21 bis. Some problems with complex numbers.
by Virgil Nicula, Apr 22, 2010, 4:20 PM
PP1 (OLM Bucuresti 2006 , Dinu Serbanescu). Let
with the property
we have
. Prove that 
Proof. I"ll use twice the identity of the parallelogram



PP2. Let
be a complex number for which exists
so that
and
. Prove that
.
Proof. Observe that
. Suppose w.l.o.g.
. Denote
. Thus,
and

. Suppose
that
. Therefore,


because
. From the relation
and the well-known inequality
obtain
,
i.e.
, what is
. In concluzion,
. Here is an equivalent enunciation :
An easy extension. Let
be two complex numbers for which exists
so that
and
. Prove that
.
PP3 (Stan Fulger). Construct outside of
the equilateral 
so that
separates
a.s.o. and
separates
a.s.o. Prove that
Proof. Let
be the point
from the complex plane and which has the affix
and
for which
.
Thus,

and![$\left\{\begin{array}{ccc}
3o=b+c+a'=b+c+[(1-w)b+wc] & \implies & 3o=(2-w)b+(1+w)c\\\\
3o'=a'+c'+b''=[(1-w)b+wc]+[(1-w)a+wb]+[2b+w^2c-wa] & \implies & 3o'=(1-2w)a+3b+(2w-1)c\\\\
3o''=a'+b'+c''=[(1-w)b+wc]+[(1-w)c+wa]+[2c+w^2a-wb] & \implies & 3o''=(2w-1)a+(1-2w)b+3c\end{array}\right\|$](//latex.artofproblemsolving.com/0/0/4/00486944d95f0e5053fe8cb507cb79a7be77277d.png)
Observe easily that
.
Remark. Prove easily that
for any
. For
get
. With the well-known property
is equilateral
can prove easily that
is equilateral 
is equilateral. Suppose that
. Thus,

. On other hand,
![$\sum\left[\left(w^2-w+1\right)bc+a^2\right]\implies$](//latex.artofproblemsolving.com/8/4/0/8406e1f615533bd88f927f6864135e4524d8342a.png)
. In conclusion, the relations
the triangle
is equilateral.
PP4. Let
,
be two squares for which denote the midpoints
,
,
,
of the segments
,
,
,
respectively. Prove that
is a square.
Proof. Prove easily that for
can verify
, i.e.
is a parallelogram and
, i.e. 
obtain that
can verify
, i.e.
is a parallelogram and
, i.e.
.
Therefore,
. Observe that
, i.e.
is a parallelogram
and
, i.e.
. In conclusion,
is a square.
PP5. Let
,
be two equilateral triangles for which denote the midpoints
,
,
of the segments
,
,
respectively and
the centroids
,
,
of the triangles
,
,
respectively. Prove that
is an equilateral triangle and
is the midpoint of
.
Proof. Prove easily that for
obtain that
, where
. Prove easily that
, i.e.
is equilaterally and
,
,
, where
, i.e.
is the midpoint of
.




Proof. I"ll use twice the identity of the parallelogram






PP2. Let





Proof. Observe that


























i.e.





An easy extension. Let





PP3 (Stan Fulger). Construct outside of


so that





Proof. Let





Thus,



and
![$\left\{\begin{array}{ccc}
3o=b+c+a'=b+c+[(1-w)b+wc] & \implies & 3o=(2-w)b+(1+w)c\\\\
3o'=a'+c'+b''=[(1-w)b+wc]+[(1-w)a+wb]+[2b+w^2c-wa] & \implies & 3o'=(1-2w)a+3b+(2w-1)c\\\\
3o''=a'+b'+c''=[(1-w)b+wc]+[(1-w)c+wa]+[2c+w^2a-wb] & \implies & 3o''=(2w-1)a+(1-2w)b+3c\end{array}\right\|$](http://latex.artofproblemsolving.com/0/0/4/00486944d95f0e5053fe8cb507cb79a7be77277d.png)
Observe easily that
![$\left\{\begin{array}{ccccc}
b'+b''=[(1-w)c+wa]+[2b+w^2c-wa] & \implies & b'+b''=2c & \implies & B\in B'B''\ ;\ BB'=BB''\\\\
3(o'+o'')=2(2-w)b+2(1+w)c=3o & \implies & o'+o''=2o & \implies & O\in O'O''\ ;\ OO'=OO''\end{array}\right\|$](http://latex.artofproblemsolving.com/0/a/e/0aef44bf1ac5932d48a478996969cbc690ce7a5a.png)
Remark. Prove easily that

![$\{x,y\}\subset\mathbb C\ ,\ \boxed{[(1-w)x+wy][(1-w)u+wv]=-wxu+w^2yv+(xv+yu)}$](http://latex.artofproblemsolving.com/2/b/8/2b8c76b045977a4dc7ccbba1b4165e45d91e308c.png)

![$\boxed{[(1-w)x+wy]^2=-wx^2+w^2y^2+2xy}$](http://latex.artofproblemsolving.com/0/2/7/027c3198f86356dd5c949af0eec7026d4baedc21.png)






![$\sum a'^2=\sum \left[(1-w)b+wc\right]^2=$](http://latex.artofproblemsolving.com/c/d/f/cdf02dca1efbe2bbea6551e6031fbed997dfb9be.png)
![$\sum \left[-wb^2+w^2c^2+2bc\right]=$](http://latex.artofproblemsolving.com/f/2/8/f28eed770d50f90e18943975def1350e2cb99aac.png)


![$\sum b'c'=\sum [(1-w)c+wa][(1-w)a+wb]=$](http://latex.artofproblemsolving.com/c/0/c/c0c87a306d9a2a4c02031ae0634d36b7475433ca.png)
![$\sum \left[-wca+w^2ab+\left(a^2+bc\right)\right]=$](http://latex.artofproblemsolving.com/a/5/7/a5775a794105cda4893caf7217348d6e04b2e4a1.png)
![$\sum\left[\left(w^2-w+1\right)bc+a^2\right]\implies$](http://latex.artofproblemsolving.com/8/4/0/8406e1f615533bd88f927f6864135e4524d8342a.png)





PP4. Let






![$[BE]$](http://latex.artofproblemsolving.com/f/b/0/fb061a8a7c5f9403b5f9261840de9dfea7cb68cf.png)
![$[CB]$](http://latex.artofproblemsolving.com/f/0/a/f0a45a13c6123c357e7ffe7d05e50e68ad7d157a.png)
![$[DF]$](http://latex.artofproblemsolving.com/4/8/7/487608ba746e637d846b20401f23cc2b80336338.png)
![$[AG]$](http://latex.artofproblemsolving.com/f/9/1/f91db94bf50495f54f28b2be75649eb977d462b0.png)

Proof. Prove easily that for





obtain that
![$E(z)\ ,\ F[iz-(1+i)a]\ ,\ G[-a+(1+i)z]\ ($](http://latex.artofproblemsolving.com/8/9/7/8972a49b59817cd4d665c21c8d39b319db4a8e75.png)




Therefore,
![$M\left(\frac{z-ia}2\right)\ ,\ N\left[\frac{-(1+i)a}2\right]\ ,\ L\left(\frac{-a+iz}2\right)\ ,\ P\left[\frac{(1+i)z}2\right]$](http://latex.artofproblemsolving.com/c/9/0/c90b92a0d4bd90dd1879ba2cc2bd75ee44bc8cfc.png)


and



PP5. Let





![$[BE]$](http://latex.artofproblemsolving.com/f/b/0/fb061a8a7c5f9403b5f9261840de9dfea7cb68cf.png)
![$[CB]$](http://latex.artofproblemsolving.com/f/0/a/f0a45a13c6123c357e7ffe7d05e50e68ad7d157a.png)
![$[AD]$](http://latex.artofproblemsolving.com/0/f/3/0f3e4c424371b27673db323ced8ef0777940c0d4.png)
the centroids








![$[RT]$](http://latex.artofproblemsolving.com/5/9/e/59ed16a688b8281a87bf74c9f22f3c2e87a54ece.png)
Proof. Prove easily that for





![$R\left[\frac {(1+w)z}{3}\right]$](http://latex.artofproblemsolving.com/8/2/7/827cccbb8f1fce8a406f5621ff74e9101dc25db8.png)
![$S\left[\frac {(1+w)(a+z)}{6}\right]$](http://latex.artofproblemsolving.com/1/7/3/17363e87aa1587de7fe93004ccef57a7baca893a.png)
![$T\left[\frac {(1+w)a}{3}\right]$](http://latex.artofproblemsolving.com/f/5/a/f5a44b9fde35c5ebb8b0998b1e8e946258a96d7e.png)


![$[RT]$](http://latex.artofproblemsolving.com/5/9/e/59ed16a688b8281a87bf74c9f22f3c2e87a54ece.png)
This post has been edited 48 times. Last edited by Virgil Nicula, Nov 23, 2015, 6:57 AM