303. Integrals II.
by Virgil Nicula, Jul 26, 2011, 6:37 PM



Proof. With the substitution





for any



Hence




Proof.
![$f(x)=x^2-\pi^2-\sin^2x\ ,\ x\in [0,2\pi ]$](http://latex.artofproblemsolving.com/b/8/3/b83da81ac786b48f2c3c6f1489b970cf4f712c15.png)









![$(*)\ \left\{\begin{array}{ccc}
x\in [0,\pi ] & \implies & f(x)\le 0\\\\
x\in(\pi,2\pi ] & \implies & f(x)\ge 0\end{array}\right\|$](http://latex.artofproblemsolving.com/0/b/e/0bef7d4264e04a2f786d908f0c9f4d2941893c53.png)






Remark. I"ll prove elementary the relations









Proof.
















Therefore, for any










Remark. Show easily that if


![$ \boxed {\ \frac {1}{\sqrt 2} \;\; \frac {1}{\sqrt {b^2 - 4c^2}}\;\;\frac {1}{2c}\left[ \sqrt {b + \sqrt {b^2 - 4c^2}}\cdot\left(\sqrt {b^2 - 4c^2} + (2a - b)\right) + \sqrt {b - \sqrt {b^2 - 4c^2}}\cdot\left(\sqrt {b^2 - 4c^2} - (2a - b)\right)\right] = 1\ }$](http://latex.artofproblemsolving.com/2/4/3/2435ef4af9523922bc6b46c5ff86de22d58af0d8.png)



Proof. Suppose w.l.o.g.










and











Proof. You can apply the well-known integral identity

Therefore,




In conclusion,







Proof.

![$ \int_{0}^{\pi}\left[a\sin m(\pi - x) + b\sin n(\pi - x)\right]^{2}\ \mathrm {dx} =$](http://latex.artofproblemsolving.com/c/c/8/cc887ce3fb65c52d8ec07ef521eabcdb83304aaa.png)
![$ \int_{0}^{\pi}\left[( - 1)^{m + 1}a\sin mx + ( - 1)^{n + 1}b\sin nx\right]^{2}\ \mathrm {dx}$](http://latex.artofproblemsolving.com/3/b/2/3b268b1e8b03a0a967683e81c31980a010328248.png)

![$\int_0^{\pi}\left\{(a\sin mx + b\sin nx)^{2} + \left[( - 1)^{m + 1}a\sin mx + ( - 1)^{n + 1}b\sin nx\right]^{2}\right\}\ \mathrm {dx}$](http://latex.artofproblemsolving.com/3/0/1/301b56c157ae6ec494a6178bf5109261d189bbc1.png)


![$ \frac 12\cdot\int_0^{\pi}\left[\left(a^2 + b^2\right) - \left(a^2\cos 2mx + b^2\cos 2nx\right)\right]\ \mathrm {dx}$](http://latex.artofproblemsolving.com/3/1/3/3138ce3fddcb8e2e410ff218cfac4fe57ab548be.png)
Thus,





Proof. Using the substitution



Since







Proof.











in terms of some polynomial





Proof. Prove easily that






Proof. Denote




![$ 1 = \sum_{k = 1}^n\left[A_k\cdot\prod_{j = 1\ ,\ j\ne k}^n(y + j^2)\right]$](http://latex.artofproblemsolving.com/d/2/2/d226bb899fcd26c895fdbced1bb932b2e3ebb8f2.png)

Particularly, for











Remark. Denote




Can prove analogously that


![$ \lim_{x\to\infty}\left[x^3\cdot\int_{-\frac 1x}^{\frac 1x}\frac {\ln (1+t^2)}{1+e^t}\ \mathrm {dt}\right]$](http://latex.artofproblemsolving.com/7/d/8/7d856e3cd7dc46c2590b42a9af5fca31629630d0.png)
Proof 1. If






![$\lim_{x \to\infty} \left\{ x^2 \left[ - 2 + 2x \ \mbox{arccot} x + \ln \left( 1 + \frac {1}{x^2} \right) \right] \right\}$](http://latex.artofproblemsolving.com/9/9/7/9974bdb1c981ea043a4a787778b86d0913477894.png)



Proof 2.
![$ \lim_{x\to\infty}\left[x^3\cdot\int_{-\frac 1x}^{\frac 1x}\frac {\ln (1+t^2)}{1+e^t}\ \mathrm {dt}\right]=$](http://latex.artofproblemsolving.com/7/3/c/73c3947546f11720f8f2c4b508a5d639b550c1e4.png)









Proof. I"ll use the identity


![$ A_{n + 2} = \int (\sin x + \cos x)^n\left[2 - (\cos x - \sin x)^2\right]\ \mathrm {dx}\implies$](http://latex.artofproblemsolving.com/4/a/c/4ac2ad14104897ad3ebe719f3699bbc2081e96b7.png)

where


Therefore,


Analogously,





Proof. I"ll use the identity

For




![$ H_n = \int (1 + \sin x + \cos x)^n\left[1 - (\cos x - \sin x)^2\right]\ \mathrm {dx}\implies$](http://latex.artofproblemsolving.com/b/6/5/b6594df94f1aea16737a2aaa96ca075e98b2c57d.png)



Therefore,


Analogously,



Proof.



So
![$ 2\, I(a)=\int_0^\infty \frac{x^2+ax+1}{x^4+1} \, \underbrace{\left[ \arctan x+\arctan\left(\frac{1}{x}\right)\right]}_{=\frac{\pi}{2}} \, \mathrm{dx}$](http://latex.artofproblemsolving.com/a/d/3/ad39ba0ca24a67f423d99a7c686f1c607e6fb711.png)
![$ \Longrightarrow I(a)=\frac{\pi}{4} \left[\underbrace{\int_0^\infty \frac{x^2+1}{x^4+1} \mathrm{dx}}_{\frac{\pi}{\sqrt{2}}}+\underbrace{\int_0^\infty \frac{ax}{x^4+1} \mathrm{dx}}_{a\, \frac{\pi}{4}} \right] \Rightarrow \frac{I(a)}{a}\to \left(\frac{\pi}{4}\right)^2$](http://latex.artofproblemsolving.com/3/e/7/3e75fc422d31a279d1ff73eff57ab0aa3f1a01c3.png)



![$ \left[\frac {1}{3}(x^2 + 1)^{\frac {3}{2}} - \sqrt {x^2 + 1}\right]_0^1$](http://latex.artofproblemsolving.com/c/2/e/c2e7145f8e99c79c9f4675e4bf4d1de1d08f2f73.png)

Proof. Kunny, I like the your nice proof because it is without integration by parts and without substitutions, i.e. it is a integration by "binocular" ! Thank you !
Can show analogously that



![$ \frac 1n\left[\left(x^n + 1\right)^{\frac 12} - \left(x^n + 1\right)^{ - \frac 12}\right]\left(x^n + 1\right)'$](http://latex.artofproblemsolving.com/2/c/c/2ccf04d0807e499641bb52e54777e242ed9edf35.png)

![$ \frac 1n\left[\frac 23\left(x^n + 1\right)^{\frac 32} - 2\left(x^n + 1\right)^{\frac 12}\right]_0^1$](http://latex.artofproblemsolving.com/0/a/7/0a7a5f21334b49d2525b999a91298067ba650cf3.png)

![$ I_n = \frac 1n\left[\frac 23\left(2\sqrt 2 - 1\right) - 2\left(\sqrt 2 - 1\right)\right]$](http://latex.artofproblemsolving.com/7/3/0/73063fc7415fdd6df757a07c55712ab20e4033b5.png)



![$ \boxed {\int_0^1\frac {x^{2n - 1}}{\sqrt [p] {x^n + 1}}\ \mathrm {dx} =\frac {p\left(2 - \sqrt [p] {2^{p-1}}\right)}{n(p-1)(2p-1)}}\ !$](http://latex.artofproblemsolving.com/3/4/b/34b2596009860ce7b3ecab870239bec2b6478cb9.png)
Indeed, can use the substitution

![$ \int_0^1\frac {x^{2n - 1}}{\sqrt [p] {x^n + 1}}\ \mathrm {dx} =$](http://latex.artofproblemsolving.com/9/1/6/9165c1c87f3d97ace6624f3bf3585ba9bf7de3e1.png)
![$ \frac 1n\int_0^1\frac {\left(x^n + 1\right) - 1}{\sqrt [p] {x^n + 1}}\left(x^n + 1\right)'\ \mathrm {dx} =$](http://latex.artofproblemsolving.com/f/3/5/f3577a8a3a544a3892ad0096e743b471aa1ee84e.png)
![$ \frac 1n\int_1^2\frac {t - 1}{\sqrt [p] t}\ \mathrm {dt}$](http://latex.artofproblemsolving.com/e/3/f/e3fa5caf1dadab54206dc4769be52d1ce8c2f32d.png)






Proof. I"ll use




Thus,







![$\frac{n(\pi^{2}-8)}{4}\ ;\ \lim_{n\to\infty}\left[\int_{a}^{b}(x-a)^{n}(x-b)^{n}\ \mathrm{dx}\right]^{\frac{1}{n}}=$](http://latex.artofproblemsolving.com/5/a/2/5a27e22aa0a3a2881287063790931721c9dbbb9e.png)

where


Proof. Soon.


Lemma.




![$\int^{\frac{\pi}{4}}_0 \ln \left[1+\tan \left(\frac{\pi}{4} -x\right)\right] \ \mathrm{dx}=$](http://latex.artofproblemsolving.com/1/2/b/12b5eb6d24ee25223d974d1789288bb172c30310.png)



Proof of the proposed problem. Using the substitution









Remark.







Proof. Denote













so that










Proof. Denote

![$ 2a_n = \int_0^{\frac {\pi}{2}}\left[\cos(n + 1)x + \cos(n - 1)x\right]\cos^{n - 1}x\ \mathrm{dx}$](http://latex.artofproblemsolving.com/a/b/8/ab86bd376a4fdacc5249b7665dc58844a35a4837.png)




Now I"ll apply the integration by parts to the definite integral




Therefore,




PP22. Evaluate the definite integral

Proof. Let












PP23. Find the minimum value of


Proof. Denote






where


For any





In conclusion,


PP24. Ascertain



Proof.




![$n(m+1)\cdot\int \left[1-\left(1-x^{n}\right)\right]\left(1-x^n\right)^m\ \mathrm{dx}\implies$](http://latex.artofproblemsolving.com/8/f/d/8fd69cd306f2e063f4d55ae1c7551b551072c419.png)

PP25. Ascertain


Riemann-Lebesgue lemma. Let






Proof
Proof 1. Can apply the upper Riemann-Lebesgue lemma :


Proof 2. .


![$\sum_{k=0}^{n-1} (-1)^k \left[ \frac{e^x}{1+n^2} (\sin nx - n \cos nx)\right]_{\frac {k\pi}{n}
}^{\frac {(k+1)\pi}{n}
}=$](http://latex.artofproblemsolving.com/7/e/9/7e97be1602910e4c2a98f8a508a0cd7682368f65.png)








PP26. Find the non-constant function

![$f(x)=x^2-\int_0^1 [f(t)+x]^2\ \mathrm{dt}$](http://latex.artofproblemsolving.com/8/1/c/81cdebd7d1185daa381edb79733c1d98f1ff2468.png)
Proof.
![$ f(x)=x^{2}-\int_{0}^{1}[f(t)+x]^{2}\ \mathrm{dt}$](http://latex.artofproblemsolving.com/a/3/1/a3164478c2a69000bf940060977682f5a5df7dca.png)




so that









PP27. For large


Proof 1.











Proof 2. Define




On the other hand, one can easily derive the relation





PP28. Let
![$f:[0,1]\rightarrow [0,\infty )$](http://latex.artofproblemsolving.com/a/9/4/a94c0bcca0a973b52c26a45fc45bf5daf3c73f15.png)




Proof.








![$\left |xf(x)\cdot \ln\left(1+x^n\right)\right|_0^1-\int_0^1\left[f(x)+xf'(x)\right]\cdot \ln\left(1+x^n\right)\ \mathrm{dx}=$](http://latex.artofproblemsolving.com/9/2/6/9264fabb29b2ee04e38e6a022ee752c0595ca152.png)

where
![$b_n=\int_0^1\left[f(x)+xf'(x)\right]\cdot \ln\left(1+x^n\right)\ \mathrm{dx} \le$](http://latex.artofproblemsolving.com/8/7/4/87402d527189c765b38dedeed6e98a94f6aea9f8.png)
![$ \int_0^1\left[f(x)+xf'(x)\right]\cdot x^n\ \mathrm{dx}\le$](http://latex.artofproblemsolving.com/0/5/5/05567ae065ddcd24344fd225f4b8b604ab97d2cc.png)

where



PP29 (easy and nice). Evaluate

Proof. Denote




and




In conclusion,




See here , here and here
This post has been edited 180 times. Last edited by Virgil Nicula, Nov 21, 2015, 7:17 AM