120. Two equal neighbouring angles/sides in a quadrilateral.

by Virgil Nicula, Sep 13, 2010, 12:14 AM

$$\bf\color{black}Particular\ quadrilaterals.$$
$ \mathrm{SQUARE}\subset\left\{\begin{array}{c}\mathrm{RECTANGLE}\\\\ \mathrm{RHOMBUS}\end{array}\right\|\subset\mathrm{PARALLELOGRAM}\subset\mathrm{TRAPEZIUM}\ ,$ where $ABCD$ is $:\ \left\{\begin{array}{ccccc}
\mathrm{trapezium} & \Longleftrightarrow & AB\parallel CD & \vee & AD\parallel BC\\\\
\mathrm{parallelogram} & \Longleftrightarrow & AB\parallel CD & \wedge & AD\parallel BC\end{array}\right\|\ ;$

$\left\{\begin{array}{cccc}
\mathrm{rectangle} & \Longleftrightarrow & \mathrm{parallelogram\ which\ has\ equally} & \mathrm{two\ neighbouring\ angles}\\\\
\mathrm{rhombus} & \Longleftrightarrow & \mathrm{parallelogram\ which\ has\ equally} & \mathrm{two\ neighbouring\ sides}\end{array}\right\|\ ;\ \mathrm{square}\ \Longleftrightarrow\ \mathrm{rectangle}\ \wedge\ \mathrm{rhombus}$ .

A cyclic convex quadrilateral $ ABCD$ $ \iff$ $ A+C=B+D\ .$ A circumscriptible/tangential convex quadrilateral $ ABCD$ $ \Longleftrightarrow$ $ AB+CD=AD+BC\ .$ From all parallelograms, only

rectangle is cyclic. From all parallelograms, only rhombus is circumscriptibly. From all trapeziums, only isosceles trapezium is cyclic. Remarks: direction "angle" $\implies$ cyclic quadrilateral,

isosceles trapezium, rectangle and square $;$ direction "side" $\implies$ circumscriptible quadrilateral, rhombus and square. See two aplications at
here. See PP4 & PP5 from here and search here.
$$*****$$
PP1. Let a triangle $ABC$ and the points $ M\in (AC)$, $ N\in (AB)$ for which denote $ P\in BM\cap CN$. Prove that :

$ 1\blacktriangleright$ the quadrilateral $ ANPM$ is circumscriptible $ \Longleftrightarrow$ $ PB-PC=AB-AC$ $ \Longleftrightarrow$ $ NB+NC=MB+MC$.


Proof. Denote the incircle $w$ of $AMPN$ and its tangent points $\left\{\begin{array}{ccc}
X\in AB\cap w & ; & Y\in AC\cap w\\\\
Z\in BM\cap w & ; & T\in CN\cap w\end{array}\right\|$ . Thus, $:\ NB+NC=NB+(NT+TC)=$ $(NB+NT)+TC=$

$(NB+NX)+CY=$ $BX+(CM+MY)=BZ+(CM+MZ)=$ $(BZ+MZ)+CM=MB+MC\implies$ $NB+NC=MB+MC$ . Analogously,

$PB-PC=(BZ-ZP)-(CT-PT)=(BZ-PT)-(CY-PT)=BX-CY=(AB-AX)-(AC-AY)=AB-AC\implies$ $PB-PC=AB-AC$ .


$ 2\blacktriangleright$ If for circumscriptible $ ANPM$ denote the tangent points $ E\in AC$, $ F\in AB$, $ U\in CN$, $ V\in BM$,

then the lines $ UF$, $ VE$, $ BC$ are concurrently in a point $ X$ for which $ \frac{XB}{XC}=\frac{c-x}{b-x}$, where $ x=AF=AE$.


$ 3\blacktriangleright$ Exists a circle $ w(O)$ which is tangent to the sidelines of the quadrilateral $ AMPN$ and $ O$ belongs to the exterior

of $ AMPN$ (in this case the quadrilateral $ AMPN$ is (ex)circumscriptible) $ \Longleftrightarrow$ $ AN+NP=AM+MP$.



PP2. Let $ C_{1}(O_{1})$, $ C_{2}(O_{2})$ be two exterior circles and let $ C(O)$ be a circle exterior tangent to the circles $ C_{1}$, $ C_{2}$ in the points $ A_{1}$, $ A_{2}$ respectively.

A exterior common tangent to the circles $ C_{1}$, $ C_{2}$ touches these in the points $ T_{1}$, $ T_{2}$ respectively so that the line $ O_{1}O_{2}$ separates the points $ A_{1}$, $ T_{1}$.

Prove that the quadrilateral $ A_{1}A_{2}T_{2}T_{1}$ is cyclically and the lines $ A_{1}A_{2}$, $ T_{1}T_{2}$, $ O_{1}O_{2}$ are concurrently.



PP3 (Ruben Dario). Let $\triangle ABC$ and $D\in BC$ such that $AD\perp BC$ . Suppose that $D\in (BC)$ . Denote the incircle $w$ of

$\triangle ADC$ , the point $E\in AC$ so that $BE$ is tangent to $w$ and $m\left(\widehat{BEC}\right)=2\alpha$ . Prove that $\tan\alpha +\cot A=\frac {\sin B+\cos B}{\sin A}$ .


Proof. Let $F\in BE\cap AD$ and apply property $(1)$ of PP1 to tangential $CDFE\ :\ \frac {DA+DB}{AB}=\frac {EA+EB}{AB}$ $\iff$ $\sin  B+\cos B=\frac {\sin (2\alpha -A)+\sin A}{\sin 2\alpha}=$

$\frac {2\sin\alpha\cos (A-\alpha )}{2\sin \alpha\cos\alpha }=$ $\frac {\cos (A-\alpha )}{\cos\alpha }=$ $\cos A+\sin A\tan\alpha\implies$ $\sin B+\cos B=\cos A+\sin A\tan\alpha$ $\implies$ $\boxed{\tan\alpha +\cot A=\frac {\sin B+\cos B}{\sin A}}\ (*)$ .

Particular case. If $A=90^{\circ}$ (degrees), then the relation $(*)$ becomes $\boxed{\tan\alpha =\cos C+\sin C}$ .



PP4 (Ruben Dario). Let an $A$-right $\triangle ABC$ and $D\in BC$ so that $AD\perp BC$ . Denote the incircles $\left\{\begin{array}{ccc}
w_c & \mathrm{of} & \triangle ADC\\\\
w_b & \mathrm{of} & \triangle ADB\end{array}\right\|$ , the point

$E\in AC$ so that $BE$ is tangent to $w_c$ , the point $F\in AB$ so that $CF$ is tangent to $w_b$ and $\left\{\begin{array}{c}
m\left(\widehat{ABE}\right)=x\\\
m\left(\widehat{ACF}\right)=y\end{array}\right\|$ . Prove that $x=y$ .


Proof. Let $\left\{\begin{array}{ccc}
X\in BE\cap AD & ; & m\left(\widehat{BEC}\right)=2\alpha\\\\
Y\in CF\cap AD & ; & m\left(\widehat{BFC}\right)=2\beta\end{array}\right\|$ . Apply the particular case of the previous problem to the tangential quadrilaterals $:$

$\left\{\begin{array}{cc}
CDXE\ : &  \tan\alpha =\cos C+\sin C\\\\
BDYF\ : & \tan\beta =\cos B+\sin B\end{array}\right\|\ \stackrel{A=90^{\circ}}{\implies}\ \tan\alpha =$ $\tan\beta\implies \alpha =\beta$ . In conclusion, $x=y$ because $\left\{\begin{array}{ccc}
x+90^{\circ}=2\alpha\\\
y+90^{\circ}=2\beta\end{array}\right\|$ .



Some properties of the circumscribed quadrilateral.

Let $ABCD$ be a convex quadrilateral which is circumscribed to the circle $w=C(I,r)$. Denote $a=AB$ , $b=BC$ , $c=CD$ , $d=DA$ ,

$e=AC$ , $f=BD$ , the midpoints $M$, $N$ of $AC$, $BD$ respectively, $E\in AC\cap BD$ , $F\in AB\cap CD$ , $G\in AD\cap BC$ , the tangentpoints

$X\in AB$ , $Y\in BC$ , $Z\in CD$ , $T\in DA$ with incircle $w$ , $U\in XT\cap YZ$, $V\in XY\cap ZT$ and $S=[ABCD]$ , $2p=a+b+c+d$. Then:

$1.$ The quadrilateral $ABCD$ is circumscribed $\Longleftrightarrow a+c=b+d$ (Pithot).

$2.\ E\in XZ\cap YT\ ;\ I\in MN$ (Newton's line).

$3.1.\ U\in BD\ \wedge\ (D,E,B,U)$ is a harmonic division.

$3.2.\ V\in AC\ \wedge\ (A,E,C,V)$ is a harmonic division.

$4.$ The quadrilateral $IEUV$ is orthocentric, i.e. $UI\perp EV$ and $VI\perp EU$ .


$5.$ If the quadrilateral $ABCD$ is circumscribed and inscribed in the circle $e=C(O,R)$ , then:

$5.1.\ ef=2r\left(r+\sqrt{4R^{2}+r^{2}}\right)\ ;\ OI^{2}=R^{2}+r^{2}-r\sqrt{4R^{2}+r^{2}}$ (Durrande's relation).

$5.2.\ \frac{IM}{IN}=\frac{e}{f}\ ;\ \frac{1}{e}+\frac{1}{f}=\frac{p}{4Rr}$ .

$5.3.$ The power of the point $E$ w.r.t the circle $e$ is $p_{e}(E)=\left(\frac{ef}{4R}\right)^{2}$ .

$5.4.$ The power of the incenter $I$ w.r.t. the circumcircle $e$ is $p_{e}(I)=\frac{8R^{2}r^{2}}{ef}$ .


Remark. Maybe now the problem from here seems more easily.
This post has been edited 76 times. Last edited by Virgil Nicula, Oct 18, 2016, 9:08 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a