26. Outside of a triangle.

by Virgil Nicula, Apr 22, 2010, 11:01 PM

P1 (with Ceva). Construct outside of $\triangle ABC$ the similar isosceles $\triangle BA'C$ , $\triangle CB'A$ , $\triangle AC'B$ in $A'$ , $B'$ , $C'$ respectively. Prove that $AA'\cap BB'\cap CC'\ne\emptyset$ .

Proof. Denote $\left\|\begin{array}{c}
D\in BC\cap AA'\\\
E\in CA\cap BB'\\\
F\in AB\cap CC'\\\
\phi =m(\angle BCA')\end{array}\right\|$ .Observe that $\frac {DB}{DC}=\frac {[ABA']}{[ACA']}=\frac {ac\cdot\sin (B+\phi )}{ab\cdot\sin (C+\phi )}$ $\implies$ $\frac {DB}{DC}=\frac {c\cdot\sin (B+\phi )}{b\cdot\sin (C+\phi )}$ . Obtain

analogously $\frac {EC}{EA}=\frac {a\cdot\sin (C+\phi )}{c\cdot\sin (A+\phi )}$ and $\frac {FA}{FB}=\frac {b\cdot\sin (A+\phi )}{a\cdot\sin (B+\phi )}$ $\implies$ $\frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=1$ $\implies$ $AA'\cap BB'\cap CC'\ne\emptyset$ .



Extension. Construct outside of $\triangle ABC$ the triangles $\left\{\begin{array}{c}
BA'C\\\\
CB'A\\\\
AC'B\end{array}\right\|$ so that $\widehat{BAC'}\equiv \widehat {CAB'}$ and $\widehat{ABC'}\equiv\widehat {ACB'}\equiv\widehat {A'BC}\equiv\widehat{A'CB}$ . Prove that $AA'\cap BB'\cap CC'\ne\emptyset$ .

Denote $m\left(\widehat{BAC'}\right)=m\left(\widehat {CAB'}\right)=y$ , $m\left(\widehat{ABC'}\right)=m\left(\widehat {ACB'}\right)=m\left(\widehat {A'BC}\right)=m\left(\widehat{A'CB}\right)=z$

and $\left\|\begin{array}{c}
D\in BC\cap AA'\\\
E\in CA\cap BB'\\\
F\in AB\cap CC'\\\
\end{array}\right\|$ .Observe that $\frac {DB}{DC}=\frac {[ABA']}{[ACA']}=\frac {ac\cdot\sin (B+z)}{ab\cdot\sin (C+z)}$ $\implies$ $\frac {DB}{DC}=\frac {c\cdot\sin (B+z )}{b\cdot\sin (C+z)}$ . Obtain analogously

$\frac {EC}{EA}=\frac {a\cdot\sin y\cdot\sin (C+z )}{c\cdot\sin z\cdot\sin (A+y )}$ and $\frac {FA}{FB}=\frac {b\cdot\sin z\cdot\sin (A+y )}{a\cdot\sin y\cdot\sin (B+z )}$ $\implies$ $\frac {DB}{DC}\cdot\frac {EC}{EA}\cdot\frac {FA}{FB}=1$ $\implies$ $AA'\cap BB'\cap CC'\ne\emptyset$ .[/color]


P2. Outside of $\triangle ABC$ construct $\left\|\begin{array}{cc}
\triangle BMC\ : & m(\widehat{MBC})=m(\widehat{MCB})=x\\\\
\triangle CNA\ : & m(\widehat{NCA})=m(\widehat{NAC})=y\\\\
\triangle APB\ : & m(\widehat{PAB})=m(\widehat{PBA})=z\end{array}\ \right\|$ and $x+y+z=90^{\circ}$ , i.e. $m(\widehat {BMC})+m(\widehat {CNA})+m(\widehat {APB})=360^{\circ}$ . Prove that

$\left\|\ \begin{array}{c}m(\widehat {PMN})=90^{\circ}-x=\frac 12\cdot m(\widehat {BMC})\\\\
m(\widehat {MNP})=90^{\circ}-y=\frac 12\cdot m(\widehat {CNA})\\\\
m(\widehat {NPM})=90^{\circ}-z=\frac 12\cdot m(\widehat {APB})\end{array}\ \right\|$ $\implies$ $\frac {MN}{\cos z}=\frac {NP}{\cos x}=\frac {PM}{\cos y}$ , i.e. $\triangle MNP$ has the angles $90^{\circ}-x$ , $90^{\circ}-y$ , $90^{\circ}-z$ . See
here the Amo's proof (syntetically!).

Proof 1. Apply the generalized Pythagoras' theorem to $[PN]$ of $\triangle NAP\ :\ PN^2=AN^2+AP^2-2\cdot AN\cdot AP\cdot\cos \widehat{PAN}=$ $\frac {b^2}{4\cos^2y}+\frac {c^2}{4\cos^2z}-\frac {bc}{2\cos y\cos z}\cdot\cos \left(90^{\circ}+A-x\right)=$

$\frac 1{4\cos^2y\cos^2z}\cdot \left[b^2\cos^2z+c^2\cos^2y+2bc\cos y\cos z\sin (A-x)\right]=$ $\frac 1{4\cos^2y\cos^2z}\cdot\left[b^2\cos^2z+c^2\cos^2y+2bc\cos y\cos z\cdot (\sin A\cos x-\sin x\cos A)\right]\implies$ $4\cos^2y\cos^2z\cdot PN^2=$

$b^2\cos^2z+c^2\cos^2y+2bc\sin A\cos x\cos y\cos z-2bc\cos A\cos z\sin x\cos y=$ $b^2\cos^2z+c^2\cos^2y+4S\cos x\cos y\cos z-\left(b^2+c^2-a^2\right)\cos y\cos z\sin x=$ $4S\cos x\cos y\cos z+$

$a^2\sin x\cos y\cos z+b^2\cos z[\sin (x+y)-\cos y\sin x]+c^2\cos y[\sin (x+z)-\cos z\sin x]=$ $4S\cos x\cos y\cos z +a^2\sin x\cos y\cos z+b^2\sin y\cos x\cos z+c^2\sin z\cos x\cos y=$

$\cos x\cos y\cos z\cdot\left(4S+\sum a^2\tan x\right)\implies$ $4\cos y\cos z\cdot PN^2=\cos x\left(4S+\sum a^2\tan x\right),$ what is a symmetric in $\{a,b,c\},$ i.e. $\cos y\cos z\cdot NP=\cos z\cos x\cdot PM=\cos x\cos y\cdot MN$
$\implies\frac {NP}{\cos x}=\frac {PM}{\cos y}=\frac {MN}{\cos z}=\sqrt{\frac {4S+\sum a^2\tan x}{4\cos x\cos y\cos z}}=\sqrt{\frac {S+\sum [BMC]}{\cos x\cos y\cos z}},$ where $4\cdot [BMC]=a^2\tan x$ a.s.o. $\implies$ the angles of $\triangle MNP$ are $\left\{\begin{array}{ccccc}
M & = & 90^{\circ}-x & = & y+z\\\\
N & = & 90^{\circ}-y & = & z+x\\\\
P & = & 90^{\circ}-z & = & x+y\end{array}\right\|\ .$

Proof 2 (Amo). On $[PA]$ construct outside $\triangle PAX\equiv\triangle PBM\ .$ Hence $PM=PX$ and $\triangle AXN\equiv\triangle CMN\ .$ Indeed: $\left\{\begin{array}{c}
AX=CM\\\
AN=CN\end{array}\right\|$ and $m\left(\widehat{XAN}\right)=$ $2\pi-m\left(\widehat{XAP}\right)-m\left(\widehat{PAN}\right)=$
$2\pi-m\left(\widehat{PBM}\right)-m\left(\widehat{PAN}\right)=$ $m\left(\widehat{MCN}\right)\ .$ We got that $\triangle AXN\equiv \triangle CMN$ $\implies$ $XN=MN\implies$ $\triangle PXN\equiv\triangle PMN\ .$ In conclusion, $\left(\widehat{PNM}\right)=\frac{\left(\widehat{XNM}\right)}2=\frac{\left(\widehat{ANC}\right)}2\ .$



P3 Outside of $\triangle ABC$ construct $\left\{\begin{array}{c}
\triangle ABF\\\
\triangle ACE\\\
\triangle BCD\end{array}\right\|$ so that $DB = DC$ , $\left\|\begin{array}{c}
 m(\widehat {BAF}) = m(\widehat {CAE}) = x\\\
 m(\widehat {ABF}) = m(\widehat {ACE}) = y\\\
 m(\widehat {BCD}) = m(\widehat {CBD})=z\end{array}\right\|$ and $x + y + z = 90^{\circ}$ . Prove that $DE = DF$ si $m(\widehat {EDF}) = 2y\ .$

Particular cases. If $z = 0\ (x + y = 90^{\circ}),$ then $\triangle DEF$ is $D$-isosceles with $m\left(\widehat{EDF}\right)=2y.$ If $y=30^{\circ}\ \left(x+z=60^{\circ}\right),$ then $\triangle DEF$ is equilateral.


Proof. Prove easily that $DB=DC=\frac {a}{2\cos z}$ and $\left\{\begin{array}{cc}
\triangle ACE\ : & \frac {CE}{\sin x}=\frac {AE}{\sin y}=\frac {b}{\cos z}\\\\
\triangle ABF\ : & \frac {BF}{\sin x}=\frac {AF}{\sin y}=\frac {c}{\cos z}\end{array}\right\|$ . Apply the generalized Pythagoras' theorem in the triangles :

$EF^2=AE^2+AF^2-2\cdot AE\cdot AF\cdot \cos (A+2x)=$ $\frac {b^2\sin^2y}{\cos^2z}+\frac {c^2\sin^2y}{\cos^2z}-\frac {2bc\sin^2y}{\cos^2z}\cdot (\cos A\cos 2x-\sin A\sin 2x)$ $\implies$

$\frac {\cos^2z}{\sin^2y}\cdot EF^2=$ $\left(b^2+c^2\right)-\left(b^2+c^2-a^2\right)\cos 2x+4S\sin 2x\implies$ $\boxed{\frac {EF}{\sin y}=\frac {1}{\cos z}\cdot \sqrt{\left(b^2+c^2\right)-2bc\cdot\cos A\cos 2x+4S\sin 2x}}$ .

$DE^2=CD^2+CE^2-2\cdot CD\cdot CE\cdot \cos (C+y+z)=$ $\frac {a^2}{4\cos^2z}+\frac {b^2\sin^2x}{\cos^2z}-\frac {ab\sin x}{\cos^2z}\cdot \sin (x-C)$ $\implies$

$4\cos^2z\cdot DE^2=a^2+4b^2\sin^2x-4ab\sin x\sin (x-C)=$ $a^2+2b^2\left(1-\cos 2x\right)-4ab\sin^2x\cos C+4ab\sin x\cos x\sin C=$

$a^2+2b^2(1-\cos 2x)-(a^2+b^2-c^2)(1-\cos 2x)\implies$ $\boxed{2\cdot DE=\frac {\sqrt{\left(b^2+c^2\right)-2bc\cdot\cos A\cos 2x+4S\sin 2x}}{\cos z}}$ , what is symmetrically in $(b,c)$ .

In conclusion, $\boxed{DE=DF}$ and $2\cdot DE\cdot\sin\frac {m\left(\widehat{EDF}\right)}{2}=EF=2\cdot DE\cdot\sin y\implies$ $\boxed{m\left(\widehat{EDF}\right)=2y}$ .



P4. Let $ABC$ be a triangle. $\triangle PAB$ and $\triangle QAC$ are constructed outside of triangle $\triangle ABC$ such that

$\left\{\begin{array}{c}
AP = AB\\\
AQ = AC\\\
\widehat{BAP}\equiv\widehat {CAQ}\end{array}\right\|$ . Denote $R\in BQ\cap CP$ and the circumcenter $O$ of $\triangle BCR$ . Prove that $AO \perp PQ$ .


Proof. I"ll show that $OP^{2}-OQ^{2}=c^{2}-b^{2}$, i.e. $AO\perp PQ$ . Denote $x=m(\widehat{BAP})$ , the circumcircle $C(O,\rho )$ of $\triangle BRC$ and $S\in AR\cap BC$ . Thus, $\left\{\begin{array}{c}AC=AQ\\\ AP=AB\\\ \widehat{CAP}\equiv\widehat{QAB}\end{array}\right\|$ $\implies$

$\triangle ACP\sim\triangle AQB$ $\implies$ $\left\{\begin{array}{c}CP=QB\\\ \widehat{APC}\equiv\widehat{ABQ}\\\ \widehat{ACP}\equiv\widehat{AQB}\end{array}\right\|$ $\implies$ $\left\{\begin{array}{c}\widehat{APR}\equiv\widehat{ABR}\\\ \widehat{ACR}\equiv\widehat{AQR}\end{array}\right\|$ $\implies$ the quadrilaterals $APBR$, $AQCR$ are cyclically with the radical axis $AR$ . Observe that

$\left\{\begin{array}{c}m(\widehat{BRS})=m(\widehat{BPA})=90^{\circ}-x\\\ m(\widehat{CRS})=m(\widehat{CQA})=90^{\circ}-x\\\ m(\widehat{BRP})=m(\widehat{BAP})=2x\end{array}\right\|$ $\implies$ the ray $[RS$ is the bisector of the angle $\widehat{BRC}$ . Prove easily that $\left\{\begin{array}{c}m(\widehat{BOC})=4x\\\ a=2\rho\sin 2x\end{array}\right\|$. Thus, $\left\{\begin{array}{c}PA=c\ ,\ QA=b\\\ PB=2c\cdot\sin x\\\ QC=2b\cdot \sin x\end{array}\right\|$

and $\left\{\begin{array}{c}m(\widehat{CBO})=m(\widehat{BCO})=90^{\circ}-2x\\\ m(\widehat{PBO})=180^{\circ}+3x-B\\\ m(\widehat{QCO})=180^{\circ}+3x-C\end{array}\right\|$ . Apply the generalized Pythagoras' theorem in $\triangle POB$ , $\triangle QOC$ to the sides $OP$, $OQ$ respectively $:$

$\left\{\begin{array}{c}
OP^{2}=BP^{2}+\rho^{2}-2\rho\cdot BP\cos \widehat{PBO}\\\\
OQ^{2}=CQ^{2}+\rho^{2}-2\rho\cdot CQ\cos \widehat{QCO}\end{array}\right\|$ $\implies$ $OP^{2}-OQ^{2}=$ $4(c^{2}-b^{2})\sin^{2}x+4c\rho\sin x\cos (B-3x)-4b\rho \sin x\cos (C-3x)=$

$4(c^{2}-b^{2})\sin^{2}x+4c\rho \sin x(\cos B\cos 3x+\sin B\sin 3x)$ $-4b\rho \sin x(\cos C\cos 3x+\sin C\sin 3x)=$ $4(c^{2}-b^{2})\sin^{2}x+4\rho\sin x\cos 3x$ $(c\cos B-b\cos C)+$

$4\rho \sin x\sin 3x(c\sin B-b\sin C)=$ $4(c^{2}-b^{2})\sin^{2}x+4\rho\sin x\cos 3x\left(\frac{a^{2}+c^{2}-b^{2}}{2a}-\frac{a^{2}+b^{2}-c^{2}}{2a}\right)=$ $4(c^{2}-b^{2})\sin^{2}x+\frac{4\rho (c^{2}-b^{2})}{a}\sin x\cos 3x=$

$\left(c^{2}-b^{2}\right)\left(4\sin^{2}x+\frac{2\sin x\cos 3x}{\sin 2x}\right)=c^{2}-b^{2}$. I used the simple relations $c\sin B=b\sin C$ and $4\sin^{2}x+\frac{2\sin x\cos 3x}{\sin 2x}=1$.


Tema de cercetare. Gasiti concluzia fiecarei probleme in cazul cand (cel putin) unul din cele trei triunghiuri este construit spre interiorul triunghiului dat.
This post has been edited 120 times. Last edited by Virgil Nicula, Apr 20, 2017, 9:35 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a