457. Relatii metrice si inegalitati geometrice.

by Virgil Nicula, Aug 19, 2017, 11:10 AM

P5 (Miguel Ochoa Sanchez). Prove that for any $\triangle ABC$ there is the chain of the inequalities $:\ \boxed{4\left(R^2-r^2\right)\le HA^2+HB^2+HC^2\le 12(R-r)^2}$ (standard notations).

Proof 1 (metric). Denote the midpoint $M$ of the side $[BC]$ and the diameter $[AS]$ of the circumcircle $w=\mathbb C(O,R).$ Apply the theorem of median in the triangles

$\left\{\begin{array}{cccc}
\triangle BHC\ : & 2\left(HB^2+HC^2\right) & = & HS^2+BC^2\\\\
\triangle HAC\ : & 4AM^2+HS^2 & = & 2\left(HA^2+AS^2\right)\end{array}\right\|\bigoplus\implies$ $2\left(HB^2+HC^2-HA^2\right)+4m_a^2-a^2=$ $8R^2\iff$ $HB^2+HC^2-HA^2+$ $b^2+c^2-a^2=$ $4R^2$

$\iff$ $\sum HA^2+\sum a^2=12R^2\iff$ $\boxed{\sum HA^2=12R^2-2\left(s^2-r^2-4Rr\right)}\ (1).$ I"ll prove that the required bilateral inequality is equivalently with the Gerretsen's inequality:

$\boxed{16Rr-5r^2\le s^2\le 4R^2+4Rr+3r^2}\ (*).$ Indeed: $4\left(R^2-r^2\right)\le \sum HA^2\le 12(R-r)^2\ \stackrel{1}{\iff}\ 4\left(R^2-r^2\right)\le 12R^2-2\left(s^2-r^2-4Rr\right)\le 12(R-r)^2\iff$

$2\left(R^2-r^2\right)\le 6R^2-s^2+r^2+4Rr\le 6(R-r)^2\iff$ $6R^2+r^2+4Rr-6(R-r)^2\le s^2\le 6R^2+r^2+4Rr-2\left(R^2-r^2\right)\iff$ the bilateral inequality $(*)\ .$

Proof 2 (trigonometric). I"ll use the wellknown identity $HA=2R|\cos A|$ a.s.o. Thus $\sum HA^2=4R^2\cdot \sum\cos ^2A=$ $4R^2\cdot\sum\left(1-\sin^2A\right)=$ $12R^2-\sum a^2=$

$12R^2-2\left(s^2-r^2-4Rr\right)\implies$ $\sum HA^2=12R^2-2\left(s^2-r^2-4Rr\right)$ i.e. the relation $(1)$ a.s.o.

Proof 3 (metric). Denote the diameter $[AN]$ of the circumcircle $w=\mathbb C(O,R).$ Prove easily that $AHCN$ is a parallelogram, i.e. $HA=NC$ and $NC^2+BC^2=BN^2\implies$

$\boxed{HA^2+a^2=4R^2}$ a.s.o. In conclusion, $\boxed{\sum HA^2+\sum a^2=12R^2}\ (2)\implies \sum HA^2=12R^2-2\left(s^2-r^2-4Rr\right)$ i.e. the relation $(1)$ a.s.o.

Proof 4 (metric). Apply the remarkable identity $\sum XA^2=3\cdot XG^2-3\mathrm p_{w}(G)$ for the centroid $H\ :\ \sum HA^2=3\cdot HG^2+\frac 13\cdot\sum a^2=$ $3\cdot \left(2\cdot OG\right)^2+\frac 13\cdot \sum a^2=$

$12\cdot OG^2+\frac 13\cdot\sum a^2=$ $12\cdot \left(R^2-\frac 19\cdot\sum a^2\right)+\frac 13\cdot \sum a^2=$ $12R^2-\sum a^2\implies$ $\sum HA^2+\sum a^2=12R^2,$ i.e. the relation $(2)$ a.s.o.



P6. Prove that for any $\triangle ABC$ there is the Petrovic's inequality $:\ \boxed{\frac{\sqrt 3}R\le \frac 1a+\frac 1b+\frac 1c\le \frac {\sqrt 3}{2r}}$ , i.e. $\boxed{\frac 1{h_a}+\frac 1{h_b}+\frac 1{h_c}\ge \frac 2{\sqrt 3}\cdot \left(\frac 1a+\frac 1b+\frac 1c\right)}\ (*)$ (standard notations).

Proof. Observe that $\sum\frac 1{h_a}=\sum\frac {a}{ah_a}=\frac sS=\frac 1r$ . Thus, the relation $(*)$ is true $\iff$ the Petrovic's relation is true $\iff$ $\sum\frac {h_a}{2S}\le \frac {\sqrt 3}{2r}\iff$ $\boxed{h_a+h_b+h_c\le s\sqrt 3}\ (1)$ $\iff$

$\boxed{\frac {ab+bc+ca}{a+b+c}\le R\sqrt 3}\ (2)$ . I used the well-known identity $bc=2Rh_a$ . Since $\frac {ab+bc+ca}{a+b+c}\le$ $ \frac {a+b+c}3\le $ $\frac {2s}3\le R\sqrt 3$ get easily the relation $(2)$ , i.e. the required inequality $(*)$ .

Here is a proof of the (left) inequality $\frac {\sqrt 3}{R}\le\frac 1a+\frac 1b+\frac 1c$ . Indeed, with remarkable relations $\left\{\begin{array}{ccc}
\frac sr & \ge & 3\sqrt 3\\\\
\frac {4R+r}s & \ge & \sqrt 3\end{array}\right\|$ get $\sum\frac 1a=\frac {ab+bc+ca}{abc}=\frac {s^2+r^2+4Rr}{4Rsr}=$

$\frac 1s+\frac 1{4R}\cdot\left(\frac sr+\frac rs\right)\ge$ $\frac 1s+\frac 1{4R}\left(3\sqrt 3+\frac rs\right)=$ $\frac {3\sqrt 3}{4R}+\frac 1s\left(1+\frac r{4R}\right)=$ $\frac {3\sqrt 3}{4R}+\frac {4R+r}s\cdot \frac 1{4R}\ge$ $\frac {3\sqrt 3}{4R}+\frac {\sqrt 3}{4R}=\frac {\sqrt 3}R$ . In conclusion, $\boxed{\frac {\sqrt 3}{R}\le\frac 1a+\frac 1b+\frac 1c\le\frac {\sqrt 3}{2r}}\ .$



P7. Prove that in any triangle $ABC$ there is the inequality $\boxed{\frac {a+b+c}{2R-r}\le \frac {a}{r_a}+\frac {b}{r_b}+\frac {c}{r_c}\le \frac {a+b+c}{3r}}$ .

Proof.

Proof. Is well-known that $ar_a+br_b+cr_c=2s(2R-r)$ , where $a+b+c=2s$ . Apply the CBS inequality $\sum\frac{a}{r_a}=\sum \frac {a^2}{ar_a}\ge$

$\frac{(a+b+c)^2}{ar_a+br_b+cr_c}=\frac{4s^2}{2s(2R-r)}=\frac {2s}{2R-r}\implies$ $\frac {a+b+c}{2R-r}\le \frac {a}{r_a}+\frac {b}{r_b}+\frac {c}{r_c}$ . Observe that $a\le b\le c\iff$ $\frac 1{r_a}\ge\frac 1{r_b}\ge\frac 1{r_c}$ .

Hence can apply the Chebyshev's inequality $:\ \sum\frac a{r_a}=\sum\left( a\cdot\frac 1{r_a}\right)\le \frac 13\cdot\sum a\cdot\sum\frac 1{r_a}=\frac {2s}{3r}\implies$ $\frac {a}{r_a}+\frac {b}{r_b}+\frac {c}{r_c}\le \frac {a+b+c}{3r}$ .

Remark. $\left(r_a+r_b+r_c\right)^2\ge 3\left(r_ar_b+r_br_c+r_cr_a\right)\iff$ $(4R+r)^2\ge 3s^2\iff$ $\boxed{s\sqrt 3\le 4R+r}\ (*)$ . Thus, $\boxed{9r\le s\sqrt 3\le 4R+r\le \frac {9R}2}$ .



P8. Prove that in any triangle $ABC$ there is the inequality $\boxed{\frac {a}{b+c-a}+\frac {b}{a-b+c}+\frac {c}{a+b-c}\ge 3}$ .

Proof 1. Denote $\left\{\begin{array}{c}
s-a=x>0\\\\
s-b=y>0\\\\
s-c=z>0\end{array}\right\|$ , where $2s=a+b+c$ . Thus, our inequality becomes $\sum\frac {y+z}{x}\ge 6\iff$ $\left(\frac xy+\frac yx\right)+\left(\frac yz+\frac zy\right)+\left(\frac zx+\frac xz\right)\ge 6$ , what is truly.

Proof 2. $\sum\frac a{b+c-a}=$ $\sum\frac {a^2}{a(b+c-a)}\ \stackrel{(CBS)}{\ge}\ \frac {(a+b+c)^2}{\sum [a(b+c-a)]}=$ $\frac {(a+b+c)^2}{ab+bc+ca}\ge 3$ because $(a+b+c)^2\ge 3(ab+bc+ca)$ is well-known.

Remark. $\sum\frac a{b+c-a}=$ $\sum\frac {a^2}{a(b+c-a)}\ \stackrel{(CBS)}{\ge}\ \frac {(a+b+c)^2}{\sum [a(b+c-a)]}=$ $\frac {(a+b+c)^2}{ab+bc+ca}=$ $\frac {4s^2}{s^2+r(4R+r)}=$ $4-\frac {4r(4R+r)}{s^2+r(4R+r)}\ge$

$4-\frac {4r(4R+r)}{(16Rr-5r^2)+r(4R+r)}=$ $4-\frac {4r(4R+r)}{20Rr-4r^2}=$ $4-\frac {4R+r}{5R-r}=$ $\frac {16R-5r}{5R-r}=$ $3+\frac {R-2r}{5R-r}\ge 3$ because $R\ge 2r$ .

I used the well-known inequality $s^2+5r^2\ge 16Rr$ . In conclusion, we obtained the stronger inequality $\boxed{\sum\frac a{b+c-a}\ge \frac {16R-5r}{5R-r}}\ge 3$ .



P9. Prove that in any triangle $ABC$ there is the inequality $\boxed{4(a+b+c)\le\frac {(b+c)^2}{-a+b+c}+\frac {(c+a)^2}{a-b+c}+\frac {(a+b)^2}{a+b-c}\le \frac {4abc(a+b+c)}{(-a+b+c)(a-b+c)(a+b-c)}}$ .

Proof. $\sum\frac {(b+c)^2}{-a+b+c}\ \stackrel{(CBS)}{\ge}\  \frac {\left[\sum (b+c)\right]^2}{\sum (-a+b+c)}=$ $\frac {4(a+b+c)^2}{a+b+c}\implies$ $\boxed{\sum\frac {(b+c)^2}{-a+b+c}\ge 4(a+b+c)}\ (1)$ . Denote $\left\{\begin{array}{c}
s-a=x>0\\\\
s-b=y>0\\\\
s-c=z>0\end{array}\right\|\implies$ $\left\{\begin{array}{c}
a=y+z\\\\
b=z+x\\\\
c=x+y\end{array}\right\|$ .

Thus, $\sum\frac {(b+c)^2}{-a+b+c}=\sum\frac {(y+z+2x)^2}{2x}=$ $\sum\left[2x+2(y+z)+\frac {(y+z)^2}{2x}\right]\implies$ $\sum\frac {(b+c)^2}{-a+b+c}=6(x+y+z)+\frac w2$ , where $\boxed{w=\sum\frac {(y+z)^2}x}$ a.s.o.

Otherwise. $\sum {\frac{(a+b)^2}{a+b-c}}=$ $\sum {\frac{16R^2\cos^2\frac{C}{2}\cos^2\frac{A-B}{2}}{8R\cos\frac{C}{2}\sin\frac{A}{2}\sin\frac{B}{2}}}\le$ $\sum \frac{2R\cos\frac{C}{2}}{\sin\frac{A}{2}\sin\frac{B}{2}}=$ $\frac{2R\sum {\sin\frac{A}{2}\cos\frac{A}{2}}}{\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}}=$ $\frac{R(\sin A+\sin B+\sin C)}{\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}}=$ $\frac{2R(a+b+c)}{r}=$ $\frac {4Rs}{r}=$

$\frac {4Rsr}{r^2}=\frac {abc}{r^2}=$ $\frac {4abc(a+b+c)}{8sr^2}\implies$ $\boxed{\sum {\frac{(b+c)^2}{-a+b+c}}\le\frac {4abc(a+b+c)}{(-a+b+c)(a-b+c)(a+b-c)}}\ (2)$ because $\left\{\begin{array}{ccc}
\cos^2\frac{A-B}2 & \le & 1\\\\
\sin A+\sin B+\sin C & = & \frac sR\\\\
\sin\frac A2\sin\frac B2\sin\frac C2 & = & \frac r{4R}\end{array}\right\|$ .



P10. Prove that $\{x,y,z\}\subset\mathbb R^*_+\implies $ $7xyz+3\sqrt {\left(x^2+y^2+z^2\right)\left(x^4+y^4+z^4\right)}\ge 2(x+y)(y+z)(z+x)$.

Proof. I"ll use the well-known identity $(x+y+z)^3=(x^3+y^3+z^3)+3(x+y)(y+z)(z+x)$ . Our inequality is equivalently with

$ 21xyz+9\sqrt{(\sum_{cyc}x^2)\cdot(\sum_{cyc}x^4)}\geq 2(x+y+z)^3-2(x^3+y^3+z^3)$. From the Cauchy-Buniakowski-Schwarz's inequality obtain that $21xyz+9\sqrt{(\sum_{cyc}x^2)(\sum_{cyc}x^4)}\geq$

$21xyz+9(x^3+y^3+z^3)\geq $ $2(x+y+z)^3-2(x^3+y^3+z^3)\Leftrightarrow $ $21xyz+11(x^3+y^3+z^3)\geq $ $2(x+y+z)^3=$ $2(x^3+y^3+z^3)+6\sum_{cyc}ab(a+b)+12xyz\Leftrightarrow $

$9xyz+9(x^3+y^3+z^3)\geq $ $6\sum_{cyc}ab(a+b)\Leftrightarrow $ $(3xyz+x^3+y^3+z^3)+ 2(x^3+y^3+z^3)\geq $ $2\sum_{cyc}ab(a+b)$ . From the Schur's inequality for $r=1$ obtain that

$3xyz+x^3+y^3+z^3\geq\sum_{cyc}ab(a+b)\Leftrightarrow \sum_{cyc}a(a-b)(a-c)\geq 0$. Remain to prove $2(x^3+y^3+z^3)\ge$ $\sum_{cyc}ab(a+b)$ what results from $a^3+b^3\geq ab(a+b), (\forall) a,b\in\mathbb{R^*_{+}}$



P11. Prove that $\{a,b,c\}\subset\mathbb R_+^*\ \Longrightarrow\ \left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge abc(a+b)(b+c)(c+a)$ and $\left(a^2+c^2\right)\left(b^2+c^2\right)\geq  c(a+b)(ab+c^2)$ .

Proof 1. . $\left\|\ \begin{array}{c}
 a^4+b^2c^2\ge 2a^2bc\\\\
a^2\left(b^2+c^2\right)=a^2\left(b^2+c^2\right)\end{array}\ \right\|\ \bigoplus\ \Longrightarrow\ \left(a^2+b^2\right)\left(a^2+c^2\right)\ge$ $ a^2(b+c)^2 \implies$ $\left\|\ \begin{array}{c}
 \left(a^2+b^2\right)\left(a^2+c^2\right)\ge a^2(b+c)^2\\\\
 \left(b^2+c^2\right)\left(b^2+a^2\right)\ge b^2(c+a)^2\\\\
 \left(c^2+a^2\right)\left(c^2+b^2\right)\ge c^2(a+b)^2\end{array}\ \right\|\ \bigodot\ \Longrightarrow$

$\prod\left(b^2+c^2\right)\ge$ $ abc\prod (b+c)$ . See
aici $\left\|\begin{array}{c}
 (a\cdot c+c\cdot b)^2\le \left(a^2+c^2\right)\left(c^2+b^2\right)\\\\
 (a\cdot b+c\cdot c)^2\le \left(a^2+c^2\right)\left(b^2+c^2\right)\end{array}\right\|\bigodot\Longrightarrow$ $\left|c(a+b)\left(ab+c^2\right)\right|\le \left(a^2+c^2\right)\left(b^2+c^2\right)$ .

Since $x\le |x|$ obtain that $c(a+b)\left(ab+c^2\right)\le $ $\left(a^2+c^2\right)\left(b^2+c^2\right)$ with the equality $a=b=c$ .

Proof 2. $\left\{\begin{array}{ccc}
2(a^2+b^2) \geq (a+b)^2 & ; & a^2+b^2 \geq 2ab\\\\
2(b^2+c^2) \geq (b+c)^2 & ; & b^2+c^2 \geq 2bc\\\\
2(c^2+a^2) \geq (c+a)^2 & ; & c^2+a^2 \geq 2ca\end{array}\right\|\bigodot\implies$ $ \left[\prod\left(b^2+c^2\right)\right]^2 \ge \left[abc\prod (b+c)\right]^2\iff$ $\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right) \geq  abc(a+b)(b+c)(c+a)$ .


An easy extension. Prove that $\{m,n,p,a,b,c\}\subset\left[0,\infty\right)\Longrightarrow$ $\prod\left(b^2+c^2+mbc\right)\ge$ $abc\prod\left(b+c+\sqrt {npbc}\right)$ .

Proof. $\boxed{\left\{\begin{array}{ccc}
\left(a^2+b^2+pab\right)\left(c^2+a^2+nca\right)\ge \left(ac+ba+a\sqrt{pncb}\right)^2=a^2\left(c+b+pn\sqrt{cb}\right)^2\\\\
\left(b^2+c^2+mbc\right)\left(a^2+b^2+pab\right)\ge \left(ba+cb+b\sqrt{mpac}\right)^2=b^2\left(a+c+mp\sqrt{ac}\right)^2\\\\
\left(c^2+a^2+nca\right)\left(b^2+c^2+nbc\right)\ge \left(cb+ac+c\sqrt{nmba}\right)^2=c^2\left(b+a+nm\sqrt{ba}\right)^2\end{array}\right\|\bigodot\implies\prod\left(b^2+c^2+mbc\right)\ge\ abc\prod\left(b+c+\sqrt {npbc}\right)}$


P12. Prove that in any triangle $ABC$ there are the inequalities $\left\{\begin{array}{ccc}
\sum\sqrt{\frac a{b+c-a}} & \le &  1+\frac Rr\\\\
\sum\sqrt{\frac {a^3}{b+c-a}} & \le &  \frac {Rs}r\end{array}\right\|$ .

Proof. I"ll use the well-known inequality $\boxed{\cos\frac {B-C}2\ge \sqrt{\frac {2r}R}}\ \odot 2\cos\frac {B+C}2=2\sin\frac A2\ \iff$ $2\cos\frac {B+C}2\cos\frac {B-C}2\ge 2\sin\frac A2\cdot \sqrt{\frac {2r}R}\iff$

$\cos B+\cos C\ge\sqrt {\frac {2r}R\cdot 4\sin^2\frac A2}=$ $\sqrt {\frac {2r}R\cdot \frac {4(s-b)(s-c)}{bc}}=$ $\sqrt {\frac {2r}R\cdot\frac {4(s-b)(s-c)}{bc}\cdot \frac {a(s-a)}{a(s-a)}}=$ $\sqrt {\frac {2r}R\cdot\frac {4sr^2}{4Rsr}\cdot \frac a{s-a}}=$ $\frac rR\sqrt{\frac {2a}{s-a}}=$ $\frac {2r}R\sqrt{\frac {a}{b+c-a}}\iff$

$\boxed{\cos B+\cos C\ge \frac {2r}R\sqrt{\frac {a}{b+c-a}}}\ (*)$ $\ \implies\ \sum \sqrt{\frac {a}{b+c-a}}\le $ $\frac R{2r}\cdot \sum (\cos B+\cos C)=$ $\frac Rr\cdot \sum \cos A=$ $\frac Rr\cdot \left(1+\frac rR\right)=$ $1+\frac Rr\iff$ $\boxed{\sum \sqrt{\frac {a}{b+c-a}}\le 1+\frac Rr}$.

Otherwise. Prove easily that $\boxed{\sum (s-b)(s-c)=r(4R+r)}\ (1)$ and $\boxed{\sum a(s-b)(s-c)=2sr(2R-r)}\ (2)$. Therefore,

$\sum (b+c)(s-b)(s-c)=$ $2s\sum (s-b)(s-c)-\sum a(s-b)(s-c)\ \stackrel{(1\wedge 2)}{\implies}\ 2sr(4R+r)$ $-2sr(2R-r)=4sr(R+r)=$

$\boxed{\sum (b+c)(s-b)(s-c)=4sr(R+r)}\ (3)$. In conclusion, $\sqrt {s(b+c-a)}\le \frac {a+(b+c-a)}2=\frac {b+c}2\implies$ $\sqrt{\frac a{b+c-a}}=\frac {\sqrt{a(b+c-a)}} {b+c-a}\le \frac {b+c}{2(b+c-a)}\implies$

$\sum\sqrt{\frac a{b+c-a}}\le\sum \frac {b+c}{2(b+c-a)}=$ $\frac 14\sum\frac {b+c}{s-a}=$ $\frac 14\sum\frac {(b+c)(s-b)(s-c)}{(s-a)(s-b)(s-c)}\ \stackrel{(3)}{=}\ \sum\frac {4sr(R+r)}{4sr^2}=$ $\sum\frac {R+r}r\implies$ $\boxed{\sum\sqrt{\frac a{b+c-a}}\le 1+\frac Rr}$.

$\blacktriangleright\ \sum \left[a(\cos B+\cos C)\right]\ge\frac {2r}R\cdot\sum\sqrt {\frac {a^3}{b+c-a}}\iff$ $a+b+c\ge\frac {2r}R\cdot\sum\sqrt {\frac {a^3}{b+c-a}}\iff$ $\boxed{\sum\sqrt{\frac {a^3}{b+c-a}}\le \frac {Rs}r}$ .

Remark. $\boxed{\cos\frac {B-C}2\ge \sqrt{\frac {2r}R}}\ \odot 2\sin\frac {B+C}2=2\cos\frac A2\ \iff$ $2\sin\frac {B+C}2\cos\frac {B-C}2\ge 2\cos\frac A2\cdot \sqrt{\frac {2r}R}\iff$ $\sin B+\sin C\ge\sqrt {\frac {2r}R\cdot4\cos^2\frac A2}\iff$

$\frac {b+c}{2R}\ge \sqrt{\frac {2r}R\cdot\frac {4s(s-a)}{bc}}\iff$ $bc(b+c)^2\ge 32Rsr(s-a)\iff$ $bc(b+c)^2\ge8abc(s-a)\iff$ $(b+c)^2\ge 4a(b+c-a)\iff$

$[(\underline{b+c-a})+\underline a]^2\ge 4\underline a(\underline {b+c-a})$, what is truly. Have equality iff $b+c-a=a$, i.e. $\boxed{b+c=2a}$.
See here


P13. Let $\{a,b,c,x,y,z\}\subset\mathbb R^*_+$ . Prove that $\frac x{ay+bz}+\frac y{az+bx}+ \frac z{ax+by}\ge \frac 3{a+b}$ .

Proof. $\frac {x^2}{axy+bzx}+\frac {y^2}{ayz+bxy}+\frac {z^2}{azx+byz}\ \stackrel{(C.B.S)}{\geq}\ \frac{(x+y+z)^2}{(a+b)(xy+yz+zx)}$ $\ge\frac3{a+b}\ ,$ which results from the well-known inequality $ (x+y+z)^2 \geq 3(xy+yz+zx)$ .


P14. Ascertain $m\in\mathbb R$ so that the equation $\sin 2x=m(\sin x+\cos x)$ has at least a zero in $\left(0,\frac {\pi}2\right)$ .

Proof. Rewriting the equation as $\frac{2}{m}=\frac{1}{\sin x}+\frac{1}{\cos x} \geq \frac{4}{\sin x+\cos x} \geq \frac{4}{\sqrt{2}}$ . So, $m \leq \frac{1}{\sqrt{2}}$ . Also, $\frac{1}{m}=\frac{1}{2}\left(\frac{1}{\sin x}+\frac{1}{\cos x}\right) \leq \sqrt{\frac{1}{2\sin^2x\cos^2x}}= \frac{\sqrt{2}}{\sin 2x}$ .

So, $m \geq 0$ (Its also obvious from the original equation itself). Also, we get solutions (easy to check) at both the boundary values of $m$ . So, $m\in\left[0,\frac{1}{\sqrt{2}}\right]$ .



P15. Prove that the inequality $ \boxed {\ \frac {\cos^2A}{a^2} + \frac {\cos^2B}{b^2} + \frac {\cos^2C}{c^2}\ \ge\ \frac {1}{4R^2}\cdot \left(\frac {a^2 + b^2 + c^2}{4S\sqrt 3}\right)^2\ }\ \ge\ \frac {1}{4R^2}$ .

Proof. $ 4R^2\cdot\sum \frac {\cos^2A}{a^2} =$ $ \sum\cot^2A = \sum\left(\frac {b^2 + c^2 - a^2}{4S}\right)^2\ge$ $ \frac {1}{16S^2}\cdot\frac 13\cdot\left[\sum\left(b^2 + c^2 - a^2\right)\right]^2 = \left(\frac {a^2 + b^2 + c^2}{4S\sqrt 3}\right)^2\ge 1$ .


P16. Prove that $\{a,b,c,d\}\subset \mathbb R^*_+$ and $abc+abd+acd+bcd=4\implies$ $\left\{\begin{array}{ccc}
a+b+c+d & \ge & 4\\\\
a^2+b^2+c^2+d^2 & \ge & 4\end{array}\right\|\ .$

Proof. $4=abc+abd+acd+bcd=$ $ab(c+d)+cd(a+b)\le$ $ \left(\frac {a+b}2\right)^2\cdot (c+d)+\left(\frac {c+d}2\right)^2\cdot (a+b)=$ $(a+b)(c+d)\cdot \frac {\sum a}4\le$ $\left[\frac {(a+b)+(c+d)}2\right]^2\cdot \frac {\sum a}4=$

$\frac {(\sum a)^3}{16}\le$ $\frac {\left(2\sqrt{a^2+b^2+c^2+d^2}\right)^3}{16}=\frac 12\cdot \left(\sum a^2\right)^{\frac 32}$ $\implies$ $8\le \left(\sum a^2\right)^{\frac 32}\implies$ $8^{\frac 23}\le \sum a^2\implies 4\le  a^2+b^2+c^2+d^2\ .$ Remark. $4\le \frac {(\sum a)^3}{16}\implies$ $\boxed{\sum a\ge 4}\ .$



P17. Sa se arate ca intr-un triunghi $ABC$ exista echivalenta $:$

$\boxed{\ \cos\ (B-C)\ \le\ \frac {2bc}{b^2+c^2}\ \le\ 1\ \Longleftrightarrow\  A\ \le\ 90^{\circ}\ \ \vee\ \ B=C\ \Longleftrightarrow\ \frac rR\ \le\ \frac {a(b+c-a)}{b^2+c^2}\ \le\ \frac 12\ \Longleftrightarrow\ \frac {2a(p-b)(p-c)}{p\left(b^2+c^2\right)}\ \le\ \frac rR\ }$ (demonstratia aici).

Proof. $\boxed{\cos (B-C)\le \frac {2bc}{b^2+c^2}\ }\ .$ Adunam $1$ stanga/dreapta si folosim $1+\cos x=2\cos^2\frac x2$ $\Longleftrightarrow$ $\boxed{2\cos^2\frac {B-C}{2}\le \frac {(b+c)^2}{b^2+c^2}}\ .$ Inmultim cu $2\sin ^2\frac {B+C}{2}=2\cos^2\frac A2>0\ .$

Folosim $2\sin\frac {B+C}{2}\cos\frac {B-C}{2}=$ $\sin B+\sin C$ si $\cos^2\frac A2=\frac {p(p-a)}{bc}$ $\Longleftrightarrow$ $\boxed{(\sin B+\sin C)^2\le \frac {(b+c)^2}{b^2+c^2}\cdot\frac {2p(p-a)}{bc}}\ .$ Insa $\sin B=\frac {b}{2R}\ ,$ $\sin C=\frac {c}{2R}$ $\Longleftrightarrow$

$\boxed{bc\left(b^2+c^2\right)\le 4R^2\cdot 2p(p-a)}\ .$ Inmultim cu $r$ si folosim $4Rpr=abc$ $\Longleftrightarrow$ $\boxed{rbc\left(b^2+c^2\right)\le R\cdot abc\cdot 2p(p-a)}\ .$ Simplificam prin $bc>0$ si stim ca $2(p-a)=b+c-a$

$\Longleftrightarrow$ $\boxed{\frac rR\le\frac {a(b+c-a)}{b^2+c^2}}$ $\Longleftrightarrow$ $\frac {4(p-a)(p-b)(p-c)}{abc}\le \frac {2a(p-a)}{b^2+c^2}$ $\Longleftrightarrow\ 2\left(b^2+c^2\right)(p-b)(p-c)\le a^2bc$ $\Longleftrightarrow$ $\left(b^2+c^2\right)\left[a^2-(b-c)^2\right]\le 2a^2bc$ $\Longleftrightarrow$

$a^2\left[\left(b^2+c^2\right)-2bc\right]\le\left(b^2+c^2\right)(b-c)^2$ $\Longleftrightarrow$ $a^2(b-c)^2\le \left(b^2+c^2\right)(b-c)^2$ $\Longleftrightarrow$ $\boxed{B=C\ \ \vee\ \ A\ \le\ 90^{\circ}}$ deoarece $a^2\le b^2+c^2\Longleftrightarrow A\le 90^{\circ}\ .$


P18.Aratati ca in orice triunghi avem $OH \geq R|\sin(B-C)$ si $IH\ge\frac{b+c}{2p}\sqrt{4p(p-a)\left(\frac{bc}{(b+c)^2}-\frac{(p-b)(p-c)}{a^2}\right)}\ .$

Demonstratie 1. In triunghiul $AOH\ :\ \frac{AH}{|\sin (B-C)|}=\frac{R}{\sin AHO}\Longrightarrow OH=\frac{R|\sin (B-C)|}{\sin AHO}\ge R|\sin (B-C)|\ .$

Demonstratie 2. $OH\ \ge\ pr_{BC}OH=pr_{BC}OA=R\cdot \left|\cos\left(90^{\circ}-B+C\right)\right|=R\cdot \left|\sin (B-C)\right|\ .$ Procedam asemanator si pentru $IH\ :$

$IH\ \ge\ pr_{BC}IH=$ $pr_{BC}AI=\frac{b+c}{2p}\sqrt{b^2_a-h^2_a}\Longleftrightarrow $ $IH\ge\frac{b+c}{2p}\sqrt{4p(p-a)\left(\frac{bc}{(b+c)^2}-\frac{(p-b)(p-c)}{a^2}\right)}\ .$


P19. Sa se arate ca $:\ \boxed{\ \begin{array}{cc}
 A=60^{\circ}\ \Longleftrightarrow\ OI=2R\cdot\sin\frac {|B-C|}{4} & (1)\\\\

 OI=R\sqrt {\left(2\sin\frac A2-1\right)^2+8\sin\frac A2\sin^2\frac {B-C}4} & (2)\\\\
OI\ \ge\ 2R\cdot \sin\frac {|B-C|}{4}\sqrt {2\sin\frac A2} & (3)\end{array}\ }\ .$

Demonstratie.

$1\blacktriangleright$ $\boxed{\ \cos A+\cos B+\cos C=1+\frac rR\ }\ \wedge\ A=60^{\circ}\ \implies\ \cos B+\cos C=$ $\frac 12+\frac rR$ $\Longleftrightarrow$ $2\cos\frac{B+C}{2}\cdot\cos\frac {B-C}{2}=$ $\frac 12+\frac rR$ $\Longleftrightarrow$ $\cos\frac{B-C}{2}=\frac 12+\frac rR$ $\Longleftrightarrow$

$1-\cos\frac{B-C}{2}=$ $\frac 12-\frac rR\ \Longleftrightarrow$ $2sin^2\frac{B-C}{4}=\frac{R-2r}{2R}$ $\Longleftrightarrow$ $4R\sin^2\frac{B-C}{4}=R-2r$ $\Longleftrightarrow$ $4R^2\sin^2\frac{B-C}{4}=R^2-2Rr=OI^2$ $\Longleftrightarrow$ $\boxed{\ OI=2R\cdot\sin\frac{|B-C|}{4}\ }\ .$

$2\blacktriangleright$ Folosim $\cos A=1-2\sin^2\frac A2\ .$ Asadar, $\cos A+\cos B+\cos C=1+\frac rR\Longleftrightarrow$ $\cos B+\cos C=\frac rR+2\sin^2\frac A2$ $\Longleftrightarrow $ $2\cos\frac{B+C}2\cos\frac{B-C}2=$ $\frac rR+2\sin^2\frac A2$ $\Longleftrightarrow $

$2\sin\frac A2\cos\frac{B-C}{2}=\frac{r}{R}+2\sin^2\frac A2$ $\Longleftrightarrow $ $4R^2\sin\frac A2\left(1-2\sin^2\frac{B-C}4\right)=$ $2Rr+4R^2\sin^2\frac A2$ $\Longrightarrow $ $OI^2=R^2-2Rr=$ $R^2+4R^2\sin^2\frac A2-4R^2\sin\frac A2+$

$8R^2\sin\frac A2\sin^2\frac{B-C}{4}$ $\Longleftrightarrow $ $OI^2=R^2\left(2\sin^2\frac A2-1\right)^2+8R^2\sin\frac A2\sin^2\frac{B-C}{4}$ $\Longleftrightarrow OI=R\sqrt {\left(2\sin\frac A2-1\right)^2+8\sin\frac A2\sin^2\frac {B-C}{4}}\ .$

$3\blacktriangleright$ Inlocuind pe $OI$ si ridicand la patrat, inegalitatea de demonstrat devine $:\ \left(2\sin\frac A2-1\right)^2\ge 0\ ,$ ceea ce este adevarat. Egalitatea are loc daca si numai daca $A=60^{\circ}\ .$



P20. Aratati ca in orice $\triangle ABC$ are loc inegalitatea $:\ \sum \frac{a}{AI^2} \geq \frac{p}{2r^2}\ .$

Demonstratie 1. $\mathrm{LHS}=\frac{1}{4R}\sum \frac{\sin A}{\sin^2\frac{B}{2}\cdot\sin^2\frac{C}{2}}\ge\frac{1}{4R}\frac{\prod\cos\frac{A}{2}}{\prod\sin^2\frac{A}{2}}=\mathrm{RHS}\ .$ Asadar, $\sum \sin A\ge\sum \sin 2A\Longleftrightarrow$ $\prod \sin \frac{A}{2}\le \frac{1}{8}\ .$ Altfel. $\sum \frac{a}{AI^2}=\frac{p(R-r)}{r^2R}\geq \frac{p}{2r^2}\ .$

Demonstratie 2. Vom demonstra fara a folosi identitatea $\boxed{\ \sum a^2(p-b)(p-c)=4p^2r(R-r)\ }\ .$ Astfel, $IA^2=\frac {bc(p-a)}{p}$ $\Longrightarrow\sum\frac {a}{IA^2}=\sum\frac {ap}{bc(p-a)}=\frac {p}{abc}\sum\frac {a^2}{p-a}=$

$\frac {1}{4Rr}\sum\frac {a^2}{p-a}\ .$ Insa $\sum\frac {a^2}{p-a}\stackrel{C.B.S.}{\ \ \ge\ \ }\frac {\left(\sum a\right)^2}{\sum (p-a)}=4p\ .$ Asadar $\sum\frac {a}{IA^2}\ge \frac {p}{Rr}\ ,$ insa mai slaba decat cea propusa deoarece $\frac {p}{2r^2}\ge\frac {p}{Rr}\ .$

Consecinta. Sa se arate ca in orice $\triangle ABC$ exista relatia $\boxed{\ \max\left\{\ \frac {a}{p-a}\ ,\ \frac {b}{p-b}\ ,\ \frac {c}{p-c}\ \right\}\ \ge \ \frac Rr\ }\ .$ Indicatie "tare" $:\ \frac {a\cdot\frac {a}{p-a}+b\cdot\frac {b}{p-b}+c\cdot\frac {c}{p-c}}{a+b+c}\ \ge\ \frac {R}{r}\ .$



P21. Sa se arate ca daca $\triangle ABC$ este ascutitunghic atunci $2[p^2-R(R-2r)]\ \le\boxed{\sum\frac {a(a^2+2bc)}{b+c}\ \le\ \frac {4(R+r)^2(2R-r)}{R}\ \le\ 9R(2R-r)}\ .$

Proof. Prima inegalitate este adevarata in orice $\triangle ABC$ (demonstrate !). Revenim. Folosind teorema Cosinusului partea stanga a inegalitatii este echivalenta cu $:\ \sum\ \frac{a(a^2+2bc)}{b+c}=$

$\sum\ \frac{a(b^2+c^2-2bc\cos A+2bc)}{b+c}=$ $\sum\ \frac{a[(b+c)^2-2bc\cos A]}{b+c}=$ $\sum\ a(b+c)-2abc\sum\ \frac{\cos A}{b+c}\ .$ Asadar, $LHS\equiv 2(ab+bc+ca)-2abc\cdot \left(\sum \frac{\cos A}{b+c}\right)\ (\ast)\ .$

In continuare vom demonstra inegalitatea (valabila in triunghi ascutitunghic !) $:\ \boxed{\sum\ \frac{\cos A}{b+c}\ \ge\ \frac{(R+r)^2}{2R^2p}}\ .$ Intr-adevar, aplicand inegalitatea C.B.S. si folosind faptul ca

$\boxed{\sum\ \cos A=1+\frac rR}$ si $\boxed{a=b\cos C+c\cos B}$ obtinem $:\ \sum\ \frac{\cos A}{b+c}=$ $\sum\frac{\cos^2 A}{(b+c)\cos A}\ \stackrel{\mathrm{C.B.S}}{ge}\ \frac{\left(\sum\cos A\right)^2}{\sum\ (b\cos A+c\cos A)}=$ $\frac{\left(1+\frac rR\right)^2}{\sum\ (b\cos C+c\cos B)}=$ $\frac{\frac{(R+r)^2}{R^2}}{\sum\ a}=$

$\frac{(R+r)^2}{2R^2p}\ .$ Revenind in $\stackrel{(*)}{\iff}\ LHS\le 2(ab+bc+ca)-8Rrp\ \cdot\ \frac{(R+r)^2}{2R^2p}=$ $2(ab+bc+ca)-\frac{4r(R+r)^2}{R}\ .$ In continuare aplicam inegalitatea Gerretsen $:$

$\boxed{ab+bc+ca\le 4(R+r)^2}\ \iff\ LHS\ \le\ 8(R+r)^2-\frac{4r(R+r)^2}{R}\iff$ $\boxed{\sum\ \frac{a(a^2+2bc)}{b+c}\ \le\ \frac{4(R+r)^2(2R-r)}R}\ .$
Frumoasa inegalitate !


P22. Sa se arate ca in $\triangle ABC$ cu cercul circumscris $w$ exista relatiile $\boxed{2(a+b+c)\le\sum\frac {bc}{s-a}\le\frac {(5R-2r)(4R+r)^2}{2s(2R-r)}}$ (notatii standard).

Demonstratie. Vom folosi relatia metrica remarcabila $\boxed{H\Gamma^2=4R^2\left[1-\frac{2s^2(2R-r)}{R(4R+r)^2}\right]\ge 0}\ (**)\ ,$ unde $H$ este ortocentrul si $\Gamma$ este punctul lui Gergonne pentru $\triangle ABC$ de unde

rezulta usor $\boxed{2s^2(2R-r)\le R(4R+r)^2}\ (*)\ .$ Asadar, $\sum\frac {bc}{s-a}=\frac {abc}s\cdot\sum\left(\frac 1{s-a}+\frac 1a\right)=$ $4Rr\cdot\left(\sum\frac 1{s-a}+\sum\frac 1a\right)=$ $4Rr\cdot \left[\frac {r(4R+r)}{sr^2}+\frac {s^2+r(4R+r)}{4Rrs}\right]=$

$\frac {4R(4R+r)}s+s+\frac {r(4R+r)}s=$ $s+\frac {(4R+r)^2}s\implies$ $\boxed{\sum\frac {bc}{s-a}=s+\frac {(4R+r)^2}s}\ (1)\ .$ In concluzie, inegalitatea propusa este echivalenta cu inegalitatea $s+\frac {(4R+r)^2}s\le$

$\frac {(5R-2r)(4R+r)^2}{2s(2R-r)}\iff$ $2s^2(2R-r)+2(2R-r)(4R+r)^2\le (5R-2r)(4R+r)^2\iff$ $2s^2(2R-r)\le \left[(5R-2r)-(4R-2r)\right](4R+r)^2\iff$

$2s^2(2R-r)\le R(4R+r)^2$ , adica ineg. adevarata $(*)\ .$ Se observa ca $\sum\frac {bc}{s-a}\ge 4s\iff$ $\frac {(4R+r)^2}s\ge 3s\iff$ $s\sqrt 3\le 4R+r$ , care este cunoscuta a fi adevarata.

Observatie. Vom dovedi relatia remarcabila $(**)$ folosind identitatea de tip Leibniz $\boxed{\sum (s-b)(s-c)\cdot HA^2=r(4R+r)\cdot H\Gamma ^2+\frac{4s^2r^2(R+r)}{4R+r}}\ (2)$ unde $\Gamma$ are coordonatele

$\left(\frac 1{s-a},\frac 1{s-b},\frac 1{s-c}\right)$ in raport cu $w\ .$ Se stie ca $\sum (s-b)(s-c)=r(4R+r)$ si puterea lui $\Gamma$ fata de $w$ este $p_w\left(\Gamma\right)=$ $-r(R+r)\cdot\left(\frac {2s}{4R+r}\right)^2\ .$ Se arata usor relatia

$\boxed{\sum a^2(s-b)(s-c)=4s^2r(R-r)}\ (***)\ .$ Asadar, $HA=2R|\cos A|\implies$ $HA^2=4R^2-a^2$ $\implies$ $\sum (s-b)(s-c)\cdot HA^2=$ $\sum (s-b)(s-c)\cdot \left(4R^2-a^2\right)=$

$4R^2\sum (s-b)(s-c)-$ $\sum a^2(s-b)(s-c)\ \stackrel{(***)}{=}\ 4R^2r(4R+r)-4s^2r(R-r)$ $\implies$ $\boxed{\sum (s-b)(s-c)\cdot HA^2=4R^2r(4R+r)-4s^2r(R-r)}\ (3)\ .$ Din relatia

Leibniz
$(2)$ si relatia precedenta $(3)$ obtinem $4R^2r(4R+r)-4s^2r(R-r)=$ $r(4R+r)\cdot H\Gamma ^2+$ $\frac{4s^2r^2(R+r)}{4R+r}$ $\iff$ $H\Gamma^2=4R^2-\frac{4s^2(R-r)}{4R+r}-\frac{4s^2r(R+r)}{(4R+r)^2}$ $\iff$

$H\Gamma^2=4R^2-\frac{4s^2}{(4R+r)^2}\cdot[(4R+r)(R-r)+r(R+r)]=$ $4R^2-\frac{4s^2}{(4R+r)^2}\cdot 2R(2R-r)=$ $4R^2-\frac {8s^2R(2R-r)}{(4R+r)^2}\implies$ $H\Gamma^2=4R^2\left[1-\frac{2s^2(2R-r)}{R(4R+r)^2}\right]\ .$



P23. Let $\triangle ABC$ with the incircle $C(I)$ and the circumcircle $w=\mathbb C(O,R)\ .$ Consider $D\in (BC)\ ,$ $E\in (CA)\ ,$ $F\in (AB)$ and denote $\{A,X\}=AD\cap w\ ,$

$\{B,Y\}=BE\cap w\ ,$ $\{C,Z\}=CF\cap w\ .$ Prove that $\frac {XA}{XD}+\frac {YB}{YE}+\frac {ZC}{ZF}\ \ge\ \left(\frac {b+c}{a}\right)^2+\left(\frac {c+a}{b}\right)^2+\left(\frac {a+b}{c}\right)^2$ with equality iff $I\ \in\ AD\cap BE\cap CF\ .$


Proof. I"ll prove $:\ \frac{XA}{XD}\ \ge\ \left(\frac {b+c}a\right)^2\ ,$ with equality iff $AD$ is the bisector of $\widehat {BAC}\ .$ Apply the Stewart's relation to the cevian $AD/\triangle ABC\ :\ a\cdot AD^2+a\cdot BD\cdot CD=$

$c^2\cdot CD+b^2\cdot BD$ $\Longrightarrow \frac{AD^2}{BD\cdot CD} + 1= \frac{c^2}{a\cdot BD}+\frac{b^2}{a\cdot CD}\ \stackrel{\small C.B.S.}{\ge}\ \left(\frac{b+c}a\right)^2$ cu egalitate iff $\frac{c}{a\cdot BD}=\frac{b}{a\cdot CD}\iff$ $AD$ is the bisector of $\widehat{BAC}\ .$ But $X\in AD\cap w\ ,$

$A\ne X\ \Longrightarrow$ $BD\cdot CD=AD\cdot DX\ .$ The last inequality is equivalent with $\frac{AD^2+AD\cdot DX}{AD\cdot DX}\ \ge\ $ $\left(\frac {b+c}a\right)^2\ \Longleftrightarrow\ $ $\frac{XA}{XD}\ \ge\ \left(\frac {b+c}a\right)^2$ $\implies$ $\sum \frac{XA}{XD}\ \ge\ \sum \left(\frac {b+c}a\right)^2\ .$



P24. Fie $\{a,b,c,d\}\subset R^*$ so that $\left\{\begin{array}{ccc}
a+b+c+d & = & 10\\\\
a^2+b^2+c^2+d^2 & = & 28\end{array}\right\|\ .$ Prove that $abcd\ne 0\ ,$ $d\le 4$ and find the maximum of the sum $\sum\frac 1a\ .$

Proof. $\left\{\begin{array}{c}
a+b+c=10-d\\\\
a^2+b^2+c^2=28-d^2\\\\
(a+b+c)^2\le 3\left(a^2+b^2+c^2\right)\implies\end{array}\right\|\implies$ $(10-d)^2\le 3\left(28-d^2\right)\implies$ $d^2-5d+4\le 0\implies$ $\boxed{\ \{a,b,c,d\}\subset [1,4]\ }\ .$

Apply the P. Schweitzer's inequality $\boxed{x_k\in [a,b]\ ,\ k\in\overline {1,n}\implies n^2\le \sum x_k\cdot\sum\frac {1}{x_k}\le \frac {(a+b)^2}{4ab}\cdot n^2}$ and obtain that $\sum \frac 1a\in \left[\frac 85,\frac 52 \right]\ .$



P25. Sa se arte ca in orice triunghi $ABC$ exista inegalitatea $a^2+b^2+c^2\ge 4S\cdot \left(\tan\frac A2+\tan\frac B2+\tan\frac C2\right)+\frac {8r}{R}\cdot OI^2\iff$ $s^2+5r^2\ge 16Rr\ .$

Demonstratie. Se folosesc cunoscutele identitati geometrice $\sum r_a=4R+r\ ,$ $\tan\frac A2=\frac r{s-a}$ si $OI^2=R(R-2r)$ (notatii standard).

Intr-adevar, $\sum a^2\ge 4S\cdot\sum\tan \frac A2+\frac {8r}R\cdot OI^2\iff$$2\left(s^2-r^2-4Rr\right)\ge 4S\sum\frac r{s-a}+\frac {8r}R\cdot\left(R^2-2Rr\right)\iff$

$s^2\ge r^2+4Rr+2r\sum r_a+4r(R-2r)\iff$ $s^2\ge 8Rr-7r^2+2r(4R+r)\iff$ $s^2+5r^2\ge 16Rr\ ,$ what is true.



P26. Let $\{x,y\}\subset\mathbb R_+^*$ so that $xy<1\ .$ Prove that $\boxed{\left(\frac{2x}{1+x^2}\right)^2+\left(\frac{2y}{1+y^2}\right)^2\le\frac {1}{1-xy}}\ (*)\ .$

Proof. $(\exists )\ \{a,b\}\subset \left(0,\frac {\pi}2\right)$ so that $\left\{\begin{array}{ccc}
x=\tan a\\\\
y=\tan b\end{array}\right\|$ and $xy<1\iff \tan a\tan b<1\iff$ $\sin a\sin b<\cos a\cos b\iff$ $\cos(a+b)>0\iff$ $a+b\in\left(0,\frac {\pi}2\right)\ .$

Our inequality is equivalent with $\sin^22a+\sin^22b\le \frac 1{1-\tan a\tan b}\iff$ $E\ge 0$ where $E\equiv \tan a\tan b\left(\sin^2 2a+\sin^2 2b\right)+1-\sin^2 2a-\sin^2 2b\ .$ Observe

that $E\ge 2\tan a\tan b\sin 2a\sin 2b+1-\sin^2 2a-\sin^2 2b=$ $8\sin^2a\cdot\sin^2b+1-4\sin^2 a\left(1-\sin^2 a\right)-4\sin^2 b\left(1-\sin^2b\right)=$ $4\left(\sin^2a+\sin^2b\right)^2+$

$1-4\left(\sin^2a+\sin^2b\right)=$ $\left(2\sin^2 a+2\sin^2b-1\right)^2\ge 0\ .$ Equality occurs for $:$ if $a,b>0$ then $\sin 2a=\sin 2b,\;\sin^2a+\sin^2b=\frac{1}{2}\iff$ $a=b\ ,\ \sin a=\frac{1}{2}\ ,$

$\{a,b\}\subset\left[0,\frac{\pi}4\right]\iff$ $a=\frac{\pi}6\ ,\ b=\frac{\pi}6\iff$ $x=y=\frac{1}{\sqrt{3}}\ ;$ if $a=0$ or $b=0$ then $b=\frac{\pi}{4}$ or $a=\frac{\pi}{4}\iff$ $x=0\ ,\ y=1$ or $x=1\ ,\ y=0\ .$



P27. Let $\triangle ABC$ and $\{\alpha , \beta , \gamma\}\subset\mathbb R\ .$ Prove that $\left\{\begin{array}{cccccccc}
\alpha +\beta +\gamma  & = & 0 & \implies & \beta\gamma a^2+\gamma\alpha b^2+\alpha \beta c^2 & \le & 0 & (1)\\\\
\alpha a+\beta b+\gamma c & = & 0 & \implies & \alpha\beta +\beta \gamma +\gamma\alpha & \le & 0 & (2)\end{array}\right\|\ .$

Proof.

$1.\blacktriangleright$ Suppose w.l.o.g. $\alpha\beta\gamma\ne 0\ .$ Thus, $\beta\gamma a^2+\gamma\alpha b^2+\alpha \beta c^2\le 0\iff$ $\beta\gamma a^2\le -\alpha \left(\gamma b^2+\beta c^2\right)\iff$ $\beta\gamma a^2\le (\beta +\gamma )\left(\gamma b^2+\beta c^2\right)\iff$

$\beta^2c^2+\beta\gamma \left(b^2+c^2-a^2\right)+\gamma^2b^2\ge 0\iff$ $\beta^2c^2+2\beta\gamma bc\cos A+\gamma^2b^2\ge 0\iff$ $\left(\beta c+\gamma b\cos A\right)^2+\gamma^2b^2\sin^2A\ge 0\ ,$ what is true.

We have equality, i.e. $\beta\gamma a^2+\gamma\alpha b^2+\alpha \beta c^2= 0\iff\alpha =\beta =\gamma=0\ .$

$2.\blacktriangleright$ Suppose w.l.o.g. $\alpha\beta\gamma\ne 0$ and denote $\boxed{t=\frac {\beta}{\gamma}}\ (*)\ .$ Thus, $-\alpha =\frac {\beta b+\gamma c}a$ and $-(\alpha\beta +\beta \gamma +\gamma\alpha) =$ $-\beta\gamma -\alpha (\beta +\gamma)=$ $-\beta\gamma +\frac {(\beta +\gamma)(\beta b+\gamma c)}a\ .s.s.$

$ -a\beta\gamma +$ $(\beta +\gamma)(\beta b+\gamma c)\ .s.s.\ -at +$ $(t+1)(bt+c)=$ $bt^2+(b+c-a)t+c\ .$ Denote $\boxed{f(t)=bt^2+(b+c-a)t+c}\ .$ Observe that $\Delta =(b+c-a)^2-4bc=$

$(b+c)^2-4bc+a^2-2a(b+c)=$ $(b-c)^2+a^2-2a(b+c)\le$ $ a^2+a^2-2a(b+c)=$ $2a^2-2a(b+c)\le 0\implies$ $\Delta\le 0\ ,$ i.e. $f(t)\ge 0$ for any $t\in\mathbb R^*\ .$

In conclusion, $-(\alpha\beta +\beta \gamma +\gamma\alpha)\ge 0\iff \alpha\beta +\beta \gamma +\gamma\alpha\le 0\ .$


Application. Let $\triangle ABC$ and $M\in (BC)\ ,$ $N\in (CA)\ ,$ $P\in (AB)$ so that $AP+BM+CN=PB+MC+NA\ .$ Prove that $[MNP]\le \frac S4\ ,$ where $S=[ABC]\ .$

Proof. Denote $AP=\gamma c\ ,$ $BM=\alpha a\ ,$ $CN=\beta b\ ,$ i.e. $BP=(1-\gamma ) c\ ,$ $CM=(1-\alpha ) a\ ,$ $BN=(1-\beta )b\ ,$ where $\{\alpha ,\beta ,\gamma\}\subset(0,1)\ .$ Thus, $AP+BM+CN=$

$PB+MC+NA\iff$ $ \boxed{(2\alpha -1)a+(2\beta -1)b+(2\gamma -1)c=0}\ (*)\ .$ From the previous PP27 (the second implication) obtain $(2\alpha -1)(2\beta -1)+(2\beta -1)(2\gamma -1)+$

$(2\gamma -1)(\alpha -1)\le 0$ $\iff$ $4\cdot \sum \beta\gamma-2\cdot\sum (\beta +\gamma )+3\le 0\iff$ $4\cdot \sum \beta\gamma-4\cdot\sum \alpha +3\le 0\iff$ $\boxed{\sum \alpha -\sum \beta\gamma\ge\frac 34}\ (2)\ .$ Prove easily that $\frac {[MNP]}{[ABC]} =$

$1-\frac {[PAN]}{[BAC]}-\frac {[MBP]}{[CBA]}-\frac {[NCM]}{[ACB]}=$ $1-\gamma (1-\beta )-\alpha (1-\gamma )-\beta (1-\alpha )=$ $1-\sum \alpha +\sum\beta\gamma\ \stackrel{(2)}{\le}\ 1-\frac 34=\frac 14\ ,$ i.e. $[MNP]\le\frac S4\ .$



P28 (own). $\triangle ABC\Longrightarrow \left(\forall\right)\ X\ ,\ \frac{XA^2}{a}+\frac{XB^2}{b}+\frac{XC^2}{c}\ge \frac{a^3+b^3+c^3}{ab+bc+ca}$ . Remark. Try some particular cases: $X\in \{O,H,G,\ldots\}\ .$

Proof (Constantin MATEESCU). The solution has been inspired from one of the problems in Virgil's book on Planar Geometry (este singura carte pe care o port cu mine oriunde! :) ). I don't think there

is a different way to derive this amazing inequality which features a very special equality case! Firstly, we need to recall that the distance between two points $P$ and $P^{\prime}$ whose normalised barycentric

coordinates w.r.t. $\triangle ABC$ are $(\alpha, \beta, \gamma)$ and $(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime})$ respectively, is given by the following relation
$:\ \boxed{ {PP^{\prime}}^2 = - \left[(\beta - \beta^{\prime}) (\gamma - \gamma^{\prime}) a^2 + (\gamma - \gamma^{\prime}) (\alpha - \alpha^{\prime}) b^2 + (\alpha - \alpha^{\prime}) (\beta - \beta^{\prime}) c^2\right] }\ .$

Consequence. For $P(\alpha, \beta, \gamma)$ and $P^{\prime}(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime})$ w.r.t. $\triangle ABC$ the following inequality holds $:\ \boxed{ (\beta - \beta^{\prime}) (\gamma - \gamma^{\prime}) a^2 + (\gamma - \gamma^{\prime}) (\alpha - \alpha^{\prime}) b^2 + (\alpha - \alpha^{\prime}) (\beta - \beta^{\prime}) c^2 \le 0 }\ .$ Now let $P = X$

and let $P^{\prime}$ be the isotomic of the incenter $I$ of $\triangle ABC$. Thus: $X(\alpha, \beta, \gamma )$ and $P^{\prime}\left(\frac {bc}{ab + bc + ca}, \frac {ca}{ab + bc + ca}, \frac {ab}{ab + bc +ca}\right)\ .$ Using the above corollary we succesively obtain that

$\sum a^2\left(\beta - \frac {ca}{ab + bc + ca}\right)\left(\gamma - \frac {ab}{ab + bc + ca}\right) \le 0\iff \sum a^2\beta\gamma - \sum \frac{a^3(b\beta + c\gamma)}{ab + bc + ca} + abc\sum \frac {a^3}{(ab + bc + ca)^2} \le 0\iff$ $ \frac {a^3 + b^3 + c^3}{ab + bc + ca} \le \sum \frac{a^3(b\beta + c\gamma)}{abc} - $

$\frac {ab + bc + ca}{abc}\sum a^2\beta\gamma\iff \frac {a^3 + b^3 + c^3}{ab + bc + ca} \le \sum \frac {bc(b^2\gamma + c^2\beta)}{abc} - $ $\frac {ab + bc + ca}{abc}\sum a^2\beta\gamma\iff $ $\frac {a^3 + b^3 + c^3}{ab + bc + ca} \le \sum \left(\frac {bc(b^2\gamma + c^2\beta)}{abc} - \frac {bc}{abc}\sum a^2\beta\gamma \right)\iff $

$\frac {a^3 + b^3 + c^3}{ab + bc + ca} \le \sum \frac {\left(b^2\gamma + c^2\beta\right) - \left(a^2\beta\gamma + b^2\gamma\alpha + c^2\alpha\beta\right)}a\iff $ $\frac {a^3 + b^3 + c^3}{ab + bc + ca} \le \sum \frac {-\left[\beta\gamma a^2 + \gamma\left(\alpha - 1\right) b^2 + \left(\alpha - 1\right)\beta c^2\right]}a\iff $ $\boxed{\frac {a^3 + b^3 + c^3}{ab + bc + ca} \le \frac {XA^2}a + \frac {XB^2}b + \frac {XC^2}c}\ .$

The equality is attained $\iff\ X$ is the isotomic of the incenter $I$ of $\triangle ABC$. Particular cases. $\boxed{\begin{array}{ccc}
X:= H\ \mathrm{\left(\underline{orthocenter}\right)} & \implies & \sum\frac a{\tan^2A}\ge \frac {a^3+b^3+c^3}{ab+bc+ca}\\\\
X:=O\ \mathrm{\left(\underline{circumcenter}\right)} & \implies & \sqrt {abc\left(a^3+b^3+c^3\right)}\le R\cdot (ab+bc+ca)\end{array} }\ .$



P29 (Nguyen Viet Hung, Vietnam) <= click.

Proof 1 (with barycentric coordinates). $G\left(\frac 13,\frac 13,\frac 13\right)\ ,$ $I\left(\frac {a}{\sum a},\frac {b}{\sum a},\frac {c}{\sum a}\right)\ ,$ $K\left(\frac {a^2}{\sum a^2},\frac {b^2}{\sum a^2},\frac {c^2}{\sum a^2}\right)$ $\implies$ $\frac {[GIK]}{[ABC]}=\left|\begin{array}{ccc}
\frac 13 & \frac 13 & \frac 13\\\\
\frac {a}{\sum a} & \frac {b}{\sum a} & \frac {c}{\sum a}\\\\
\frac {a^2}{\sum a^2} & \frac {b^2}{\sum a^2} & \frac {c^2}{\sum a^2}\end{array}\right|=$

$\frac 13\cdot \frac 1{\sum a}\cdot\frac 1{\sum a^2}\cdot \mathrm{mod}\left|\begin{array}{ccc}
1 & 1 & 1\\\\
a & b & c\\\\
a^2 & b^2 & c^2\end{array}\right|=$ $\frac{\left|\ V(a,b,c)\ \right|}{3(a+b+c)\left(a^2+b^2+c^2\right)}=$ $\frac {|(c-a)(c-b)(b-a)|}{3(a+b+c)\left(a^2+b^2+c^2\right)}\implies$ $\boxed{\ \frac {[GIK]}{[ABC]}=\frac {|(c-a)(c-b)(b-a)|}{3(a+b+c)\left(a^2+b^2+c^2\right)}\ }\ .$
This post has been edited 62 times. Last edited by Virgil Nicula, Jan 21, 2018, 2:14 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a