303. Integrals II.

by Virgil Nicula, Jul 26, 2011, 6:37 PM

$\blacksquare$ PP1. Prove that $\left(\forall\right)a>0$ exists the inequality $g(a)\equiv \int_0^{\frac {\pi}{2}}\left|a\cdot\sin 2x-\cos^2x\right|\mathrm{dx}\ \ge\ \frac 12$ .

Proof. With the substitution $t=\tan x$ obtain $g(a)=\int_0^{\infty}\frac {|2at-1|}{\left(t^2+1\right)^2}\mathrm{dx}$ $\implies$ $g(a)=\arctan\frac {1}{2a}+a-\frac {\pi}{4}$ . Prove easily that $g'(a)\ \mathrm{\ .s.s.\ }(2a-1)$

for any $a>0$ , i.e. $\min_{a>0}\ g(a)=g\left(\frac 12\right)=\frac 12$ . Remark. $g(a)=\int_0^{\frac {\pi}{2}}\cos  x|2a\sin x-\cos x|\ \mathrm{dx}\le\sqrt {4a^2+1}\cdot\int_0^{\frac {\pi}{2}}\cos x\ \mathrm{dx}=\sqrt {4a^2+1}$ .

Hence $\left(\forall\right) a>0$ , $\boxed {\ \frac 12\ \le\ \int_0^{\frac {\pi}{2}}\left|a\cdot\sin 2x-\cos^2x\right|\mathrm{dx}\ \le\ \sqrt {4a^2+1}\ }$ .



$\blacksquare$ PP2. Evaluate $I\equiv \int_0^{2\pi} \left|x^2-\pi ^ 2 -\sin ^ 2 x\right|\ \mathrm{dx}$ .

Proof. $f(x)=x^2-\pi^2-\sin^2x\ ,\  x\in [0,2\pi ]$ $\implies$ $f''(x)=4\sin^2x\ge 0$ ; $f'(x)=2x-\sin 2x\nearrow$ (strict increasing) and

$f'(0)=0\implies f'(x)\ge 0$ ; $f\nearrow$ and $f(\pi )=0\implies$ $f(x)\ .s.s.\ (x-\pi )$ , i.e. $f(x)$ has same sign with $(x-\pi )$ , what means

$(*)\ \left\{\begin{array}{ccc}
x\in [0,\pi ] & \implies & f(x)\le 0\\\\
x\in(\pi,2\pi ] & \implies & f(x)\ge 0\end{array}\right\|$ . Let $F\in\int \left(x^2-\pi ^ 2 -\sin ^ 2 x\right)\ \mathrm{dx}$ , where $F(x)=\frac {x^3}{3}-\pi^2x-\frac x2+\frac {\sin 2x}{4}\implies$

$I=\int_0^{2\pi}f(x)\mathrm{dx}=$ $-\int_0^{\pi}f(x)\mathrm{dx}+\int_{\pi}^{2\pi}f(x)\mathrm{dx}=$ $F(0)+F(2\pi )-2F(\pi )\implies$ $\boxed{\ I=2\pi^3\ }\ .$

Remark. I"ll prove elementary the relations $(*)$ . If $0\le x\le\pi\implies \sin^2x\ge 0\ge x^2-\pi^2$ . If $\pi\le x\le 2\pi$ , then

$0\le x-\pi\le\pi\implies$ $0\le -\sin x=\sin (x-\pi )\le x-\pi\implies\sin^2x\le (x-\pi )^2\le (x-\pi )(x+\pi )=x^2-\pi^2$ .



$\blacksquare$ PP3. Ascertain the relation $ \mathrm {R}(a,b,c) = 0$ so that $ K\equiv \int_{ - \infty}^{\infty}\frac {x^2 + a}{x^4 + bx^2 + c^2}\ \mathrm{dx} = \pi$ , where $ \{a,b,c\}\subset (0,\infty )$ .

Proof. $\blacktriangleright\ \boxed {\ I\equiv\int_0^{\infty}\frac {x^2 + c}{x^4 + bx^2 + c^2}\ \mathrm{dx}\ } =$ $ \int_0^{\infty}\frac {1 + \frac {c}{x^2}}{x^2 + \frac {c^2}{x^2} + b}\ \mathrm {dx} =$ $ \int_0^{\infty}\frac {\left(x - \frac cx\right)'}{\left(x - \frac cx\right)^2 + 2c + b}\ \mathrm {dx}$ . Thus, $ I = \left|\frac {1}{\sqrt {2c + b}}\arctan\frac {x^2 - c}{x\sqrt {2c + b}}\right|_0^{\infty} =$

$ \frac {\pi}{\sqrt {b + 2c}}$ $ \implies$ $ \boxed {\ I = \frac {\pi}{\sqrt {b + 2c}}\ }$ . $ \blacktriangleright\ \boxed {\ J\equiv\int_0^{\infty}\frac {x^2 - c}{x^4 + bx^2 + c^2}\ \mathrm{dx} \ } =$ $ \int_0^{\infty}\frac {1 - \frac {c}{x^2}}{x^2 + \frac {c^2}{x^2} + b}\ \mathrm {dx} =$ $ \int_0^{\infty}\frac {\left(x + \frac cx\right)'}{\left(x + \frac cx\right)^2 - 2c + b}\ \mathrm {dx}$ . If $ b = 2c$ , then

$ J = - \left|\frac {x}{x^2 + c}\right|_0^{\infty} = 0$ . If $ b > 2c$ , then $ J = \left|\frac {1}{\sqrt {b - 2c}}\arctan\frac {x^2 + c}{x\sqrt {b - 2c}}\right|_0^{\infty} = 0$ . If $ b < 2c$ , then $ J = \left|\frac {1}{2\sqrt {2c - b}}\ln\frac {x^2 - x\sqrt {2c - b} + c}{x^2 + x\sqrt {2c - b} + c}\right|_0^{\infty} = 0$ .

Therefore, for any $ b > 0$ , $ c > 0$ we have $ \boxed {\ J = 0\ }$ . $ \blacktriangleright\ \boxed {\ U\equiv\int_0^{\infty}\frac {x^2}{x^4 + bx^2 + c^2}\ \mathrm{dx}\ } = \frac 12\cdot (I + J) = \frac 12\cdot I$ and

$\boxed{V\equiv\int_0^{\infty}\frac {1}{x^4+bx^2+c^2}\ \mathrm{dx}=\frac {1}{2c}\cdot (I-J)=\frac {1}{2c}\cdot I}$ . Therefore, $ K=2\cdot \int_{0}^{\infty}\frac {x^2 + a}{x^4 + bx^2 + c^2}\ \mathrm{dx} = 2(U + aV) =$ $ \left(1 + \frac ac\right)\cdot I$ $ \implies$

$\boxed {\boxed {\ K = \left(1 + \frac ac\right)\cdot \frac {\pi}{\sqrt {b + 2c}}\ }}$ . In conclusion, $ \boxed {\ K = \pi\ \Longleftrightarrow\ \left(1 + \frac ac\right)^2 = b + 2c\ }$ .

Remark. Show easily that if $ b > 2c$, then my relation $ \boxed {\ \left(1 + \frac ac\right)^2 = b + 2c\ }$ is equivalently with "Misan's relation, i.e.

$ \boxed {\ \frac {1}{\sqrt 2} \;\; \frac {1}{\sqrt {b^2 - 4c^2}}\;\;\frac {1}{2c}\left[ \sqrt {b + \sqrt {b^2 - 4c^2}}\cdot\left(\sqrt {b^2 - 4c^2} + (2a - b)\right) + \sqrt {b - \sqrt {b^2 - 4c^2}}\cdot\left(\sqrt {b^2 - 4c^2} - (2a - b)\right)\right] = 1\ }$ .



$\blacksquare$ PP4. Let $ a,\ b$ be postive constant numbers. Evaluate $ \int_0^{\frac {\pi}{2}} \frac {a\cos x - b\sin x}{b\sin x + a\cos x}\ \mathrm {dx}$ .


Proof. Suppose w.l.o.g. $ a\ne 0\ \ \vee\ \ b\ne 0$ , i.e. $ a^2 + b^2\ne 0$ . Denote $ f(x) = b\sin x + a\cos x$ . I look for the constant $ A$ , $ B$ so that for any $ x\in\mathbb R$ ,

$ a\cos x - b\sin x = Af(x) + Bf'(x)$ , i.e. $ a\cos x - b\sin x =$ $ A(b\sin x + a\cos x) + B(b\cos x - a\sin x)$ . Obtain easily that $ A = \frac {a^2 - b^2}{a^2 + b^2}$

and $ B = \frac {2ab}{a^2 + b^2}$ . Thus, $ \frac {a\cos x - b\sin x}{b\sin x + a\cos x}\ \mathrm {dx} =$ $ \int\frac {Af(x) + Bf'(x)}{f(x)}\ \mathrm {dx} =$ $ Ax + B\ln|f(x)| + \mathrm C$ , i.e. $ \int\frac {a\cos x - b\sin x}{b\sin x + a\cos x}\ \mathrm {dx} =$

$ \frac {a^2 - b^2}{a^2 + b^2}\cdot x + \frac {2ab}{a^2 + b^2}\cdot\ln|b\sin x + a\cos x| + \mathrm C$ . In conclusion, $ \int_0^{\frac {\pi}{2}}\frac {a\cos x - b\sin x}{b\sin x + a\cos x}\ \mathrm {dx} =$ $ \frac {a^2 - b^2}{a^2 + b^2}\cdot\frac {\pi}{2} + \frac {2ab}{a^2 + b^2}\cdot\ln\left|\frac ab\right|$ .



$\blacksquare$ PP5. Compute $ I = \int_{0}^{\frac {\pi}{2}} \frac {1}{1 + \tan^{\alpha}{x}}\ \mathrm {dx}$ , where $ \alpha\in\mathbb R^*$ .


Proof. You can apply the well-known integral identity $ \boxed {\ \int_a^bf(x)\ \mathrm {dx} = \int_a^bf(a + b - x)\ \mathrm {dx}\ }$ ("keeping of the interval").

Therefore, $ I=\int_{0}^{\frac {\pi}{2}} \frac {1}{1 + \tan^{\alpha}{x}}\ \mathrm {dx} =$ $ \int_{0}^{\frac {\pi}{2}} \frac {1}{1 + \tan^{\alpha}\left(\frac {\pi}{2} - x\right)}\ \mathrm {dx} =$ $ \int_{0}^{\frac {\pi}{2}} \frac {1}{1+\cot^{\alpha}{x}}\ \mathrm {dx}=$ $ \int_{0}^{\frac {\pi}{2}} \frac {\tan^{\alpha} x}{1 + \tan^{\alpha}x}\ \mathrm {dx}$ .

In conclusion, $ 2\cdot I = \int_{0}^{\frac {\pi}{2}} \frac {1}{1 + \tan^{\alpha}{x}}\ \mathrm {dx}+ \int_{0}^{\frac {\pi}{2}} \frac {\tan^{\alpha} x}{1 + \tan^{\alpha}x}\ \mathrm {dx}=\int_0^{\frac {\pi}{2}}\ \mathrm {dx}=\frac {\pi}{2}$ $\implies$ $I = \frac {\pi}{4}$ . See and
here .


$\blacksquare$ PP6. Given are $ \{m,n\}\subset\mathbb Z$ so that $ m + n$ is an odd integer. Find $ \min_{\begin{array}{c} \{a,b\}\subset\mathbb R \\
\ a + b = 1\end{array}}\int_{0}^{\pi}(a\sin mx + b\sin nx)^{2}\ \mathrm {dx}$ .

Proof. $ I(a,b)\equiv\int_{0}^{\pi}(a\sin mx + b\sin nx)^{2}\ \mathrm {dx} =$ $ \int_{0}^{\pi}\left[a\sin m(\pi - x) + b\sin n(\pi - x)\right]^{2}\ \mathrm {dx} =$

$ \int_{0}^{\pi}\left[( - 1)^{m + 1}a\sin mx + ( - 1)^{n + 1}b\sin nx\right]^{2}\ \mathrm {dx}$ . Therefore, $ 2I(a,b) = $

$\int_0^{\pi}\left\{(a\sin mx + b\sin nx)^{2} + \left[( - 1)^{m + 1}a\sin mx + ( - 1)^{n + 1}b\sin nx\right]^{2}\right\}\ \mathrm {dx}$ $ \implies$

$ I(a,b) = \int_0^{\pi}\left(a^2\sin^2mx + b^2\sin^2nx\right)\ \mathrm {dx} =$ $ \frac 12\cdot\int_0^{\pi}\left[\left(a^2 + b^2\right) - \left(a^2\cos 2mx + b^2\cos 2nx\right)\right]\ \mathrm {dx}$ .

Thus, $ I(a,b) = \frac {\pi}{2}\cdot \left(a^2 + b^2\right)\ge\frac {\pi}{4}$ because $ a^2 + b^2\ge \frac 12\cdot (a + b)^2 = \frac 12$ . We have equality iff $ a = b = \frac 12$ .



$\blacksquare$ PP7. Prove that integral $ I=\int_{0}^{\infty}\frac {\ln x}{x^2 + a^2}\ \mathrm {dx}$ converges and calculate it.

Proof. Using the substitution $ x: =ax$ obtain $ I=\frac 1a\cdot\left(J+\ln a \cdot\int_0^{\infty}\frac {1}{x^2+1}\ \mathrm {dx}\right)$ , where $ J=\int_0^{\infty}\frac {\ln x}{x^2+1}\ \mathrm {dx}$ .

Since $ \int_0^{\infty}\frac {1}{x^2+1}\ \mathrm {dx}=\frac {\pi}{2}$ and using the substitution $ x: =\frac 1x$ obtain $ J=-J$ , i.e. $ J=0$ , means that $ I=\frac {\pi}{2}\cdot\frac {\ln a}{a}$ .



$\blacksquare$ PP8. Calculate $I= \int_0^{\pi}\frac {x\sin x}{1+\cos^2x}\ \mathrm{dx}$ .


Proof. $ I\stackrel{(x:=\pi -x)}{\ =\ } \int_0^{\pi}\frac {(\pi - x)\sin x}{1 + \cos^{2}x}\ \mathrm{dx}$ $\implies$ $ I=\frac {\pi}{2}\cdot\int_0^{\pi}\frac {\sin x}{1 + \cos^2x}\ \mathrm {dx}=$ $\left|\frac {\pi}{2}\cdot \arctan (\cos x)\right|_{\pi}^0$ $ \implies$ $ I = \frac {\pi^2}{4}$ .


$\blacksquare$ PP9. Let $ I_n(x)=\int_1^x (\ln t)^ndt\ (x>0)$ for $ n\in\mathbb N^*$ . Prove by mathematical induction that $ I_n(x)$ is expressed by $ I_n(x)=xf_n(\ln x)+C_n\ (n\geq 1)$

in terms of some polynomial $ f_n(y)$ with degree $ n$ and some constant number $ C_n$ . Express the constant term of $ f_n(y)$ in terms of $ n$ .


Proof. Prove easily that $ \boxed {I_{k+1}(x)=x\ln^{k+1}x-(k+1)\cdot I_k(x)\ ,\ k\in\mathbb N}$ . Divide by $ (k+1)!$ and denote

$ t=\ln x\ ,\ J_k(x)=\frac {1}{k!}\cdot I_k(x)\ ,\ k\in\mathbb N$ . Thus, $ \boxed {J_{k+1}(x)=x\cdot\frac {t^{k+1}}{(k+1)!}-J_k(x)\ ,\ k\in\mathbb N}$ a.s.o.



$\blacksquare$ PP10. $ \boxed {I_n\equiv\int_0^{\infty}\frac {1}{\left(x^2 + 1^2\right)\left(x^2 + 2^2\right)\ldots\left(x^2 + n^2\right)}\ \mathrm {dx} = \pi\cdot\sum_{k = 1}^n\frac {( - 1)^{k - 1}\cdot k}{(n - k)!\cdot(n + k)!}\ }$ .


Proof. Denote $ x^2 = y$ . Thus, $ \prod_{k = 1}^n\frac {1}{\left(x^2 + k^2\right)} = \prod_{k = 1}^n\frac {1}{\left(y + k^2\right)} =$ $ \sum_{k = 1}^n\frac {A_k}{y + k^2}$ $ \implies$ $ 1 = \sum_{k = 1}^n\left[A_k\cdot\prod_{j = 1\ ,\ j\ne k}^n(y + j^2)\right]$ for any $ y\in\mathbb R$ .

Particularly, for $ y = - k^2$ obtain : $ 1 = A_k\cdot\prod_{j = 1\ ,\ j\ne k}^n(j^2 - k^2) =$ $ A_k\cdot\prod_{j = 1}^{k - 1}(j - k)\cdot\prod_{j = k + 1}^n(j - k)\cdot\prod_{j = 1\ ,\ j\ne k}^n(j + k)$ $ \implies$

$ 1=A_k\cdot ( - 1)^{k - 1}(k - 1)!\cdot(n - k)!\cdot\frac {(n + k)!}{k!\cdot 2k}$ $ \implies$ $ A_k = \frac {( - 1)^k\cdot 2k^2}{(n - k)!(n + k)!}$ . Therefore, $ I_n = \int_0^{\infty}\prod_{k = 1}^n\frac {1}{x^2 + k^2}\ \mathrm {dx} =$

$ \sum_{k = 1}^nA_k\int_0^{\infty}\frac {1}{x^2 + k^2}\ \mathrm {dx} =$ $ \frac {\pi}{2}\cdot\sum_{k = 1}^n\frac {A_k}{k}$ . In conclusion, $ \boxed {I_n = \pi\cdot\sum_{k = 1}^n\frac {( - 1)^{k - 1}\cdot k}{(n - k)!(n + k)!}}$ .

Remark. Denote $f(x)=\int_0^x\frac {t}{\left(t^2 + 1^2\right)\left(t^2 + 2^2\right)\ldots\left(t^2 + n^2\right)}\ \mathrm {dt}$ . Observe that

$\lim_{x\to 0}\frac {f(x)}{x^2}\stackrel{(l'H)}{=}$ $\lim_{x\to 0}\frac {f'(x)}{2x}=$ $\lim_{x\to 0}\frac {1}{2\left(x^2 + 1^2\right)\left(x^2 + 2^2\right)\ldots\left(x^2 + n^2\right)}=\frac{1}{2 (n!)^2}$ .

Can prove analogously that $ \boxed {\int_0^{\infty}\frac {1}{\left(x^4 + 1^2\right)\left(x^4 + 2^2\right)\ldots\left(x^4 + n^2\right)}\ \mathrm {dx} = \frac {\pi}{2}\cdot\sum_{k = 1}^n\frac {( - 1)^{k - 1}\cdot\sqrt {2k}}{(n - k)!\cdot(n + k)!}\ }$ . See
here.


$\blacksquare$ PP11. Ascertain $ \lim_{x\to\infty}\left[x^3\cdot\int_{-\frac 1x}^{\frac 1x}\frac {\ln (1+t^2)}{1+e^t}\ \mathrm {dt}\right]$ .

Proof 1. If $ f(t)=\frac {\ln (1 + t^2)}{1 + e^t}$ then we have $\int_{-\frac {1}{x}}^{\frac {1}{x}}f(t)\ \mathrm{dt}=$ $\int_{ - \frac {1}{x}}^{\frac {1}{x}} \frac {f(t) + f( - t)}{2} \ \mathrm{dt}=$ $\frac {1}{2} \int_{ - \frac {1}{x}}^{\frac {1}{x}} \ln (1 + t^2) \ \mathrm{dt}=$ $\arctan t - t + \frac {t}{2} \ln (1 + t^2) \Big|_{ - \frac {1}{x}}^{\frac {1}{x}}=$

$\frac { - 2 + 2x \ \mbox{arccot} x + \ln \left( 1 + \frac {1}{x^2} \right) }{x}$ . Then the our limit becomes $\lim_{x \to\infty} \left\{ x^2 \left[ - 2 + 2x \ \mbox{arccot} x + \ln \left( 1 + \frac {1}{x^2} \right) \right] \right\}$ . We can easily prove that

$ \lim_{x\to \infty} \ln \left( 1 + \frac {1}{x^2} \right)^{x^2} = 1$ . Also $ \lim_{x \to\infty}x^2(- 2 + 2x \, \mbox{arccot} x) = \lim_{x \to\infty} \frac { - 2 + 2x \, \mbox{arccot} x}{\frac {1}{x^2}} \stackrel{\mathbf{H}}{ = } \ldots \stackrel{\mathbf{H}}{ = } \ldots = - \frac {2}{3}$ . And whole limit yields $\frac 13$ .

Proof 2. $ \lim_{x\to\infty}\left[x^3\cdot\int_{-\frac 1x}^{\frac 1x}\frac {\ln (1+t^2)}{1+e^t}\ \mathrm {dt}\right]=$ $\lim_{x\to\infty}\frac {\int_{-\frac 1x}^{\frac 1x}\frac {\ln\left(1+t^2\right)}{1+e^t}\ \mathrm{dt}}{\frac {1}{x^3}}\stackrel{\left(y=\frac 1x\right)}{=}$ $\lim_{y\to 0} \frac {\int_{-y}^{y}\frac {\ln\left(1+t^2\right)}{1+e^t}\ \mathrm{dt}}{y^3}\stackrel{(l'H)}{=}$

$\lim_{y\to 0}\frac {\frac {\ln\left(1+y^2\right)}{1+e^y}+\frac {\ln\left(1+y^2\right)}{1+e^{-y}}}{3y^2}=$ $\lim_{y\to 0}\frac {\ln\left(1+y^2\right)}{3y^2}\stackrel{(z=y^2)}{=}$ $\lim_{z\to 0}\frac {\ln\left(1+z\right)}{3z}=\frac 13$ .



$\blacksquare$ PP12. Find the recurrent relations for $ A_n = \int (\sin x + \cos x)^n\ \mathrm {dx}$ and $ a_n = \int_0^{\frac {\pi}{2}}(\sin x + \cos x)^n\ \mathrm {dx}$ , where $ n\in \mathcal N$ .

Proof. I"ll use the identity $ (\sin x + \cos x)^2 + (\cos x - \sin x)^2 = 2$ . Thus, for $ n\in\mathcal N$ ,

$ A_{n + 2} = \int (\sin x + \cos x)^n\left[2 - (\cos x - \sin x)^2\right]\ \mathrm {dx}\implies$ $ \boxed{A_{n + 2} = 2A_n - H_n}$ ,

where $ H_n = \int (\sin x + \cos x)^n(\cos x - \sin x)^2\ \mathrm {dx}$ . Apply the integration by parts :

$ \overline {\underline {\left\|\begin{array}{ccc} u(x) = \cos x - \sin x & \implies & u'(x) = - (\sin x + \cos x) \\
 \\
v'(x) = (\sin x + \cos x)^n(\cos x - \sin x) & \implies & v(x) = \frac {1}{n + 1}\cdot (\sin x + \cos x)^{n + 1}\end{array}\right\|}}$

Therefore, $ H_n = \frac {1}{n + 1}\cdot (\sin x + \cos x)^{n + 1}(\cos x - \sin x) + \frac {1}{n + 1}\cdot A_{n + 2}$ and

$ \boxed {\begin{array}{c} A_0 = x + \mathcal C\ \ ,\ \ A_1 = \sin x - \cos x + \mathcal C \\
 \\
(n + 2)\cdot A_{n + 2} = 2(n + 1)\cdot A_n - (\sin x + \cos x)^{n + 1}(\cos x - \sin x)\ ,\ n\in\mathcal N\end{array}}$ .

Analogously, $ \boxed {\begin{array}{c} a_0 = \frac {\pi}{2}\ \ ,\ \ a_1 = 2 \\
 \\
(n + 2)\cdot a_{n + 2} = 2(n + 1)\cdot a_n + 2\end{array}}$ .



$\blacksquare$ PP13. Find the recurrent relations for $ A_n = \int (1 + \sin x + \cos x)^n\ \mathrm {dx}$ and $ a_n = \int_0^{\frac {\pi}{2}}(1 + \sin x + \cos x)^n\ \mathrm {dx}$ , where $ n\in \mathcal N$ .

Proof. I"ll use the identity $ (1 + \sin x + \cos x)^2 = 2(1 + \sin x + \cos x + \sin x\cos x)$ .

For $ n\in\mathcal N$ , $ A_{n + 2} = 2\cdot \int (1 + \sin x + \cos x)^n(1 + \cos x + \sin x + \sin x\cos x)\ \mathrm {dx}\implies$

$ \boxed{A_{n + 2} = 2A_{n + 1} + H_n}$ , where $ H_n = \int (1 + \sin x + \cos x)^n\sin 2x\ \mathrm {dx}\implies$

$ H_n = \int (1 + \sin x + \cos x)^n\left[1 - (\cos x - \sin x)^2\right]\ \mathrm {dx}\implies$ $ \boxed {H_n = A_n - L_n}$ , where

$ L_n = \int (1 + \sin x + \cos x)^n(\cos x - \sin x)^2\ \mathrm {dx}$ . Apply the integration by parts :

$ \overline {\underline {\left\|\begin{array}{ccc} u(x) = \cos x - \sin x & \implies & u'(x) = - (\sin x + \cos x) \\
 \\
v'(x) = (1 + \sin x + \cos x)^n(\cos x - \sin x) & \implies & v(x) = \frac {1}{n + 1}\cdot (1 + \sin x + \cos x)^{n + 1}\end{array}\right\|}}$

Therefore, $ L_n = \frac {1}{n + 1}\cdot (1 + \sin x + \cos x)^{n + 1}(\cos x - \sin x) + \frac {1}{n + 1}\cdot \left(A_{n + 2} - A_{n + 1}\right)$ .

$ \boxed {\begin{array}{c} A_0 = x + \mathcal C\ \ ,\ \ A_1 = x + \sin x - \cos x + \mathcal C \\
 \\
(n + 2)\cdot A_{n + 2} = (2n + 3)\cdot A_{n + 1} + (n + 1)\cdot A_n - (1 + \sin x + \cos x)^{n + 1}(\cos x - \sin x)\ ,\ n\in\mathcal N\end{array}}$ .

Analogously, $ \boxed {\begin{array}{c} a_0 = \frac {\pi}{2}\ \ ,\ \ a_1 = 2 + \frac {\pi}{2} \\
 \\
(n + 2)\cdot a_{n + 2} = (2n+ 3)\cdot a_{n + 1} + (n+1)\cdot a_n + 2^{n + 2}\ ,\ n\in\mathcal N\end{array}}$ .



$\blacksquare$ PP14. Ascertain $ \lim_{a\to\infty}\frac 1a\cdot\int_0^{\infty}\frac {x^2+ax+1}{x^4+1}\cdot\arctan x\ \mathrm {dx}$ .

Proof. $ I(a)=\int_0^\infty \frac{x^2+ax+1}{x^4+1} \, \arctan x \, \mathrm{dx}$ after the substitution $ x\to \frac{1}{x}$ becomes $ \int_0^\infty \frac{x^2+ax+1}{x^4+1} \, \arctan\left(\frac{1}{x}\right)\, \mathrm{dx}$ .

So $ 2\, I(a)=\int_0^\infty \frac{x^2+ax+1}{x^4+1} \, \underbrace{\left[ \arctan x+\arctan\left(\frac{1}{x}\right)\right]}_{=\frac{\pi}{2}} \, \mathrm{dx}$ $ \Longrightarrow I(a)=\frac{\pi}{4} \left[\underbrace{\int_0^\infty \frac{x^2+1}{x^4+1} \mathrm{dx}}_{\frac{\pi}{\sqrt{2}}}+\underbrace{\int_0^\infty \frac{ax}{x^4+1} \mathrm{dx}}_{a\, \frac{\pi}{4}} \right] \Rightarrow \frac{I(a)}{a}\to \left(\frac{\pi}{4}\right)^2$ .



$\blacksquare$ PP15. $ I_2\equiv\int_0^1 \frac {x^3}{\sqrt {x^2 + 1}}\ \mathrm {dx} =$ $ \int_0^1 \left(x\sqrt {x^2 + 1} - \frac {x}{\sqrt {x^2 + 1}}\right)\ \mathrm {dx} =$ $ \left[\frac {1}{3}(x^2 + 1)^{\frac {3}{2}} - \sqrt {x^2 + 1}\right]_0^1$ $ \implies\boxed {I_2 = \frac {2 - \sqrt {2}}{3}}\ .$

Proof. Kunny, I like the your nice proof because it is without integration by parts and without substitutions, i.e. it is a integration by "binocular" ! Thank you !

Can show analogously that $ I_n\equiv\boxed {\int_0^1\frac {x^{2n - 1}}{\sqrt {x^n + 1}}\ \mathrm {dx} = \frac {2(2 - \sqrt 2)}{3n}}\ !$ . Indeed, $ \frac {x^{2n - 1}}{\sqrt {x^n + 1}} =$ $ x^{n - 1}\left(\sqrt {x^n + 1} - \frac {1}{\sqrt {x^n + 1}}\right) =$

$ \frac 1n\left[\left(x^n + 1\right)^{\frac 12} - \left(x^n + 1\right)^{ - \frac 12}\right]\left(x^n + 1\right)'$ $ \implies$ $ \frac 1n\left[\frac 23\left(x^n + 1\right)^{\frac 32} - 2\left(x^n + 1\right)^{\frac 12}\right]_0^1$ $ \implies$ $ I_n = \frac 1n\left[\frac 23\left(2\sqrt 2 - 1\right) - 2\left(\sqrt 2 - 1\right)\right]$ $ \implies$

$ I_n\equiv\boxed {\int_0^1\frac {x^{2n - 1}}{\sqrt {x^n + 1}}\ \mathrm {dx} = \frac {2(2 - \sqrt 2)}{3n}}$ . Remark. Can show analogously more generally that $ I_{n,p}\equiv$ $ \boxed {\int_0^1\frac {x^{2n - 1}}{\sqrt [p] {x^n + 1}}\ \mathrm {dx} =\frac {p\left(2 - \sqrt [p] {2^{p-1}}\right)}{n(p-1)(2p-1)}}\ !$ .

Indeed, can use the substitution $ \left\{\begin{array}{c}
t = \phi (x) = x^n + 1\\\\
\phi '(x)=nx^{n-1}\end{array}\right\|$ , i.e. $ \int_0^1\frac {x^{2n - 1}}{\sqrt [p] {x^n + 1}}\ \mathrm {dx} =$ $ \frac 1n\int_0^1\frac {\left(x^n + 1\right) - 1}{\sqrt [p] {x^n + 1}}\left(x^n + 1\right)'\ \mathrm {dx} =$ $ \frac 1n\int_1^2\frac {t - 1}{\sqrt [p] t}\ \mathrm {dt}$ a.s.o.



$\blacksquare$ PP16. Ascertain a recurrence for $ a_n = \int_0^{\infty }\frac {x^{n - 1}\cdot\arctan x}{\left(x^2 + 1\right)^n}\ \mathrm {dx}$ , where $ n\in \mathcal N\ .$


$\blacksquare$ PP17. Find $I=\int_{0}^{\frac{\pi}{4}}\left(\frac{\cos x}{\sin x+\cos x}\right)^{2}\ \mathrm{dx}$ and $J=\int_{0}^{\frac{\pi}{4}}\left(\frac{\sin x+\cos x}{\cos x}\right)^{2}\ \mathrm{dx}$ .

Proof. I"ll use $t=\phi (x)=\frac{\pi}{4}-x\ :\ J=2\int_{0}^{\frac{\pi}{4}}\frac{1+\sin 2x}{1+\cos 2x}\ \mathrm{dx}=$ $2\int_{0}^{\frac{\pi}{4}}\frac{1+\cos 2x}{1+\sin 2x}\ \mathrm{dx}=$ $4\int_{0}^{\frac{\pi}{4}}\frac{\cos^{2}x}{(\sin x+\cos x)^{2}}\ \mathrm{dx}$ $\Longrightarrow \boxed{\ J=4\cdot I\ }$ .

Thus, $J=\int_0^{\frac {\pi}{4}}\frac {1+\sin 2x}{\cos^2x}\ \mathrm{dx}=$ $\int_0^{\frac {\pi}{4}}\left(\frac {1}{\cos^2x}+2\tan x\right)\ \mathrm{dx}=$ $\left|\left(\tan x-2\ln\cos x\right)\right|_0^{\frac {\pi}{4}}\implies$ $J=1+\ln 2$ and $I=\frac 14\cdot (1+\ln 2)$ .



$\blacksquare$ PP18. Prove that $:\ \int_{0}^{2n\pi}\max\{\sin x\ ,\ \arcsin (\sin x)\}\ \mathrm{dx}=$ $\frac{n(\pi^{2}-8)}{4}\ ;\ \lim_{n\to\infty}\left[\int_{a}^{b}(x-a)^{n}(x-b)^{n}\ \mathrm{dx}\right]^{\frac{1}{n}}=$ $\left(\frac{b-a}{2}\right)^{2}$ ,

where $a< b\ ;\ \lim_{n\to\infty}\int_{0}^{1}\frac{1}{x^{n}+x+1}\ \mathrm{dx}=$ $\ln 2\ ;\ \lim_{n\to\infty}\int_{0}^{1}\max\{x_{n},1-x\}\ \mathrm{dx}=1$ .


Proof. Soon.


$\blacksquare$ PP19. Compute $A=\int_{1}^{\infty }\frac{\ln (1+x)-\ln 2}{1+x^2}\ \mathrm{dx}$ .

Lemma. $\boxed{I=\int^1_0 \frac{\ln (x+1)}{x^2+1}\ \mathrm{dx}=\frac {\pi\ln2}{8}}\ (*)$ .
Indeed, $I\equiv\int^1_0 \frac{\ln (x+1)}{x^2+1} \ \mathrm{dx}=$ $\int^1_0 \ln(1+x)(\arctan x)'\ \mathrm{dx}=$

$\int^{\frac{\pi}{4}}_0 \ln (1+\tan x)\ dx=$ $\int^{\frac{\pi}{4}}_0 \ln \left[1+\tan \left(\frac{\pi}{4} -x\right)\right] \ \mathrm{dx}=$ $\int^{\frac{\pi}{4}}_0\ln \frac{2}{1+\tan x}\ \mathrm{dx}=$ $\frac{\pi}{4}\ln 2 -I$ $\Longrightarrow I=\frac{\pi\ln 2}{8}$ .

Proof of the proposed problem. Using the substitution $x:=\frac 1x$ obtain that $A=\int_0^1\frac{\ln (1+x)-\ln x-\ln 2}{1+x^2}\ \mathrm{dx}\stackrel{(*)}{=}$

$\frac {\pi\ln2}{8}-\frac {\pi\ln2}{4}-\int_0^1\frac {\ln x}{1+x^2}\ \mathrm{dx}=$ $-\frac {\pi\ln2}{8}-J$ , where $J=\int_0^1\frac {\ln x}{1+x^2}\ \mathrm{dx}=$ $\left|\left(\ln x\cdot\arctan x\right)\right|_0^1-\int_0^1\frac {\arctan x}{x}\ \mathrm{dx}$ , where

$\lim_{x\searrow 0}\ln x\cdot\arctan x=0$ and $\int_0^1\frac {\arctan x}{x}\ \mathrm{dx}=K=\sum_{k=0}^{\infty}\frac {(-1)^k}{(2k+1)^2}$ - the
Catalan's constant (<== click). Hence $\boxed{I=-\frac {\pi\ln2}{8}-K}$ .

Remark. $\int_{0}^{1} \frac{\arctan x}{x} \ \mathrm{dx} = \int_{0}^{1} \frac{1}{x}\cdot \Big( x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \ldots \Big)\ \mathrm{dx} $ $ = \int_{0}^{1} \Big( 1 - \frac{x^{2}}{3} + \frac{x^{4}}{5} - \ldots \Big) \ \mathrm{dx} = $

$x - \frac{x^{3}}{9} + \frac{x^{5}}{25} - \ldots \Big|_{0}^{1}$ $= 1 - \frac{1}{9} + \frac{1}{25} - \ldots = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k+1)^{2}}=K$ .



$\blacksquare$ PP20. $ I=\int\frac {3e^x + 5\sin x + 10\cos x}{e^x + 4\sin x + 3\cos x}\ \mathrm {dx}$ and $J=\int\frac {\sin x}{e^x - \sin x - \cos x}\ \mathrm {dx}$ .

Proof. Denote $f(x)=e^x + 4\sin x + 3\cos x$ and look for real numbers $m$ , $n$ so that $3e^x + 5\sin x + 10\cos x=$ $mf(x)+nf'(x)=$

$m\left(e^x + 4\sin x + 3\cos x\right)+n\left(e^x+4\cos x-3\sin x\right)$ , i.e. $\left\{\begin{array}{c}
m+n=3\\\
4m-3n=5\\\
3m+4n=10\end{array}\right\|\iff$ $m=2$ and $n=1$ . Therefore,

$\boxed{I=2x+\ln\left|e^x + 4\sin x + 3\cos x\right|+\mathbb C}$ . Denote $g(x)=e^x-\sin x-\cos x$ and look for real numbers $m$ , $n$

so that $\sin x =$ $mg(x)+ng'(x)=$ $m\left(e^x-\sin x-\cos x\right)+n\left(e^x-\cos x+\sin x\right)$ , i.e. $\left\{\begin{array}{c}
m+n=0\\\
-m+n=1\end{array}\right\|\iff$

$m=-\frac 12$ and $n=\frac 12$ . Therefore, $\boxed{J=-\frac 12\cdot x+\frac 12\cdot\ln\left|e^x-\sin x-\cos x\right|+\mathbb C}$



$\blacksquare$ PP21. Ascertain a recurence relation for $a_n\equiv\int_0^{\frac {\pi}{2}}\cos^nx\cos nx\ \mathrm{dx}$ , where $n\in\mathbb N^*$ .

Proof. Denote $ \boxed {a_n\equiv\int_0^{\frac {\pi}{2}}\cos^nx\cos nx\ \mathrm{dx}}$ . Then $ 2a_n = \int_0^{\frac {\pi}{2}}\left[\cos(n + 1)x + \cos(n - 1)x\right]\cos^{n - 1}x\ \mathrm{dx}$ . Thus,

$ 2a_n = a_{n - 1} + \int_0^{\frac {\pi}{2}}\cos^{n - 1}x(\cos x\cos nx - \sin x\sin nx)\ \mathrm{dx}$ $ \implies$ $ 2a_n = a_{n - 1} + a_n - A$ , where $ A = \int_0^{\frac {\pi}{2}}\sin nx\sin x\cos^{n - 1}x\ \mathrm {dx}$ .

Now I"ll apply the integration by parts to the definite integral $ A$ : $ \boxed {\ \begin{array}{ccc} u(x) = \sin nx & \implies & u'(x) = n\cos nx \\
 \\
v'(x) = \cos^{n - 1}x\sin x & \implies & v(x) = - \frac 1n\cdot\cos^nx\end{array}\ }$ $ \implies$ $ A = a_n$ .

Therefore, $ a_0 = \frac {\pi}{2}$ and for any $ n\in \mathcal N^*$ , $ a_{n} = \frac 12\cdot a_{n - 1}$ . In conclusion, $ \boxed {\ a_n = \frac {\pi}{2^{n + 1}}\ ,\ n\in \mathcal N\ }$ .



PP22. Evaluate the definite integral $\int_0^{\frac {\pi^2}4}\frac 1{1+\sin\sqrt t+\cos\sqrt t}\ \mathrm{dt}$ .

Proof. Let $I$ be the value of the integral. Substitute $t:= t^2$ to get $I = \int_{0}^{\frac{\pi}{2}}\frac{2t}{1+\sin t+\cos t}\ \mathrm{dt}$ . Substituting $t:=\frac{\pi}{2}-t$ gives

$I = \int_{0}^{\frac{\pi}{2}}\frac{2\left(\dfrac{\pi}{2}-t\right)}{1+\sin\left(\frac{\pi}{2}-t\right)+\cos\left(\frac{\pi}{2}-t\right)}\ \mathrm{dt}$ $= \int_{0}^{\dfrac{\pi}{2}}\dfrac{\pi-2t}{1+\sin t+\cos t}\ \mathrm{dt}$ . Adding the two expressions and dividing by $2$ gives

$I = \frac{\pi}{2}\int_{0}^{\frac{\pi}{2}}\frac{1}{1+\sin t+\cos t}\ \mathrm{dt}$ . Substituting $t: = \tan\frac{t}{2}$ gives $I = \frac{\pi}{2}\int_{0}^{1}\frac{1}{1+\frac{2t}{1+t^2}+\frac{1-t^2}{1+t^2}} \cdot \dfrac{2}{1+t^2}\ \mathrm{dt}$ $\implies$ $\boxed{I=\frac{\pi\ln 2}{2}}$ .



PP23. Find the minimum value of $\int_0^1 \frac{|t-x|}{t+1}\ \mathrm{dt}$ , where $x\in\mathbb R$ .

Proof. Denote $F(t)\in \int\frac{|t-x|}{t+1}\ \mathrm{dt}$ for which $F(0)=0$ , i.e. $F(t)=t-(x+1)\ln|t+1|$ . Thus,

$f(x)\equiv\int_0^1 \frac{|t-x|}{t+1}\ \mathrm{dt}\implies$ $f(x)=\left\{\begin{array}{ccc}
F(1)-F(0) & \mathrm{if} & x\le 0\\\\
F(0)+F(1)-2F(x) & \mathrm{if} & 0\le x\le 1\\\\
F(0)-F(1) & \mathrm{if} & x\ge 1\end{array}\right\|\iff$

$f(x)=\left\{\begin{array}{ccc}
1-(x+1)\ln 2\ \ \searrow & \mathrm{if} & x\le 0\\\\
1-(x+1)\ln 2-2x+2(x+1)\ln (x+1)\ \ \searrow\ \nearrow  & \mathrm{if} & 0\le x\le 1\\\\
(x+1)\ln 2-1\ \ \nearrow & \mathrm{if} & x\ge 1\end{array}\right\|$ ,

where $\left\{\begin{array}{c}
f(0-0)=f(0+0)=1-\ln 2\\\\
f(1-0)=f(1+0)=2\ln 2-1\end{array}\right|$ . Therefore, $x_{\mathrm{min}}\in (0,1)$ .

For any $x\in (0,1)$ we have $f'(x)=\ln\frac {(x+1)^2}{2}$ and $f'(x)=$ $0\iff$ $x=\sqrt 2-1$ .

In conclusion, $x_{\mathrm{min}}=\sqrt 2-1$ and $\min_{x\in\mathbb R}f(x)=f\left(x_{\mathrm{min}}\right)=f\left(\sqrt 2-1\right)=3-2\sqrt 2$ .



PP24. Ascertain $\frac AB$ , where $A=\int_{0}^{1}({1-x^{n}})^{m}\ \mathrm{dx}\ \ ,\ \ B=\int_{0}^{1}({1-x^{n}})^{m+1}\ \mathrm{dx}$ and $\{m,n\}\subset \mathbb N^*$ .

Proof. $\left\{\begin{array}{ccc}
u(x)=\left(1-x^n\right)^{m+1} & \implies & u'(x)=-n(m+1)x^{n-1}\left(1-x^n\right)^m\\\\
v'(x)=1 & \implies & v(x)=x\end{array}\right|$ $\implies$

$B=\int_{0}^{1}({1-x^{n}})^{m+1}\ \mathrm{dx}=$ $\int_0^1x\left(1-x^n\right)^{m+1}\ \mathrm{dx}+n(m+1)\cdot\int x^{n}\left(1-x^n\right)^m\ \mathrm{dx}=$

$n(m+1)\cdot\int \left[1-\left(1-x^{n}\right)\right]\left(1-x^n\right)^m\ \mathrm{dx}\implies$ $B=n(m+1)\cdot (A-B)\implies \frac AB=1+\frac {1}{n(m+1)}$ .



PP25. Ascertain $\lim_{n\to\infty}f(n)$ , where $f(n)= \int_0^{\pi} e^{x}|\sin nx|\ \mathrm{dx}\ ,\ n\in\mathbb N^*$ .

Riemann-Lebesgue lemma. Let $f$ be a continuous function on $0 \le a < b$. If $g$ is a continuous and

$T$-periodic on $[0,\infty)$ .Then $\lim_{n \to \infty} \int^{b}_{a} f(x) g(nx) \ \mathrm{dx} = \frac{1}{T} \cdot\int^{T}_{0} g(x) \ \mathrm{dx}\cdot \int_{a}^{b} f(x) \ \mathrm{dx} $ .


Proof

Proof 1. Can apply the upper Riemann-Lebesgue lemma : $ \lim_{n \to \infty} \int_{0}^{\pi} e^{x} |\sin nx|\ \mathrm{dx} = \frac{1}{\pi} \int_{0}^{\pi} |\sin x|\ \mathrm{dx}\cdot \int_{0}^{\pi} e^{x}\ \mathrm{dx}$ $ =  \frac{2(e^{\pi}-1)}{\pi}$ .

Proof 2. . $f(n) = \int_{0}^\pi e^x | \sin nx |\mathrm{dx}=$ $\sum_{k=0}^{n-1} \int_{\frac {k\pi}{n}
}^{\frac {(k+1)\pi}{n}
} (-1)^k e^x \sin nx \ \mathrm{dx}=$ $\sum_{k=0}^{n-1} (-1)^k \left[ \frac{e^x}{1+n^2} (\sin nx - n \cos nx)\right]_{\frac {k\pi}{n}
}^{\frac {(k+1)\pi}{n}
}=$

$\sum_{k=0}^{n-1} (-1)^k \frac{e^{\frac {k\pi}{n}
}}{1+n^2} \left(-ne^{\frac {\pi}{n}
} \cos (k+1)\pi + n\cos k\pi\right)=$ $\sum_{k=0}^{n-1} \frac{n e^{\frac {k\pi}{n}
}}{1+n^2} (-1)^k (\cos k\pi)(e^{\frac {\pi}{n}
}+1)=$ $\frac{n(e^{\frac {\pi}{n}
} + 1)}{1+n^2} \sum_{k=0}^{n-1} e^{\frac {k\pi}{n}
} (-1)^{2k}=$

$\frac{n (e^{\frac {\pi}{n}
} + 1)}{1+n^2} \frac{e^\pi - 1}{e^{\frac {\pi}{n}
} - 1}\implies$ $\lim_{n\to\infty} f(n)=$ $\frac{e^\pi - 1}{\pi}\cdot  \lim_{n\to\infty} \frac{n^2}{1+n^2}\cdot  \lim_{n\to\infty} (e^{\frac {\pi}{n}
} + 1) \cdot \lim_{n\to\infty} \frac{\frac {\pi}{n}
}{e^{\frac {\pi}{n}
} - 1}=$ $ \frac{2(e^\pi - 1)}{\pi}\implies$ $\underline{\overline{\left\|\ \lim_{n \to\infty} f(n) = \frac{2(e^\pi-1)}{\pi}\ \right\|}}$ .



PP26. Find the non-constant function $f(x)$ such that $f(x)=x^2-\int_0^1 [f(t)+x]^2\ \mathrm{dt}$ .

Proof. $ f(x)=x^{2}-\int_{0}^{1}[f(t)+x]^{2}\ \mathrm{dt}$ $\Longrightarrow f(x)=x^{2}-\int_{0}^{1}f^{2}(t)\ \mathrm{dt} -2x\int_{0}^{1}f(t)\ \mathrm{dt} - x^{2} \int_{0}^{1}\ \mathrm{dt}$ $\Longrightarrow$ $f(x)=-\int_{0}^{1}f^{2}(t)\ \mathrm{dt} -2x\int_{0}^{1}f(t)\ \mathrm{dt}\Longrightarrow$ exist $\{a,b\}\subset\mathbb R$

so that $f(x)=ax+b $ , i.e. $ax+b=x^{2}-\int_{0}^{1}(at+b+x)^{2}\ \mathrm{dt}\iff$ $ax+b=x^2-\frac {a^2}{3}-a(b+x)-(b+x)^2\iff$ $ax+b=-\frac {a^2}{3}-ab-ax-b^2-2bx\iff$

$\left\{\begin{array}{c}
a=-a-2b\\\\
b=-\frac {a^2}{3}-ab-b^2\end{array}\right\|\iff$ $\left\{\begin{array}{c}
b=-a\\\\
a=\frac {a^2}{3}\end{array}\right\|\iff$ $\left\{\begin{array}{c}
b=-a\\\\
a^2=3a\end{array}\right\|\iff$ $a=-b=3$ . In conclusion, $\boxed{f(x)=3x-3}$ .



PP27. For large $n$ , show that $\int_{0}^{1}\frac{nx^{n-1}}{1+x^2}dx\approx \frac{1}{2}$ .

Proof 1. $J_n=\int_0^1 \frac{nx^{n-1}}{1+x^2}\ \mathrm{dx}=$ $\int_0^1\frac {1}{x^2+1}\cdot \left(x^n\right)'\ \mathrm{dx}=$ $\left|\frac{x^n}{1+x^2}\right|_0^1 +$ $\int_0^1 x^n\cdot \frac{2x}{\left(x^2+1\right)^2}\ \mathrm{dx}=$ $\frac 12+2\cdot \int_0^1 \frac{x^{n+1}}{(1+x^2)^2}\ \mathrm{dx}\ge \frac 12$ . On the other hand,

$J_n=\int_0^1 \frac{nx^{n-1}}{1+x^2}\ \mathrm{dx}=$ $n\cdot \int_0^1 \frac{x}{1+x^2}\cdot  x^{n-2}\ \mathrm{dx}$ $\leq \frac{n}{2}\cdot \int_0^1 x^{n-2}\ \mathrm{dx}=$ $\left|\frac{n}{2}\cdot \frac{x^{n-1}}{n-1}\right|_0^1=\frac {n}{2(n-1)}$ . In conclusion, $\frac 12\le J_n\le \frac {n}{2(n-1)}$ $\implies J_n\rightarrow\frac 12$ .

Proof 2. Define $I_n=\int_0^1\frac {x^{n-1}}{1+x^2}\ \text{d}x$ , where $n\ge 1$ . Note that: $I_{n+1}-I_n=\int_0^1\frac {x^{n-1}(x-1)}{1+x^2}\ \text{d}x\le 0$ , so this means that $\left(I_n\right)_{n\ge 1}$ is decreasing.

On the other hand, one can easily derive the relation $\boxed{\, I_{n+2}+I_n=\frac 1n\, }$ and given the monotonicity of $\left(I_n\right)_{n\ge 1}$ we can now obtain the following chain

$\frac 1{n}=I_{n+2}+I_n\, \le\, 2I_n\, \le\, I_n+I_{n-2}=\frac 1{n-2}\implies$ $\boxed{\, \frac 12\, \le\, nI_n\, \le\, \frac n{2(n-2)}\, }$ . Now, by squeeze theorem it follows that $\lim_{n\to\infty}\, nI_n=\frac 12$ .



PP28. Let $f:[0,1]\rightarrow [0,\infty )$ be a function $f\in\mathbb C^1$ . Prove that the sequence $a_n=\int_0^1\frac {f(x)}{1+x^n}\ \mathrm{dx}\ ,\ n\in\mathbb N^*$ is convergent $(a_n\rightarrow l\in \mathbb R)$ and $\lim_{n\to\infty}n\left(l-a_n\right)=f(1)\ln2$ .

Proof. $0\le \int_0^1f(x)\ \mathrm{dx} -\int_0^1\frac {f(x)}{1+x^n}\ \mathrm{dx}=$ $\int_0^1\frac {x^n}{1+x^n}\cdot f(x)\ \mathrm{dx}\le$ $ A\cdot \int_0^1x^n\ \mathrm{dx}=$ $\frac {A}{n+1}\ ,\ (\forall )n\in\mathbb N^*$ , where $A=\sup_{0\le x\le 1}f(x)$ . Thus, $\lim_{n\to\infty}\int_0^1\frac {f(x)}{1+x^n}\ \mathrm{dx}=$

$\int_0^1\frac {f(x)}{1+x^n}\ \mathrm{dx}=l$ . So, $n\left(l-a_n\right)=\int_0^1xf(x)\cdot \frac {nx^{n-1}}{1+x^n}\ \mathrm {dx}=$ $\left |xf(x)\cdot \ln\left(1+x^n\right)\right|_0^1-\int_0^1\left[f(x)+xf'(x)\right]\cdot \ln\left(1+x^n\right)\ \mathrm{dx}=$ $f(1)\ln 2-b_n$ ,

where $b_n=\int_0^1\left[f(x)+xf'(x)\right]\cdot \ln\left(1+x^n\right)\ \mathrm{dx} \le$ $ \int_0^1\left[f(x)+xf'(x)\right]\cdot x^n\ \mathrm{dx}\le$ $A\int_0^1x^n\ \mathrm{dx}+B\cdot \int_0^1x^{n+1}\ \mathrm{dx}=\frac {A}{n+1}+\frac {B}{n+1}\rightarrow 0$ ,

where $B=\sup_{0\le x\le 1}f'(x)$ .In conclusion, $b_n\rightarrow 0$ and $\lim_{n\to\infty}n\left(l-a_n\right)=f(1)\ln 2$ .



PP29 (easy and nice). Evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{2+\sin x}{1+\cos x}\ dx$

Proof. Denote $I=\int\frac{2+\sin x}{1+\cos x}\ \mathrm{dx}=2K+L$ , where $K=\int\frac {1}{1+\cos x}\ \mathrm{dx}$ and $L=\int\frac {\sin x}{1+\cos x}\ \mathrm{dx}$ . Observe that $L=-\int\frac {(1+\cos x)'}{1+\cos x}\ \mathrm {dx}$

and $K=\int\frac {1-\cos x}{\sin^2x}\ \mathrm{dx}=$ $\int\frac {1}{\sin^2x}\ \mathrm{dx}-\int\frac {(\sin x)'}{\sin^2x}\ \mathrm{dx}\implies$ $L=-\ln (1+\cos x)+\mathbb C$ and $K=-\cot x+\frac {1}{\sin x}+\mathbb C$ .

In conclusion, $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{2+\sin x}{1+\cos x}\ \mathrm{dx}=$ $\left| -\ln (1+\cos x)-2\cot x+\frac {2}{\sin x}\right|_{\frac {\pi}{3}}^{\frac {\pi}{2}}=$ $\ln\frac 32+\frac {2}{\sqrt 3}+2-\frac {4}{\sqrt 3}=$ $\ln\frac 32+2\left(1-\frac{1}{\sqrt{3}}\right)$ .


See
here , here and here
This post has been edited 180 times. Last edited by Virgil Nicula, Nov 21, 2015, 7:17 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a