457. Relatii metrice si inegalitati geometrice.
by Virgil Nicula, Aug 19, 2017, 11:10 AM
P5 (Miguel Ochoa Sanchez). Prove that for any
there is the chain of the inequalities
(standard notations).
Proof 1 (metric). Denote the midpoint
of the side
and the diameter
of the circumcircle
Apply the theorem of median in the triangles

I"ll prove that the required bilateral inequality is equivalently with the Gerretsen's inequality:
Indeed: 
the bilateral inequality 
Proof 2 (trigonometric). I"ll use the wellknown identity
a.s.o. Thus

i.e. the relation
a.s.o.
Proof 3 (metric). Denote the diameter
of the circumcircle
Prove easily that
is a parallelogram, i.e.
and 
a.s.o. In conclusion,
i.e. the relation
a.s.o.
Proof 4 (metric). Apply the remarkable identity
for the centroid

i.e. the relation
a.s.o.
P6. Prove that for any
there is the Petrovic's inequality
, i.e.
(standard notations).
Proof. Observe that
. Thus, the relation
is true
the Petrovic's relation is true

. I used the well-known identity
. Since
get easily the relation
, i.e. the required inequality
.
Here is a proof of the (left) inequality
. Indeed, with remarkable relations
get 
. In conclusion, 
P7. Prove that in any triangle
there is the inequality
.
Proof.
Proof. Is well-known that
, where
. Apply the CBS inequality 
. Observe that
.
Hence can apply the Chebyshev's inequality
.
Remark.
. Thus,
.
P8. Prove that in any triangle
there is the inequality
.
Proof 1. Denote
, where
. Thus, our inequality becomes
, what is truly.
Proof 2.
because
is well-known.
Remark.

because
.
I used the well-known inequality
. In conclusion, we obtained the stronger inequality
.
P9. Prove that in any triangle
there is the inequality
.
Proof.
. Denote
.
Thus,
, where
a.s.o.
Otherwise.

because
.
P10. Prove that
.
Proof. I"ll use the well-known identity
. Our inequality is equivalently with
. From the Cauchy-Buniakowski-Schwarz's inequality obtain that 

. From the Schur's inequality for
obtain that
. Remain to prove
what results from
P11. Prove that
and
.
Proof 1. .

. See aici
.
Since
obtain that
with the equality
.
Proof 2.
.
An easy extension. Prove that
.
Proof.
P12. Prove that in any triangle
there are the inequalities
.
Proof. I"ll use the well-known inequality


.
Otherwise. Prove easily that
and
. Therefore,

. In conclusion,

.
.
Remark.


, what is truly. Have equality iff
, i.e.
. See here
P13. Let
. Prove that
.
Proof.
which results from the well-known inequality
.
P14. Ascertain
so that the equation
has at least a zero in
.
Proof. Rewriting the equation as
. So,
. Also,
.
So,
(Its also obvious from the original equation itself). Also, we get solutions (easy to check) at both the boundary values of
. So,
.
P15. Prove that the inequality
.
Proof.
.
P16. Prove that
and
Proof.
![$\left[\frac {(a+b)+(c+d)}2\right]^2\cdot \frac {\sum a}4=$](//latex.artofproblemsolving.com/4/7/c/47c5ecca8cece6ac8cb403db74a0ec82f554fe6d.png)
Remark.

P17. Sa se arate ca intr-un triunghi
exista echivalenta 
(demonstratia aici).
Proof.
Adunam
stanga/dreapta si folosim
Inmultim cu 
Folosim
si
Insa

Inmultim cu
si folosim
Simplificam prin
si stim ca 

deoarece 
P18.Aratati ca in orice triunghi avem
si 
Demonstratie 1. In triunghiul
Demonstratie 2.
Procedam asemanator si pentru 

P19. Sa se arate ca
Demonstratie.


Folosim
Asadar,



Inlocuind pe
si ridicand la patrat, inegalitatea de demonstrat devine
ceea ce este adevarat. Egalitatea are loc daca si numai daca 
P20. Aratati ca in orice
are loc inegalitatea 
Demonstratie 1.
Asadar,
Altfel. 
Demonstratie 2. Vom demonstra fara a folosi identitatea
Astfel,

Insa
Asadar
insa mai slaba decat cea propusa deoarece 
Consecinta. Sa se arate ca in orice
exista relatia
Indicatie "tare" 
P21. Sa se arate ca daca
este ascutitunghic atunci ![$2[p^2-R(R-2r)]\ \le\boxed{\sum\frac {a(a^2+2bc)}{b+c}\ \le\ \frac {4(R+r)^2(2R-r)}{R}\ \le\ 9R(2R-r)}\ .$](//latex.artofproblemsolving.com/8/e/8/8e8ae8b9f11edcbf2126678eb6e73da3ed1c27e6.png)
Proof. Prima inegalitate este adevarata in orice
(demonstrate !). Revenim. Folosind teorema Cosinusului partea stanga a inegalitatii este echivalenta cu 
Asadar, 
In continuare vom demonstra inegalitatea (valabila in triunghi ascutitunghic !)
Intr-adevar, aplicand inegalitatea C.B.S. si folosind faptul ca
si
obtinem

Revenind in
In continuare aplicam inegalitatea Gerretsen 
Frumoasa inegalitate !
P22. Sa se arate ca in
cu cercul circumscris
exista relatiile
(notatii standard).
Demonstratie. Vom folosi relatia metrica remarcabila
unde
este ortocentrul si
este punctul lui Gergonne pentru
de unde
rezulta usor
Asadar,
![$4Rr\cdot \left[\frac {r(4R+r)}{sr^2}+\frac {s^2+r(4R+r)}{4Rrs}\right]=$](//latex.artofproblemsolving.com/c/b/3/cb3bf87fc4035103f5fced0c7345a07dcd37ce4c.png)
In concluzie, inegalitatea propusa este echivalenta cu inegalitatea 
^2\iff$](//latex.artofproblemsolving.com/4/7/d/47d549273abe981032368e5a4d136eb5761667d6.png)
, adica ineg. adevarata
Se observa ca
, care este cunoscuta a fi adevarata.
Observatie. Vom dovedi relatia remarcabila
folosind identitatea de tip Leibniz
unde
are coordonatele
in raport cu
Se stie ca
si puterea lui
fata de
este
Se arata usor relatia
Asadar,

Din relatia
Leibniz
si relatia precedenta
obtinem

P23. Let
with the incircle
and the circumcircle
Consider
and denote 
Prove that
with equality iff 
Proof. I"ll prove
with equality iff
is the bisector of
Apply the Stewart's relation to the cevian 
cu egalitate iff
is the bisector of
But 
The last inequality is equivalent with

P24. Fie
so that
Prove that
and find the maximum of the sum 
Proof.
![$\boxed{\ \{a,b,c,d\}\subset [1,4]\ }\ .$](//latex.artofproblemsolving.com/5/f/e/5feea9c9590b47eca825f78d29277c23baefc0ce.png)
Apply the P. Schweitzer's inequality
and obtain that ![$\sum \frac 1a\in \left[\frac 85,\frac 52 \right]\ .$](//latex.artofproblemsolving.com/2/b/0/2b0e1dd745da79e50c50ae538fc03fe8bd4d4bed.png)
P25. Sa se arte ca in orice triunghi
exista inegalitatea

Demonstratie. Se folosesc cunoscutele identitati geometrice
si
(notatii standard).
Intr-adevar,

what is true.
P26. Let
so that
Prove that 
Proof.
so that
and

Our inequality is equivalent with
where
Observe
that

Equality occurs for
if
then

if
or
then
or
or 
P27. Let
and
Prove that
Proof.
Suppose w.l.o.g.
Thus,

what is true.
We have equality, i.e.
Suppose w.l.o.g.
and denote
Thus,
and

Denote
Observe that 
i.e.
for any 
In conclusion,
Application. Let
and
so that
Prove that
where ![$S=[ABC]\ .$](//latex.artofproblemsolving.com/4/4/2/4425fc906cee3e28fbf07d7426f8e85fef08bc4c.png)
Proof. Denote
i.e.
where
Thus, 
From the previous PP27 (the second implication) obtain 
Prove easily that ![$\frac {[MNP]}{[ABC]} =$](//latex.artofproblemsolving.com/f/0/1/f010545e08eaae43818d829593645f9b2d2bfc46.png)
i.e.
P28 (own).
. Remark. Try some particular cases: 
Proof (Constantin MATEESCU). The solution has been inspired from one of the problems in Virgil's book on Planar Geometry (este singura carte pe care o port cu mine oriunde!
). I don't think there
is a different way to derive this amazing inequality which features a very special equality case! Firstly, we need to recall that the distance between two points
and
whose normalised barycentric
coordinates w.r.t.
are
and
respectively, is given by the following relation ![$:\ \boxed{ {PP^{\prime}}^2 = - \left[(\beta - \beta^{\prime}) (\gamma - \gamma^{\prime}) a^2 + (\gamma - \gamma^{\prime}) (\alpha - \alpha^{\prime}) b^2 + (\alpha - \alpha^{\prime}) (\beta - \beta^{\prime}) c^2\right] }\ .$](//latex.artofproblemsolving.com/9/5/5/9557e21c31c5c31fdfa3e36b8b0072331cd6f883.png)
Consequence. For
and
w.r.t.
the following inequality holds
Now let 
and let
be the isotomic of the incenter
of
. Thus:
and
Using the above corollary we succesively obtain that



The equality is attained
is the isotomic of the incenter
of
. Particular cases. 
P29 (Nguyen Viet Hung, Vietnam) <= click.
Proof 1 (with barycentric coordinates).
![$\frac {[GIK]}{[ABC]}=\left|\begin{array}{ccc}
\frac 13 & \frac 13 & \frac 13\\\\
\frac {a}{\sum a} & \frac {b}{\sum a} & \frac {c}{\sum a}\\\\
\frac {a^2}{\sum a^2} & \frac {b^2}{\sum a^2} & \frac {c^2}{\sum a^2}\end{array}\right|=$](//latex.artofproblemsolving.com/c/2/8/c281c8bd86d3f1cf1c89afa0c5f7cafbdd06177a.png)


Proof 1 (metric). Denote the midpoint

![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)
![$[AS]$](http://latex.artofproblemsolving.com/8/1/f/81f842d87b22553e4b674bb2bf46a080da785009.png)















Proof 2 (trigonometric). I"ll use the wellknown identity







Proof 3 (metric). Denote the diameter
![$[AN]$](http://latex.artofproblemsolving.com/b/0/6/b065e2d64ee016911f4b23fe8c308311c71bfa54.png)







Proof 4 (metric). Apply the remarkable identity








P6. Prove that for any



Proof. Observe that














Here is a proof of the (left) inequality









P7. Prove that in any triangle


Proof.
Proof. Is well-known that







Hence can apply the Chebyshev's inequality


Remark.




P8. Prove that in any triangle


Proof 1. Denote




Proof 2.

![$\sum\frac {a^2}{a(b+c-a)}\ \stackrel{(CBS)}{\ge}\ \frac {(a+b+c)^2}{\sum [a(b+c-a)]}=$](http://latex.artofproblemsolving.com/f/c/0/fc0203cdaca6931f848a9515f0af1f8d47f4ce4a.png)


Remark.

![$\sum\frac {a^2}{a(b+c-a)}\ \stackrel{(CBS)}{\ge}\ \frac {(a+b+c)^2}{\sum [a(b+c-a)]}=$](http://latex.artofproblemsolving.com/f/c/0/fc0203cdaca6931f848a9515f0af1f8d47f4ce4a.png)









I used the well-known inequality


P9. Prove that in any triangle


Proof.
![$\sum\frac {(b+c)^2}{-a+b+c}\ \stackrel{(CBS)}{\ge}\ \frac {\left[\sum (b+c)\right]^2}{\sum (-a+b+c)}=$](http://latex.artofproblemsolving.com/0/9/6/09646d1fd1b0fcd0fa1e9487e0627c3e3397a6a1.png)




Thus,

![$\sum\left[2x+2(y+z)+\frac {(y+z)^2}{2x}\right]\implies$](http://latex.artofproblemsolving.com/8/c/8/8c88c52d2021cea45cc0678f9d137748e609601e.png)


Otherwise.











P10. Prove that


Proof. I"ll use the well-known identity

















P11. Prove that


Proof 1. .







Since




Proof 2.

![$ \left[\prod\left(b^2+c^2\right)\right]^2 \ge \left[abc\prod (b+c)\right]^2\iff$](http://latex.artofproblemsolving.com/0/8/d/08df06d35201489d8513fa24ea06235af6ee1f64.png)

An easy extension. Prove that



Proof.

P12. Prove that in any triangle


Proof. I"ll use the well-known inequality















Otherwise. Prove easily that













![$\blacktriangleright\ \sum \left[a(\cos B+\cos C)\right]\ge\frac {2r}R\cdot\sum\sqrt {\frac {a^3}{b+c-a}}\iff$](http://latex.artofproblemsolving.com/9/d/c/9dc559b6b321b4737525a674a43e9d621d49e1bb.png)


Remark.







![$[(\underline{b+c-a})+\underline a]^2\ge 4\underline a(\underline {b+c-a})$](http://latex.artofproblemsolving.com/3/b/e/3be16d2c271b60db84ab31a81e4c1004f252a9da.png)


P13. Let


Proof.



P14. Ascertain



Proof. Rewriting the equation as



So,


![$m\in\left[0,\frac{1}{\sqrt{2}}\right]$](http://latex.artofproblemsolving.com/9/7/f/97f20b06005f43a632d3d3e18b307344d7bea217.png)
P15. Prove that the inequality

Proof.


![$ \frac {1}{16S^2}\cdot\frac 13\cdot\left[\sum\left(b^2 + c^2 - a^2\right)\right]^2 = \left(\frac {a^2 + b^2 + c^2}{4S\sqrt 3}\right)^2\ge 1$](http://latex.artofproblemsolving.com/d/3/2/d32aa98a7fa97a9655d8fc6ceb57f1ab24f43baf.png)
P16. Prove that



Proof.




![$\left[\frac {(a+b)+(c+d)}2\right]^2\cdot \frac {\sum a}4=$](http://latex.artofproblemsolving.com/4/7/c/47c5ecca8cece6ac8cb403db74a0ec82f554fe6d.png)







P17. Sa se arate ca intr-un triunghi



Proof.






Folosim





















![$\left(b^2+c^2\right)\left[a^2-(b-c)^2\right]\le 2a^2bc$](http://latex.artofproblemsolving.com/7/b/7/7b713bbdcc01db7cee4ef488dcc06ad5caa4a469.png)

![$a^2\left[\left(b^2+c^2\right)-2bc\right]\le\left(b^2+c^2\right)(b-c)^2$](http://latex.artofproblemsolving.com/6/1/f/61feb45586797476f75d95fdea44e8dddd9b366a.png)





P18.Aratati ca in orice triunghi avem


Demonstratie 1. In triunghiul

Demonstratie 2.





P19. Sa se arate ca

Demonstratie.









































P20. Aratati ca in orice


Demonstratie 1.




Demonstratie 2. Vom demonstra fara a folosi identitatea







Consecinta. Sa se arate ca in orice



P21. Sa se arate ca daca

![$2[p^2-R(R-2r)]\ \le\boxed{\sum\frac {a(a^2+2bc)}{b+c}\ \le\ \frac {4(R+r)^2(2R-r)}{R}\ \le\ 9R(2R-r)}\ .$](http://latex.artofproblemsolving.com/8/e/8/8e8ae8b9f11edcbf2126678eb6e73da3ed1c27e6.png)
Proof. Prima inegalitate este adevarata in orice



![$\sum\ \frac{a[(b+c)^2-2bc\cos A]}{b+c}=$](http://latex.artofproblemsolving.com/6/7/5/675d081ccf27cf3a2af1180b16291aefad0fd2b1.png)


In continuare vom demonstra inegalitatea (valabila in triunghi ascutitunghic !)













P22. Sa se arate ca in



Demonstratie. Vom folosi relatia metrica remarcabila
![$\boxed{H\Gamma^2=4R^2\left[1-\frac{2s^2(2R-r)}{R(4R+r)^2}\right]\ge 0}\ (**)\ ,$](http://latex.artofproblemsolving.com/d/2/d/d2d4b67eb833aad72ea15c638a9da3112ffa1411.png)



rezulta usor



![$4Rr\cdot \left[\frac {r(4R+r)}{sr^2}+\frac {s^2+r(4R+r)}{4Rrs}\right]=$](http://latex.artofproblemsolving.com/c/b/3/cb3bf87fc4035103f5fced0c7345a07dcd37ce4c.png)






^2\iff$](http://latex.artofproblemsolving.com/4/7/d/47d549273abe981032368e5a4d136eb5761667d6.png)





Observatie. Vom dovedi relatia remarcabila




















Leibniz








![$H\Gamma^2=4R^2-\frac{4s^2}{(4R+r)^2}\cdot[(4R+r)(R-r)+r(R+r)]=$](http://latex.artofproblemsolving.com/e/2/7/e275948075ae34e03b1db91fa91c1a957b0f19a5.png)


![$H\Gamma^2=4R^2\left[1-\frac{2s^2(2R-r)}{R(4R+r)^2}\right]\ .$](http://latex.artofproblemsolving.com/f/5/6/f56935bcbe7dcd3ae4caea7287053ebaa7f73b14.png)
P23. Let











Proof. I"ll prove

















P24. Fie





Proof.



![$\boxed{\ \{a,b,c,d\}\subset [1,4]\ }\ .$](http://latex.artofproblemsolving.com/5/f/e/5feea9c9590b47eca825f78d29277c23baefc0ce.png)
Apply the P. Schweitzer's inequality
![$\boxed{x_k\in [a,b]\ ,\ k\in\overline {1,n}\implies n^2\le \sum x_k\cdot\sum\frac {1}{x_k}\le \frac {(a+b)^2}{4ab}\cdot n^2}$](http://latex.artofproblemsolving.com/5/b/1/5b1953acfb36fd59adc3ee41357a236461833de5.png)
![$\sum \frac 1a\in \left[\frac 85,\frac 52 \right]\ .$](http://latex.artofproblemsolving.com/2/b/0/2b0e1dd745da79e50c50ae538fc03fe8bd4d4bed.png)
P25. Sa se arte ca in orice triunghi



Demonstratie. Se folosesc cunoscutele identitati geometrice



Intr-adevar,





P26. Let



Proof.






Our inequality is equivalent with



that









![$\{a,b\}\subset\left[0,\frac{\pi}4\right]\iff$](http://latex.artofproblemsolving.com/3/b/7/3b733ec202547c7e1ca1cf9b5712d150f1ba5e0b.png)








P27. Let



Proof.








We have equality, i.e.





















In conclusion,

Application. Let





![$[MNP]\le \frac S4\ ,$](http://latex.artofproblemsolving.com/e/f/1/ef16ce173346bc54d44009227a7e17c5eacc0cd7.png)
![$S=[ABC]\ .$](http://latex.artofproblemsolving.com/4/4/2/4425fc906cee3e28fbf07d7426f8e85fef08bc4c.png)
Proof. Denote
















![$\frac {[MNP]}{[ABC]} =$](http://latex.artofproblemsolving.com/f/0/1/f010545e08eaae43818d829593645f9b2d2bfc46.png)
![$1-\frac {[PAN]}{[BAC]}-\frac {[MBP]}{[CBA]}-\frac {[NCM]}{[ACB]}=$](http://latex.artofproblemsolving.com/1/1/8/1183df5b5ca8436075a704957fa105db9e039618.png)


![$[MNP]\le\frac S4\ .$](http://latex.artofproblemsolving.com/1/1/6/116f74eafc62d37c102fd16cb9d4e545fe970f99.png)
P28 (own).


Proof (Constantin MATEESCU). The solution has been inspired from one of the problems in Virgil's book on Planar Geometry (este singura carte pe care o port cu mine oriunde!

is a different way to derive this amazing inequality which features a very special equality case! Firstly, we need to recall that the distance between two points


coordinates w.r.t.



![$:\ \boxed{ {PP^{\prime}}^2 = - \left[(\beta - \beta^{\prime}) (\gamma - \gamma^{\prime}) a^2 + (\gamma - \gamma^{\prime}) (\alpha - \alpha^{\prime}) b^2 + (\alpha - \alpha^{\prime}) (\beta - \beta^{\prime}) c^2\right] }\ .$](http://latex.artofproblemsolving.com/9/5/5/9557e21c31c5c31fdfa3e36b8b0072331cd6f883.png)
Consequence. For





and let











![$\frac {a^3 + b^3 + c^3}{ab + bc + ca} \le \sum \frac {-\left[\beta\gamma a^2 + \gamma\left(\alpha - 1\right) b^2 + \left(\alpha - 1\right)\beta c^2\right]}a\iff $](http://latex.artofproblemsolving.com/f/8/7/f8718495e9783e6686af93f0453459b8d0ef2fcf.png)

The equality is attained




P29 (Nguyen Viet Hung, Vietnam) <= click.
Proof 1 (with barycentric coordinates).




![$\frac {[GIK]}{[ABC]}=\left|\begin{array}{ccc}
\frac 13 & \frac 13 & \frac 13\\\\
\frac {a}{\sum a} & \frac {b}{\sum a} & \frac {c}{\sum a}\\\\
\frac {a^2}{\sum a^2} & \frac {b^2}{\sum a^2} & \frac {c^2}{\sum a^2}\end{array}\right|=$](http://latex.artofproblemsolving.com/c/2/8/c281c8bd86d3f1cf1c89afa0c5f7cafbdd06177a.png)



![$\boxed{\ \frac {[GIK]}{[ABC]}=\frac {|(c-a)(c-b)(b-a)|}{3(a+b+c)\left(a^2+b^2+c^2\right)}\ }\ .$](http://latex.artofproblemsolving.com/a/b/b/abbd533aecc62a541b1703e6e2d3e517d1a4689d.png)
This post has been edited 62 times. Last edited by Virgil Nicula, Jan 21, 2018, 2:14 PM