354. Gradul II - Univ. B.B. Cluj, aug. 1998 Prof I sau II.

by Virgil Nicula, Aug 18, 2012, 2:42 PM

Profesori I.

PPI1. Fie $R$ , $r$ raza sferei circumscrise si raza sferei inscrise pentru o piramida patrulatera regulata $VABCD$ . Sa se arate ca $\frac Rr\ge 1+\sqrt 2$ ,

Demonstratie. Notam centrul $O$ al patratului $ABCD$ , mijlocul $M$ al muchiei $[AB]$ si $m\left(\widehat{VMO}\right)=2\phi$ . Presupunem fara a restrange generalitatea ca $AB=2$ . Se arata usor

ca $OA=\sqrt 2$ , $OM=1$ si din triunghiul $VMO$ obtinem $VO=\tan 2\phi$ si $\boxed{r=\tan\phi}$ . Notam centrul $S$ al sferei circumscrise. Se observa ca $SA^2=SO^2+AO^2$ , adica

$R^2=(\tan 2\phi -R)^2+2\iff$ $\boxed{R=\frac {2+\tan^22\phi}{2\tan 2\phi}}$ . Notam $\boxed{\tan\phi=t\in (0,1)}$ . In concluzie, $\frac Rr\ge 1+\sqrt 2\iff$ $\frac {2+\tan^22\phi}{2\tan 2\phi\tan\phi}\ge 1+\sqrt 2\iff$ $\frac {2+\left(\frac {2t}{1-t^2}\right)^2}{2\cdot\frac {2t}{1-t^2}\cdot t}\ge 1+\sqrt 2$

$\iff$ $\frac {t^4+1}{2t^2\left(1-t^2\right)}\ge 1+\sqrt 2\iff$ $\frac {2t^2-2t^4}{t^4+1}\le \sqrt 2-1\iff$ $\left(\sqrt 2+1\right)t^4-2t^2+\left(\sqrt 2-1\right)\ge 0\iff$ $t^4-2\left(\sqrt 2-1\right)t^2+\left(\sqrt 2-1\right)^2\ge 0\iff$

$\left[t^2-\left(\sqrt 2-1\right)\right]^2\ge 0$ , ceea ce este adevarat. Avem egalitate daca si numai daca $\tan\phi=\sqrt {\sqrt 2-1}$ .


PPI2. Sa se rezolve ecuatiile $\left\{\begin{array}{c}
f(x)=x^5-5x^4+3x^3+11x^2-6x+4=0\\\\
g(x)=x^5-5x^4+6x^3+2x^2-12x+8=0\end{array}\right\|$ stiind ca au cel putin doua radacini comune.

Demonstratie 1. $f(1)=g(1)=0$ si astfel $\left\{\begin{array}{ccc}
f(x)=(x-1)u(x) & ; & u(x)=x^4-4x^3-x^2+10x+4\\\\
g(x)=(x-1)v(x) & ; & v(x)=x^4-4x^3+2x^2+4x-8\end{array}\right\|$ . Se observa ca $v(x)-u(x)=3(x^2-2x-4)$ .

Incercam (de ce ?!) daca $w(x)=x^2-2x-4$ este divizor comun pentru $u$ si $v$. Intr-adevar se confirma. Asadar, $\left\{\begin{array}{c}
f(x)=(x-1)(x^2-2x-4)(x^2-2x-1)\\\\
g(x)=(x-1)(x^2-2x-4)(x^2-2x+2)\end{array}\right\|$ etc etc.

Demonstratie 2. C.m.m.d.c. $d=(u,v)$ al celor doua polinoame pentru care $\mathrm{gr}(d)\ge 1$ deoarece cele doua polinoame au cel putin o radacina comuna:

$\left\{\left|\begin{array}{ccccc}
x^4 & -4x^3 & -x^2 & +10x & +4\\\\
x^4 & -4x^3 & +2x^2 & +4x & -8\end{array}\right|\begin{array}{cc}
\odot & (-1)\\\\
\odot & (+1)\end{array}\right\|\bigoplus\implies$ $3x^2-6x-12\implies$ $x^2-2x-4\implies$ $\left\{\left|\begin{array}{ccccc}
x^2 & -2x & -4 & &\\\\
x^4 & -4x^3 & +2x^2 & +4x & -8\end{array}\right|\begin{array}{cc}
\odot & \left(+x^2\right)\\\\
\odot & (-1)\end{array}\right\|\bigoplus\implies$

$2x^3-6x^2-4x+8\implies$ $x^3-3x^2-2x+4\implies$ $\left\{\left|\begin{array}{cccc}
x^3 & -3x^2 & -2x & +4\\\\
x^2 & -2x & -4 & \end{array}\right|\begin{array}{cc}
\odot & (-1)\\\\
\odot & (+x)\end{array}\right\|\bigoplus\implies$ $x^2-2x-4\implies$ $\left\|\left|\begin{array}{ccc}
x^2 & -2x & -4\\\\
x^2 & -2x & -4\end{array}\right|\begin{array}{cc}
\odot & (-1)\\\\
\odot & (+1)\end{array}\right\|\bigoplus\implies 0$ .

In concluzie, c.m.m.d.c. $d=(u,v)$ al celor doua polinoame este $d(x)=x^2-2x-4$ si obtinem usor $\left\{\begin{array}{c}
u(x)=(\underline{x^2-2x-4})(x^2-2x-1)\\\\
v(x)=(\underline{x^2-2x-4})({x^2-2x+2})\end{array}\right\|$ etc etc.



Profesori II.

PPII1. Sa se determine multimea numerelor (intregi) $z\in\mathbb Z$ pentru care $\frac {z^3-3z+2}{2z+1}\in\mathbb Z$ .

Demonstratie 1. Notam $2z+1=y\in\mathbb Z$ ($y$ este impar). Asadar, $\frac {z^3-3z+2}{2z+1}\in\mathbb Z\iff$ $\frac {y^3-3y^2-9y+27}{8y}\in\mathbb Z\implies$ $\frac {y^3-3y^2-9y+27}{y}\in\mathbb Z\iff$ $\frac {27}{y}\in\mathbb Z$ , unde $y$ este

impar $\iff$ $y=2z+1\in\left\{\pm 1,\pm 3,\pm 9,\pm 27\right\}\iff$ $\boxed{\ z\in B=\{0,-1,1,-2,4,-5,13,-14\}\ }$ . In concluzie, $A=\left\{\left|\frac {z^3-3z+2}{2z+1}\right| z\in B\right\}=\{2,-4,0,6,12,80,100\}$ .

Demonstratie 2. $\frac {z^3-3z+2}{2z+1}\in\mathbb Z\iff$ $\frac {2z^3-6z+4}{2z+1}\in\mathbb Z\iff$ $z^2-\frac {z^2+6z-4}{2z+1}\in\mathbb Z\iff$ $\frac {z^2+6z-4}{2z+1}\in\mathbb Z\iff$ $\frac {2z^2+12z-8}{2z+1}\in\mathbb Z\iff$ $z+\frac {11z-8}{2z+1}\in\mathbb Z\iff$

$\frac {11z-8}{2z+1}\in\mathbb Z\iff$ $\frac {22z-16}{2z+1}\in\mathbb Z\iff$ $11-\frac {27}{2z+1}\in\mathbb Z\iff$ $(2z+1)$ divide $27\iff$ $2z+1\in\left\{\pm 1,\pm 3,\pm 9,\pm 27\right\}\iff$ $\boxed{\ z\in B=\{0,-1,1,-2,4,-5,13,-14\}\ }$ .



PPII2. Fie $\triangle ABC$ cu $A>90^{\circ}$ . Sa se determine pozitiile punctelor $X\in (BC)$ pentru care $XA^2=XB\cdot XC$ . Fain !

Demonstratie. Daca $O$ este circumcentrul $\triangle ABC$ , atunci se arata usor ca pozitiile cautate sunt $\left\{X_1,X_2\right\}=(BC)\cap w$ , unde $w$ este cercul de diametru $[AO]$ .

Exprimarea metrica a acestor pozitii se obtine usor. Notam $\frac {XB}{XC}=m$ . Aplicam relatia Stewart $\ :\ AX^2=XB\cdot XC\iff$ $\left(c^2+b^2m\right)(m+1)=2a^2m\iff$

$m_{1,2}=\frac {2a^2-\left(b^2+c^2\right)\pm\sqrt {4a^4+\left(b^2-c^2\right)^2-4a^2\left(b^2+c^2\right)}}{2b^2}$ .
This post has been edited 41 times. Last edited by Virgil Nicula, Nov 17, 2015, 7:19 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog