\ ,\ AS\perp EF$ .Prove easily that $AO\perp EF$ . Thus, $m\left(\widehat{AFE}\right)=C\implies$ $AS=AF\sin C=b\cos A\sin C\implies$ $\boxed{AS\cdot 2R=bc\cos A}\ (*)$ .

In conclusion, $O\in EF\iff AS=R\ \stackrel{(*)}{\iff}\ 2R^2=$ $bc\cos A\iff (2R)^2=2bc\cos A\iff$ $4R^2=b^2+c^2-a^2\iff b^2+c^2=4R^2+a^2$ .

Proof 2. Denote $\{A,L\}=\{A,O\}\cap w$ . Since $AO\perp EF$ and $CA\perp CL$ then $OECL$ is a cyclical quadrilateral, i.e. $AC.AE=AL.AO\iff$ $ bc\cos A=2R^2\iff$

$2bc\cos A=(2R)^2\iff$ $4R^2+a^2 =  b^2 + c^2$ . Remark. In any $\triangle ABC$ there is the relation $AS=\frac {b^2+c^2-a^2}{4R}$ , where $S$ is the projection of $A$ on $EF$ .

Proof 3. Let $D\in AH\cap BC$ and $BD = h_a$ . Observe that $FAO\sim CAD$ , i.e. $\cos A=\frac{AF}{AC}=\frac {AO}{AD}\implies$ $R=h_a\cos A\implies$

$4R^2=2\cdot 2Rh_a\cos A=2bc\cos A= a^2+c^2-b^2\iff$ $4R^2+a^2 = b^2+c^2$ . I used the following identity $:\ 2Rh_a=bc$ .

Proof 4. The area $2\cdot [FAE] =EF\cdot AO = AH\sin A\cdot R =$ $ 2R^2\cos A\sin A$ . On other hand, $2[FAE]=AF\cdot AE\cdot \sin A=b\cos A\cdot c\cos A\cdot \sin A$ .

In conclusion, $2R^2\cos A\sin A=b\cos A \cdot c\cos A\cdot \sin A\iff$ $2R^2=bc\cos A\iff$ $4R^2=2bc\cos A=b^2+c^2-a^2\iff$ $4R^2+a^2=b^2+c^2$ .



PP11. Let $\triangle ABC$ and $E\in (AC)$ , $F\in (AB)$ , $D\in EF\cap BC$ so that $B\in (DC)$ and $[AEF]=[BDF]=[BCEF]$ . Find the ratio $\frac {FD}{FE}$ .

Proof (Ruben Dario). Suppose w.l.o.g. $[AEF]=[BDF]=[BCEF]=1$ and let $[ADF]=x$ . Thus, $[ADF][BEF]=[AFE][BDF]\iff$

$[BEF]=\frac 1x$ and $[BCE]=[BCEF]-[BEF]=1-\frac 1x$ and $[BDE]=[BAE]=1+\frac 1x\iff$ $\boxed{AD\parallel BE}\ (*)$ . Therefore, $\frac x1=\frac {[AFD]}{[AFE]}=$

$\frac {FD}{FE}=\frac {AD}{BE}\ \stackrel{(*)}{=}\ \frac {CA}{CE}=$ $\frac {[CAB]}{[CEB]}=\frac 2{1-\frac 1x}\implies$ $x=\frac 2{1-\frac 1x}\implies$ $x\left(1-\frac 1x\right)=2\implies$ $x-1=2\implies x=3$ , i.e. $\frac {FD}{FE}=3$ .


An easy extension. Let $\triangle ABC$ and $E\in (AC)$ , $F\in (AB)$ , $D\in EF\cap BC$ so that $B\in (DC)$ and $[AEF]=a$ , $[BDF]=b$ and $[BCEF]=c$ . Find the ratio $\frac {FD}{FE}$ .

Proof 1. Let $[ADF]=x$ , i.e. $\frac {FD}{FE}=\frac {[AFD]}{[AFE]}=\frac xa$ . Thus, $[ADF][BEF]=[AFE][BDF]\iff$ $[BEF]=\frac {ab}x$ , $[BCE]=[BCEF]-[BEF]=c-\frac {ab}x$ , $[ADB]=x+b$

and $[BAE]=a+\frac {ab}x$ .Apply Menelaus to $\overline{DEF}/\triangle ABC\ :\ \frac {DB}{DC}\cdot \frac {EC}{EA}\cdot\frac {FA}{FB}=1\iff$ $\frac {[ADB]}{[ADC]}\cdot \frac {[BEC]}{[BEA]}\cdot\frac {[DFA]}{[DFB]}=1\iff$ $\frac {x+b}{x+a+b+c}\cdot \frac {cx-ab}{a(x+b)}\cdot\frac {x}{b}=1\iff$

$x(cx-ab)=ab(x+a+b+c)\iff$ $\boxed{cx^2-2abx-ab(a+b+c)=0}$ with $\Delta^{\prime}=ab(a+c)(b+c)$ . In conclusion, $\boxed{\frac {FD}{FE}=\frac xa=\frac {ab+\sqrt{ab(a+c)(b+c)}}{ac}}\ (3)$ .

Proof 2. $[BEF]=u\ ,\ [BEC]=v$ $\implies$ $\left\{\begin{array}{cccc}
u+v & = & c & (1)\\\\
xu & = & ab & (2)\end{array}\right\|$ and $\frac {b+u}{c-u}\ \stackrel{(1)}{=}\ \frac {b+u}v=\frac {[EBD]}{[EBC]}=\frac {BD}{BC}=$ $\frac {[ABD]}{[ABC]}=\frac {x+b}{a+c}\implies$ $\frac {b+u}{c-u}=\frac {x+b}{a+c}\implies$

$(b+u)(a+c)=(x+b)(c-u)\ \stackrel{(2)}{\implies}\ (xb+ab)(a+c)=(x+b)(cx-ab)\implies$ $cx^2-2abx-ab(a+b+c)=0$ with $\Delta^{\prime}=ab(a+c)(b+c)\implies (3)$ .

Particular case. If $a=b$ , then the ratio $\frac {FD}{FE}$ becomes $\frac {a^2+\sqrt{a^2(a+c)^2}}{ac}=\frac {a^2+a(a+c)}{ac}\implies$ $\frac {FD}{FE}=1+\frac {2a}c$ .



PP12. Let $w$ be circumcircle of $\triangle ABC$ and $w_x=\mathbb C(X,x)$ , $w_y=\mathbb C(Y,y)$ , $w_z=\mathbb C(Z,z)$ what are interior tangent

to $w$ and tangent to $BC$ , $CA$ , $AB$ respectively so that their centers are exterior for $\triangle ABC$ . Prove that $16xyz=Rr^2$ .


Proof. Is well known that the arrowlength of the arc $\overarc {BC}$ so that $A\not\in\overarc {BC}$ is equal to $\frac {r_a-r}2$ , where $r_a$ is the $A$-exradius a.s.o. Therefore, $\left\{\begin{array}{ccc}
4x & = & r_a-r\\\
4y & = & r_b-r\\\
4z & = & r_c-r\end{array}\right\|$ . Since

$r_a(s-a)=rs\implies \boxed{r_a-r=\frac {ar_a}s}\ (*)$ a.s.o. Obtain that $64xyz=\prod\left(r_a-r\right)=\prod\frac {ar_a}s=$ $\frac {abc\cdot r_ar_br_c}{s^3}=\frac {4Rrs\cdot s^2r}{s^3}=4Rr^2\implies$ $16xyz=Rr^2$ .



PP13. Let $C$-isosceles $\triangle ACB$ with the incenter $I$ and the circumcenter $O\ .$ Denote the lengths $l_b$ and $l_c$ of the the $B$-bisector

and the $C$-bisector respectively. Prove that $l_b=2l_c\iff MI=MO\ ,$ where $M$ is the midpoint of $[AB]\ .$


Method 1 (synthetic). Denote $A=2x$ where $x<45^{\circ}$ and $X$ on the $A$-bisector $[AD]\ ,$ where $D\in (BC)\ .$ Thus, $XM\parallel BC$ and $AD=2\cdot CM\iff XD=CM\ .$

In conclusion, $CDMX$ is an isosceles trapezoid, where $m\left(\widehat {BCM}\right)=m\left(\widehat {ADC}\right)=3x\ .$ Therefore, $B+m\left(\widehat {BCM}\right)=2x+3x=90^{\circ}\iff$ $x=18^{\circ}\ ,$

what means that $\boxed{A=B=36^{\circ}\ ,\ C=108^{\circ}}\ .$ In conclusion, $m\left(\widehat{AOB}\right)=360^{\circ}-2C= 144^{\circ}\ ,$ what means that $AIBO$ is a rhombus, i.e. $MI=MO\ .$

Method 2 (trigonometric). Let $A=2x\ ,\ x<45^{\circ}$ and the $A$-bisector $[AD]\ ,\ D\in (BC)\ .$ Thus, $2=\frac {AD}{CM}=$ $\frac {AD}{AC}\cdot \frac {AC}{CM}=$ $\frac {\sin C}{\sin \widehat{ADC}}\cdot \frac {1}{\sin A}=$ $\frac {\sin 4x}{\sin 3x}\cdot\frac {1}{\sin 2x}=$

$\frac {2\sin 2x\cos 2x}{\sin 3x\sin 2x}\implies$ $\sin 3x=\cos 2x\iff$ $x=18^{\circ}\iff$ $\boxed{A=B=36^{\circ}\ ,\ C=108^{\circ}}\ .$ So $m\left(\widehat{AOB}\right)=360^{\circ}-2C= 144^{\circ}\ ,$ i.e. $AIBO$ is a rhombus, i.e. $MI=MO\ .$

Method 3 (metric). Let $A$-bisector $AD\ ,\ D\in (BC)$ and $CA=CB=a\ ,$ $AB=c\ .$ Thus, $AD=2\cdot CM$ $\iff$ $AD^2=4\cdot CM^2\iff$ $\frac {ac^2(2a+c)}{(a+c)^2}=$ $4a^2-c^2\iff$

$ac^2=(2a-c)\left(a^2+2ac+c^2\right)\iff$ $2a^3+3a^2c-ac^2-c^3=0$ $\iff$ $(2a+c)\left(a^2+ac-c^2\right)=0\iff$ $\frac ac=\frac {-1+\sqrt 5}{2}$ $\iff$ $\cos A=$ $\frac {AM}{AC}=$ $\frac {c}{2a}=\frac {1}{-1+\sqrt 5}=$

$\frac {1+\sqrt 5}{4}=$ $\cos 36^{\circ}\implies x=18^{\circ}\iff$ $\boxed{A=B=36^{\circ}\ ,\ C=108^{\circ}}\ .$ Thus, $m\left(\widehat{AOB}\right)=360^{\circ}-2C= 144^{\circ}\ ,$ i.e. $AIBO$ ia a rhombus, i.e. $MI=MO\ .$


PP14. Prove that in a triangle $ABC$ exists the chain of equivalencies $l_b=2h_a\iff \cos\frac {A-C}{2}=\frac a{2b}\iff$ $2\sin\frac B2=\frac a{a+c}\iff$

$a^3c+\left(a^2-c^2\right)^2=b^2(a+c)^2\ ,$ where $h_a$ is the length of the $A$-altitude and $l_b$ is the length of the $B$-bisector.

Particular case. If $b=c\ ,$ then there is the chain of equivalencies $l_b=2h_a\iff \frac ac=\frac {1+\sqrt 5}{2}\iff$ $\boxed{B=C=36^{\circ}\ ,\ C=108^{\circ}}\ .$


Proof. Let $P\in BC$ so that $AP\perp BC$ and $L\in BC$ so that $B\in (CL)$ and $BL=BA\ .$ Since $BD\parallel AL$ obtain that $\frac {BD}{AL}=\frac {CB}{CL}\ .$ Thus, $\boxed{l_b=2h_a}\iff$ $\frac {2h_a}{AL}=\frac {a}{a+c}$ $\iff$

$\sin\frac B2=\frac {AP}{AL}\iff$ $\boxed{2\sin\frac B2=\frac a{a+c}}\ (*)\ .$ Thus, $\sin\widehat{LAC}=\sin\left(\frac B2+C\right)\iff$ $\sin\widehat{LAC}=\cos\frac {A-C}{2}\ .$ Theorem of Sines in $\triangle LAC\ :\ \frac {CL}{\sin \widehat{LAC}}=\frac {AC}{\sin\frac B2}\iff$

$\frac {a+c}{\cos\frac {A-C}{2}}=\frac b{\sin \frac B2}\stackrel{(*)}{\iff}$ $\boxed{\cos\frac {A-C}{2}=\frac a{2b}}\ .$ Using $\sin^2\frac B2=\frac {(s-a)(s-c)}{ac}$ obtain that $2\sin\frac B2=\frac a{a+c}\iff$ $\frac {4(s-a)(s-c)}{ac}=\frac {a^2}{(a+c)^2}\iff$

$\left[b^2-(a-c)^2\right](a+c)^2=a^3c\iff$ $\boxed{a^3c+\left(a^2-c^2\right)^2=b^2(a+c)^2}\ .$


PP15. In $\triangle ABC$ denote the midpoint $M$ of $[BC]$ and the projection $P$ of $A$ on $BC\ .$ Prove that $l_b=2m_a$ $\iff$

$m\left(\widehat{MAP}\right)=\frac {|A-3C|}{2}\ ,$ where $m_a$ is the length of the $A$-median and $l_b$ is the length of the $B$-bisector.


Proof. Denote the midpoint $X$ of the $B$-bisector $[BD]\ ,$ where $D\in (AC)\ .$ Thus, $XM\parallel AC$ and $BD=2\cdot AM\iff XD=AM\ .$ Therefore, $ADMX$ is an isosceles

trapezoid, i.e. $m\left(\widehat {CAM}\right)=m\left(\widehat {ADB}\right)=$ $\frac B2+C\ .$ In conclusion, $\left(\widehat {MAP}\right)=\left(\widehat {MAC}\right)-\left(\widehat {CAM}\right)=$ $\left|\left(90^{\circ}-C\right)-\left(\frac B2+C\right)\right|\implies$ $m\left(\widehat{MAP}\right)=\frac {|A-3C|}{2}\ .$



PP16. Let $\triangle ABC$ with the circumcircle $w\ .$ For an interior point $P$ denote $\{B,U\}=\{B,P\}\cap w\ ,$ $\{C,V\}=\{C,P\}\cap w\ .$

Consider a point $R\in w$ so that the sideline $BC$ separates $A\ ,$ $R$ and denote $X\in AB\cap RV\ ,$ $Y\in AC\cap RU\ .$ Prove that $P\in XY\ .$


Proof 1. Apply the Pascal's theorem to the cyclical $ABURVC\ :\  \left\{\begin{array}{cc}
\nearrow & X\in AB\cap RV\\\\
\rightarrow & P\in BU\cap VC\\\\
\searrow & Y\in UR\cap CA\end{array}\right|$ $\implies P\in XY\ .$

Proof 2. Let $\left\{\begin{array}{c}
L\in AP\cap BC\\\\
M\in BP\cap CA\\\\
N\in CP\cap AB\end{array}\right|$ and apply the Menelaus' theorem to the transversals $:\ \begin{array}{ccc}
\overline{BPM}/\triangle ALC\ \implies & \frac {BL}{BC}\cdot\frac {MC}{MA}\cdot \frac {PA}{PL}=1\ \implies & \frac {MC}{MA}=\frac {BC}{BL}\cdot\frac {PL}{PA}\ (1)\\\\
\overline{CPN}/\triangle ALB\ \implies & \frac {CL}{CB}\cdot\frac {NB}{NA}\cdot \frac {PA}{PL}=1\ \implies & \frac {NB}{NA}=\frac {CB}{CL}\cdot\frac {PL}{PA}\ (2)\end{array}\ .$ Apply the

well-known property in an cyclic quadrilateral $XYZT\ :\ I\in XZ\cap YT\ \implies\ \frac {IX}{XT\cdot XY} =$ $\frac {IY}{YX\cdot YZ}=\frac {IZ}{ZY\cdot ZT}=\frac {IT}{TZ\cdot TX}\ .$ $\left\{\begin{array}{cc}
AVBR\ : & \frac {XB}{XA}=\frac {BR\cdot BV}{AR\cdot AV}\\\\
AVBC\ : & \frac {NA}{NB}=\frac {AC\cdot AV}{BC\cdot BV}\end{array}\right|\bigodot\implies$

$\frac {XB}{XA}=\frac {BR}{AR}\cdot\frac {NB}{NA}\cdot\frac {AC}{BC}\stackrel{(2)}{\implies}\frac {XB}{XA}=\frac {BR}{AR}\cdot \frac {CA}{CL}\cdot \frac {PL}{PA}\ (3)\ .$ $\left\{\begin{array}{cc}
AUCR\ : & \frac {YC}{XA}=\frac {CR\cdot CU}{AR\cdot AU}\\\\
AUCB\ : & \frac {MA}{MC}=\frac {AB\cdot AU}{CB\cdot CU}\end{array}\right|$ $\bigodot\implies$ $\frac {YC}{YA}=\frac {CR}{AR}\cdot\frac {MC}{MA}\cdot\frac {AB}{CB}\stackrel{(1)}{\implies}\frac {YC}{YA}=\frac {CR}{AR}\cdot\frac {BA}{BL}\cdot\frac {PL}{PA}\ (4)\ .$

In conclusion, $P\in XY\iff$ $\frac {XB}{XA}\cdot LC+\frac {YC}{YA}\cdot LB=$ $\frac {PL}{PA}\cdot BC\stackrel{(3\wedge 4)}{\iff}$ $\frac {BR}{AR}$ $\cdot \frac {CA}{CL}\cdot \frac {PL}{PA}\cdot LC+\frac {CR}{AR}\cdot\frac {BA}{BL}\cdot\frac {PL}{PA}\cdot LB=\frac {PL}{PA}\cdot BC\iff$

$\frac {BR}{AR}\cdot CA+\frac {CR}{AR}\cdot BA=BC\iff$ $BR\cdot CA+CR\cdot BA=AR\cdot BC\ ,$ what is truly - the Ptolemy's theorem in $ABRC\ .$



PP17. In $\triangle ABC$ se considera bisectoarele $BE$ si $CF\ ,$ unde $E\in (AC)$ si $F\in (AB)\ .$ Notam mijloacele

$M\ ,$ $N$ ale segmentelor $[BE]\ ,$ $[CF]$ respectiv. Sa se arate ca $EN\cap FM\cap BC\ne\emptyset\Longleftrightarrow A=60^\circ\ .$


Proof. Let the incenter $I\in BE\cap CF$ and $U\in FM\cap BC\ ,$ $V\in EV\cap BC\ .$ Observe that

$\blacktriangleright\ M\in (BI)\iff$ $BM<BI \iff $ $\frac 12\cdot BE<\frac {a+c}{2s}\cdot BE \iff $ $ s<a+c \iff b<a+c\ .$

$\blacktriangleright\ N\in (CI) \iff$ $CN<CI \iff \frac 12\cdot CF<\frac {a+b}{2s}\cdot CF \iff s<a+b \iff c<a+b\ .$

$\frac {IB}{a+c}=\frac {IE}{b}=\frac {BE}{2s}\implies$ $\frac {MB}{MI}=\frac {MB}{IB-MB}=$ $\frac {\frac 12\cdot BE}{\frac {a+c}{2s}\cdot BE-\frac 12\cdot BE}=$ $\frac {\frac 12}{\frac {a+c}{2s}-\frac 12}=$ $\frac {s}{a+c-s}=\frac {s}{s-b}\implies$ $\boxed{\frac {MB}{MI}=\frac {s}{s-b}}\ (1)\ .$

$\frac {IC}{a+b}=\frac {IF}{b}=\frac {CF}{2s}\implies$ $\frac {NC}{NI}=\frac {NC}{IC-NC}=$ $\frac {\frac 12\cdot CF}{\frac {a+b}{2s}\cdot CF-\frac 12\cdot CF}=$ $\frac {\frac 12}{\frac {a+b}{2s}-\frac 12}=$ $\frac {s}{a+b-s}=\frac {s}{s-c}\implies$ $\boxed{\frac {NC}{NI}=\frac {s}{s-c}}\ (2)\ .$

Apply the Menelaus' theorem to the transversals $:$

$\blacktriangleright\ \overline{FMU}/\triangle BIC\ :\ \frac {FI}{FC}\cdot$ $\frac {UC}{UB}\cdot\frac {MB}{MI}=1 \stackrel{(1)}{\implies\ }$ $\frac {c}{2s}\cdot\frac {UC}{UB}\cdot\frac {s}{s-b}=1\implies$ $\frac {UB}{UC}=\frac {c}{2(s-b)}\ .$

$\blacktriangleright\ \overline{ENV}/\triangle BIC\ :\ \frac {EI}{EB}$ $\cdot\frac {VB}{VC}\cdot\frac {NC}{NI}=1 \stackrel{(2)}{\implies\ }$ $\frac {b}{2s}\cdot\frac {VB}{VC}\cdot\frac {s}{s-c}=1  \implies$ $\frac {VB}{VC}=\frac{2(s-c)}{b}\ .$

In conclusion, $EN\cap FM\cap BC\ne\emptyset\iff$ $U\equiv V\iff$ $\frac {UB}{UC}=\frac {VB}{VC}\iff$ $\frac {c}{2(s-b)}=\frac{2(s-c)}{b}\iff$ $bc=4(s-b)(s-c)\iff bc=a^2-(b-c)^2\iff$ $a^2=b^2-bc+c^2\iff A=60^{\circ}\ .$

Generalization. Let $\triangle ABC$ and $E\in (AC)\ ,\ F\in (AB)$ so that $\left\{\begin{array}{c}
EA=m\cdot EC\\\\
FA=n\cdot FB\end{array}\right\|\ ,$ where $\{m,n\}\subset \mathbb R^*_+\ ,\ |m-n|<1\ .$

Denote the midpoints $M\ ,\ N$ of $[BE]\ ,\ [CF]$ respectively. Prove that $EN\cap FM\cap BC\ne\emptyset\Longleftrightarrow m^2+n^2=mn+1\ .$ See
here


PP18. Let an acute $\triangle{ABC}\ ,$ the foot $D$ of the $C$-bisector and the circumcenter $O$ of $\triangle ABC\ .$

Let $P\in OD$ for what $CP\perp AB\ .$ Prove that $P$ belongs to the circumcircle of $\triangle AOB\iff$ $C=\frac {\pi}3$


Proof. $OA=OB\implies \frac {PA}{PB}=\frac {DA}{DB}=$ $\frac {CA}{CB}\implies\frac {PA}{PB}=\frac {CA}{CB}\implies$ $P\ ,$ $C$ belong to the Appolonius' circle $w$ w.r.t. $[AB]$ and the ratio $\frac {XA}{XB}=\frac ba\ ,$ $(\forall ) X\in w\ .$

Since the center of $w$ belongs to $AB$ and $CP\perp AB$ obtain that $P$ is the symmetrical point of $C$ w.r.t. $AB\ .$ Hence the circumcircle $\beta$ of $\triangle AOB$ is symmetric w.r.t. $AB$

with the circumcircle of $\triangle ABC\ , $ i.e. the orthocenter $H$ of $\triangle ABC$ belongs to $\beta\ .$ In conclusion, $180^{\circ}-C=2C\implies C=60^{\circ}\ .$
This post has been edited 167 times. Last edited by Virgil Nicula, Jun 18, 2016, 9:36 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a