369. Mixtilinear circles of ABC.

by Virgil Nicula, Jan 19, 2013, 5:52 PM

Lemma (own). Let $\triangle ABC$ with the incircle $i=C(I,r)$ , the exincircle $i_a=C(I_a,r_a)$ and the circumcircle $e=C(O,R)$ . Denote

$\left\{\begin{array}{ccc}
M\in AB\ ,\ IM\perp IA\ ; & I_1\in AI\ ,\ I_1M\perp AB\ ; & I_1M=r_1\\\\
N\in AB\ ,\ I_aN\perp IA\ ; & I_2\in AI\ ,\ I_2N\perp AB\ ; & I_2N=r_2\end{array}\right|$ . Prove that:

$1.\blacktriangleright\ s\cdot AM=(s-a)\cdot AN=bc\ \ ;\ \ \frac {r}{r_1}=\frac {r_a}{r_2}=\cos^2\frac A2$ .

$2.1\blacktriangleright$ The circle $c_1=C(I_1,r_1)$ is tangent to the rays $[AB$ , $[AC$ and interior tangent to $e$ .

$2.2\blacktriangleright$ The circle $c_2=C(I_2,r_2)$ is tangent to the rays $[AB$ , $[AC$ and exterior tangent to $e$ .

$3.\blacktriangleright$ If $T_1\in AC\cap i$ , $T_2\in AC\cap i_a$ , then $MC\parallel BT_2$ and $NC\parallel BT_1$ ( the construction of of the circles $c_1$ , $c_2$).


Proof.

$1.\blacktriangleright$ If $T\in AB\ ,\ IT\perp AB$ , then $IT=r\ ,\ AT=s-a=$ $AI\cdot \cos\frac A2=$ $AM\cdot \cos^2\frac A2=$ $AM\cdot \frac {s(s-a)}{bc}\implies$ $\boxed{AM=\frac {bc}{s}}$ . If $S\in AB\ ,\ I_aS\perp AB$ ,

then $I_aS=r_a\ ,\ AS=s=$ $AI_a\cdot \cos\frac A2=$ $AN\cdot \cos^2\frac A2=$ $AN\cdot \frac {s(s-a)}{bc}\implies$ $\boxed{AN=\frac {bc}{s-a}}$ . In conclusion, $s\cdot AM=(s-a)\cdot AN=bc$ . Observe that

$\frac {r}{r_1}=\frac {AT}{AM}=\frac {s-a}{\frac {bc}{s}}\ \ \wedge\ \ \frac {r_a}{r_2}=$ $\frac {AS}{AN}=\frac {s}{\frac {bc}{s-a}}$ . In conclusion, $\frac {r}{r_1}=\frac {r_a}{r_2}=\frac {s(s-a)}{bc}=\cos^2\frac A2$ .

$2.1\blacktriangleright$ The circle $c_1$ is interior tangent to the circle $e\iff$ $OI_1+r_1=R\iff$ $OI_1^2=(R-r_1)^2\iff$ $AI_1^2+R^2-2R\cdot AI_1\cdot\cos \frac {B-C}{2}=$ $R^2-2Rr_1+r_1^2$ .

Since $r_1=AI_1\sin\frac A2$ obtain that $r_1^2-2Rr_1\sin\frac A2\cos\frac {B-C}{2}=\left(-2Rr_1+r_1^2\right)\sin^2\frac A2\iff$ $r_1-R(\cos B+\cos C)=r_1\sin^2\frac A2-R(1-\cos A)\iff$

$r_1\cos^2\frac A2=R(\cos A+\cos B+\cos C-1)\iff$ $\boxed{r_1=\frac {r}{\cos^2\frac A2}}$ . Since $r_1=\frac {bc}{s}\cdot \tan \frac A2$ obtain that $\frac {bc}{s}\cdot\sin\frac A2\cos\frac A2=r\iff$ $\frac {bc}{2s}\cdot\sin A=r\iff$ $bc\sin A=2sr$ , true.

$2.2\blacktriangleright$ $c_2$ is exterior tangent to $e\iff$ $OI_2=R+r_2\iff$ $OI_2^2=(R+r_2)^2\iff$ $AI_2^2+R^2-2R\cdot AI_2\cdot\cos \frac {B-C}{2}=$ $R^2+2Rr_2+r_2^2$ . Since $r_2=AI_2\sin\frac A2$ obtain

$r_2^2-2Rr_2\sin\frac A2\cos\frac {B-C}{2}=\left(2Rr_2+r_2^2\right)\sin^2\frac A2\iff$ $r_2-R(\cos B+\cos C)=r_2\sin^2\frac A2+R(1-\cos A)\iff$ $r_2\cos^2\frac A2=R(\cos A+\cos B-\cos A+1)$ . Since

$r_2=\frac {bc}{s-a}\cdot \tan \frac A2$ obtain that $\frac {bc}{s-a}\cdot\sin\frac A2\cos\frac A2=4R\sin\frac A2\cos\frac B2\cos\frac C2\iff$ $\frac {bc}{2(s-a)}\cdot\sin A=\frac {4Rs(s-b)(s-c)}{abc}\iff$ $Sabc=4rS^2\iff$ $4RS=abc$ , true.

$3.\blacktriangleright\ \left\{\begin{array}{ccccccc}
NC\parallel BT_1 & \iff & \frac {AB}{AN}=\frac {AT_1}{AC} & \iff & AN\cdot AT_1=bc & \iff & (s-a)\cdot\frac {bc}{s-a}=bc\\\\

MC\parallel BT_2 & \iff & \frac {AM}{AB}=\frac {AC}{AT_2} & \iff & AM\cdot AT_2=bc & \iff & \frac {bc}{s}\cdot s=bc\end{array}\right\|$ , what is truly.



Application 1. Let $\triangle ABC$ with incircle $i=C(I,r)$ and circumcircle $e=C(O,R)$ . Let $s_a=C(\rho_a)$ be the circle which

is tangent to $[AB)$ , $[AC)$ and which is interior tangent to $e$ . Define analogously $s_b$ and $s_c$ . Prove that $\frac{1}{\rho_a}+\frac{1}{\rho_b}+\frac{1}{\rho_c}\leq \frac{9}{4r}$ .


Proof. From the upper lemma obtain that $\rho_a=\frac {r}{\cos^2\frac A2}\ \mathrm{a.s.o.}\implies$ $\frac {1}{\rho_a}+\frac {1}{\rho_b}+\frac {1}{\rho_a}=$ $\frac 1r\sum\cos^2\frac A2=$ $\frac {1}{2r}\sum (1+\cos A)=\frac {1}{2r}\left(4+\frac rR\right)\le\frac {9}{4r}$ . I used the inequality $R\ge 2r$ .

Application 2. Let $\triangle ABC$ with incircle $i=C(I,r)$ and circumcircle $e=C(O,R)$ . Let $w_a=C(R_a)$ be the circle which

is tangent to $[AB)$ , $[AC)$ and which is exterior tangent to $e$ . Define analogously $w_b$ and $w_c$ . Prove that $\frac{1}{R_a}+\frac{1}{R_b}+\frac{1}{R_c}\geq \frac{3}{4r}$ .


Proof. From the upper lemma obtain that $R_a=\frac {r_a}{\cos^2\frac A2}\ \mathrm{a.s.o.}\implies$ $\frac {1}{R_a}+\frac {1}{R_b}+\frac {1}{R_a}=$ $\sum\frac {\cos^2\frac A2}{r_a}=$ $\sum\frac {\frac {s(s-a)}{bc}}{\frac {sr}{s-a}}=$

$\frac 1r\sum\frac {(s-a)^2}{bc}\stackrel{(\mathrm{C.B.S})}{\ge}\frac 1r\frac {s^2}{\sum bc}\stackrel{(*)}{\ge}$ $ \frac {3s^2}{r(a+b+c)^2}=\frac {3}{4r}$ . I used and the inequality $(a+b+c)^2\ge 3(ab+bc+ca)\ \ (*)$ .
This post has been edited 25 times. Last edited by Virgil Nicula, Nov 15, 2015, 6:24 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a