401. Some nice problems with polynomials/equations II.

by Virgil Nicula, Nov 9, 2014, 11:05 AM

PP0. Let $a\ ,\ b$ be two real numbers so that $b<a<0$ , $ a^3- 9a=9$ and $b^3-9b=9$ . Express $a$ as a quadratic expression in $b$ with rational coefficients and vice versa.

Proof. Let $\{a,b,c\}$ be the roots of $x^3-9x-9=0$ . Prove easily that $-3<b<-2<-\sqrt 3<a<-1<3<c<4$ (with calculus), where $c=-(a+b)$ .

Observe that $\underline{a^3-9a=b^3-9b=-ab(a+b)=9}$ , $\boxed{a^2+ab+b^2=9}\ (*)$ (symmetrical expression in $a$ and $b$) . I"ll find $\{x,y.z\}\subset \mathbb Q$ so that

$\boxed{a=x\cdot b^2+y\cdot b+z\ \vee\ b=x\cdot a^2+y\cdot a+z}$ . Thus, from the relation $(*)$ obtain that $ \left(x\cdot b^2+y\cdot b+z\right)^2+b\cdot \left(x\cdot b^2+y\cdot b+z\right)+b^2=9\iff$

$x^2\cdot b^4+x(2y+1)\cdot b^3+\left(y^2+y+1+2xz\right)\cdot b^2+z(2y+1)\cdot b+\left(z^2-9\right)=0$ . Using $b^3=9(b+1)$ obtain $9x^2\cdot b(b+1)+9x(2y+1)\cdot (b+1)+$

$\left(y^2+y+1+2xz\right)\cdot b^2+$ $z(2y+1)\cdot b+\left(z^2-9\right)=0\iff$ $\left(9x^2+2xz+y^2+y+1\right)\cdot b^2+$ $\left(9x^2+18xy+2yz+9x+z\right)\cdot b+$ $\left(18xy+z^2+9x-9\right)=0$ . Hence

$\boxed{18xy+z^2+9x-9=0}\ (1)$ and $\left|\begin{array}{cccc}
(2) & 9x^2+2xz+y^2+y+1=0 & \implies & z=-\frac {9x^2+y^2+y+1}{2x}\\\\
(3) & 9x^2+18xy+2yz+9x+z=0 & \implies & z=-\frac {9x(x+2y+1)}{2y+1}\end{array}\right|\implies$ $\boxed{\ -z=\frac {9x^2+y^2+y+1}{2x}=\frac {9x(x+2y+1)}{2y+1}\ }\ (4)\iff$

$9x^2(2y+1)+(2y+1)\left(y^2+y+1\right)=$ $18x^2\left(x+2y+1\right)\iff$ $\boxed{18\cdot x^3+9(2y+1)\cdot x^2-(2y+1)\left(y^2+y+1\right)=0}\ (5)$ . Eliminate $z$ between $(1)$ and $(4)\ :$

$z^2=9\left(1-x-2xy\right)=\left(\frac {9x^2+y^2+y+1}{2x}\right)^2\iff$ $36x^2(2xy+x-1)+\left(9x^2+y^2+y+1\right)^2=0\iff$

$\boxed{81\cdot x^4+36(2y+1)\cdot x^3+18(y^2+y-1)\cdot x^2+\left(y^2+y+1\right)^2=0}\ (6)$ . I"ll eliminate the variable $x$ between $(5)$ and $(6)$ . Thus,

=============================================================================================
$\left|\begin{array}{ccccccccc}
81\cdot x^4 & + & 36(2y+1)\cdot x^3 & + & 18(y^2+y-1)\cdot x^2 & + & \left(y^2+y+1\right)^2 & = & 0\\\\
 & & 18\cdot x^3 & + & 9(2y+1)\cdot x^2 & - & (2y+1)\left(y^2+y+1\right) & = & 0\end{array}\right\|$ $\left|\begin{array}{cc}
\odot & (-2)\\\\
\odot & 9x\end{array}\right|$
================================================================================================================
$\left|\begin{array}{ccccccccc}
9(2y+1)\cdot x^3 & - & 36\left(y^2+y-1\right)\cdot x^2 & - & 9(2y+1)\left(y^2+y+1\right)\cdot x & - & 2\left(y^2+y+1\right)^2 & = & 0\\\\
18\cdot x^3 & + & 9(2y+1)\cdot x^2 & & & - & (2y+1)\left(y^2+y+1\right) & = & 0\end{array}\right\|$ $\left|\begin{array}{cc}
\odot & (-2)\\\\
\odot & (2y+1)\end{array}\right|$
======================================================================================================================
$\left|\begin{array}{ccccccccc} & &9\left(12y^2+12y-7\right)\cdot x^2 & + & 18(2y+1)\left(y^2+y+1\right)\cdot x & + & 3\left(y^2+y+1\right) & = & 0\\\\
18\cdot x^3 & + & 9(2y+1)\cdot x^2 & & & - & (2y+1)\left(y^2+y+1\right) & = & 0\end{array}\right\|$ $\left|\begin{array}{cc}
\odot & (-2x)\\\\
\odot & \left(12y^2+12y-7\right)\end{array}\right|$
======================================================================================================================

$\boxed{\ \begin{array}{ccccccc}
9(2y+1)\left(8y^2+8y-11\right)\cdot x^2 & - & 6\left(y^2+y+1\right)\cdot x & - & (2y+1)\left(y^2+y+1\right)\left(12y^2+12y-7\right) & = & 0\\\\
9\left(12y^2+12y-7\right)\cdot x^2 & + & 18(2y+1)\left(y^2+y+1\right)\cdot x & + & 3\left(y^2+y+1\right) & = & 0\end{array}\ }\ (**)$ .

These last two equations from $(**)$ must have at least one common root, i.e. $\left|\begin{array}{cc}
9(2y+1)\left(8y^2+8y-11\right) & -(2y+1)\left(y^2+y+1\right)\left(12y^2+12y-7\right)\\\\
9\left(12y^2+12y-7\right) & 3\left(y^2+y+1\right)\end{array}\right|^2=$

$\left|\begin{array}{cc}
9(2y+1)\left(8y^2+8y-11\right) & -6\left(y^2+y+1\right)\\\\
 9\left(12y^2+12y-7\right) & 18(2y+1)\left(y^2+y+1\right)\end{array}\right|\cdot$ $\left|\begin{array}{cc}
-6\left(y^2+y+1\right) & -(2y+1)\left(y^2+y+1\right)\left(12y^2+12y-7\right)\\\\
 18(2y+1)\left(y^2+y+1\right) & 3\left(y^2+y+1\right)\end{array}\right|\iff$

$(2y+1)^2\cdot \left|\begin{array}{cc}
\left(8y^2+8y-11\right) & -\left(12y^2+12y-7\right)\\\\
\left(12y^2+12y-7\right) & 3\end{array}\right|^2=$ $12\left(y^2+y+1\right)\cdot \left|\begin{array}{cc}
(2y+1)\left(8y^2+8y-11\right) & -1\\\\
 \left(12y^2+12y-7\right) & 3(2y+1)\end{array}\right|\cdot$ $\left|\begin{array}{cc}
-1 & -(2y+1)\left(12y^2+12y-7\right)\\\\
 (2y+1) & 1\end{array}\right|$

$\iff$ $(2y+1)^2\left(9y^4+18y^3-9y+1\right)^2=3\left(y^2+y+1\right)\left(12y^4+24y^3-12y-5\right)\left(6y^4+12y^3+4y^2-2y-1\right)\iff$

$\left(4y^2+4y+1\right)\left(81y^8+324y^7+324y^6-162y^5-306y^4+36y^3+81y^2-18y+1\right)=$

$\left(3y^2+3y+3\right)\left(72y^8+288 y^7+336y^6-234y^4-132y^3+4y^2+22y+5\right)\iff$

$324y^{10}+1620y^9+2673y^8+972y^7-$ $1548y^6-1242y^5+162y^4+288y^3+13y^2-14y+1=$

$216y^{10}+1080y^9+2088y^8+1872y^7+$ $306y^6-1098y^5-1086y^4-318y^3+93y^2+81y+15\iff$

$108y^{10}+540y^9+585y^8-900y^7-1854y^6-$ $144y^5+1248y^4+606y^3-80y^2-95y-14=0\iff$

$\boxed{\ (y-1)(y+2)\left(12y^2+12y-7\right)\left(3y^3-3y-1\right)\left(3y^3+9y^2+6y+1\right)=0\ }$ . (see
here).

So the equations what appear in $(**)$ have at least a common root for $y\in\mathbb Q$ iff $y=1\ \vee\ y=-2$ .

$\blacktriangleright\ y=1\implies$ the equations $\left\{\begin{array}{ccc}
15x^2-2x-17 & = & 0\\\
17x^2+18x+1 & = & 0\end{array}\right\|$ have the common root $x=-1$ and from the relation $(4)$ obtain that $z=6$ . In conclusion, $\boxed{\ a=-b^2+b+6\ }$ .

$\blacktriangleright\ y=-2\implies$ $\left\{\begin{array}{ccc}
15x^2+2x-17 & = & 0\\\
17x^2-18x+1 & = & 0\end{array}\right\|$ have the common root $x=1$ and from $(4)$ obtain that $z=-6$ . In conclusion, $\boxed{\ b=a^2-2a-6\ }$ .

Remark. $\left|\begin{array}{ccc}
a^2+ab+b^2=9\\\\
a=-b^2+b+6\end{array}\right|\iff$ $\left|\begin{array}{ccc}
\underline b^2+a\cdot \underline b+\left(a^2-9\right) & = & 0\\\\
\underline b^2-\underline b+(a-6) & = & 0\end{array}\right|$ have at least the common root $b=-\frac {\left|\begin{array}{cc}
1 & a^2-9\\\
1 & a-6\end{array}\right|}{\left|\begin{array}{cc}
1 & a\\\
1 & -1\end{array}\right|}=-\frac {a^2-a-3}{a+1}$ . Thus, $\boxed{\ a=-b^2+b+6\ }\iff$

$(a^2-a-3)+b(a+1)=0\iff$ $a^2-a-3+b(a+1)=a^3-9(a+1)\iff$ $b(a+1)=a^3-a^2-8a-6\ ,\ a\ne -1\iff$ $\boxed{b=a^2-2a-6}$ .



PP1. Find the range of the function $f:\mathbb R\rightarrow\mathbb R$ , where $f(x)=\sqrt {x^2 + x+ 1}-\sqrt{x^2 - x + 1}$ .

Proof. Range of $f:\mathbb E\rightarrow\mathbb F$ is the set of all $\lambda \in \mathbb F$ for which $f(x)=\lambda$ has at least a zero $x_{\lambda}$ , i.e. exists at least $x_{\lambda}\in \mathbb E$ so that $f\left(x_{\lambda}\right)=\lambda$ , i.e. $x_{\lambda}\stackrel{f}{\rightarrow }\lambda$ . Let the equation $f(x)=\lambda$ ,

where $\lambda\in\mathbb R$ . Since $f(-x)=-f(x)$ for any $x\in\mathbb R$ ($f$ is odd) can suppose w.l.o.g. $x\ge 0$ . Thus, $\left\{\begin{array}{ccc}
\lambda < 0 & \implies & x\in\emptyset\\\\
\lambda=0 & \implies & x_{\lambda}=0\end{array}\right\|$ . The equation $f(x)=\lambda$ , where $\lambda >0$ becomes

$\sqrt {x^2 + x+ 1}=\lambda+\sqrt {x^2 -x+ 1}$ , i.e. $x^2+x+1=\lambda^2+x^2-x+1+2\lambda\sqrt{x^2-x+1}\iff$ $2x-\lambda^2=2\lambda\sqrt{x^2-x+1}$ , where $\boxed{2x>\lambda^2}\ (1)$ . Thus,

$\left(2x-\lambda^2\right)^2=4\lambda^2\left(x^2-x+1\right)\iff$ $4x^2-4\lambda^2x+\lambda^4=4\lambda^2\left(x^2-x+1\right)\iff$ $4\left(1-\lambda^2\right)x^2=\lambda^2\left(4-\lambda^2\right)$ . Hence $(\lambda -1 )(\lambda -2)\ge 0$ , i.e. $\lambda\in (0,1]\cup [2,\infty )$ .

Prove easily that $\lambda =1\implies x\in\emptyset$ , i.e. $\lambda\ne 1$ . Thus obtain at most a possible zero $x=\frac {\lambda}{2}\cdot\sqrt{\frac {\lambda^2-4}{\lambda^2-1}}$ . From the relation $(1)$ obtain $\sqrt{\frac {4-\lambda^2}{2-\lambda^2}}\ge \lambda\iff$ $\frac {4-\lambda^2}{1-\lambda^2}-\lambda^2\ge 0\iff$

$\frac {\lambda^4-2\lambda^2+4}{1-\lambda^2}\ge 0\iff$ $1-\lambda^2\ge 0\iff$ $\lambda < 1$ . In conclusion, the range of the function $f$ on $\mathbb R_+$ is $[0,1)$ . Hence the range of the function $f$ on $\mathbb R$ is $\mathrm{Im}(f)=f(\mathbb R)=(-1,1)$ .



PP2. Solve the equation $4x^2+12x\sqrt{x+1}=27(x+1)$ , where $x\in \mathbb R$ .

Proof 1. Observe that the given equation is equivalently with $\left(2x+3\sqrt {x+1}\right)^2=\left(6\sqrt {x+1}\right)^2$ . Appear two cases:

$1.\blacktriangleright\ 2x+3\sqrt {x+1}=6\sqrt {x+1}\iff$ $2x=3\sqrt {x+1}\ ,\ x\ge 0\iff$ $4x^2-9(x+1)=0\iff$ $\boxed{\ x_1=3\ }$ .

$2.\blacktriangleright\ 2x+3\sqrt {x+1}=-6\sqrt {x+1}\iff$ $2x=-9\sqrt {x+1}\ ,\ x\le 0\iff$ $4x^2-81(x+1)=0\iff$ $\boxed{x_2=\frac {9\left(9-\sqrt {97}\right)}{8}}$ .

Proof 2. I"ll use the substitution $y=\sqrt {x+1}$ , where $y\ge 0$ . Thus, $x=y^2-1$ and the equation becomes $4y^4+12y^3-35y^2-12y+4=0$ .

Observe that $y=0$ is not a solution and so the equation is equivalent to $4\left(y-\frac 1y\right)^2+12\left(y-\frac 1y\right)-27=0$ and $y>0$ $\iff$ $y>0$ and

$y-\frac 1y\in\left\{\frac 32,-\frac 92\right\}$ $\iff$ $y=2$ or $y=\frac{\sqrt{97}-9}4$ . Hence the result is $\boxed{x\in\left\{\frac{9(9-\sqrt{97})}8,3\right\}}$ .



PP3. Find all values of $a\in \mathbb R$ such that the equation $f(x)=0$ has only real roots, where $f(x)= x^6+3x^5+(6-a)x^4+(7-2a)x^3+(6-a)x^2+3x+1=0$

Proof. Since $f(0)\cdot f(-1)\ne 0$ , i.e. $x\not\in\{-1,0\}$ can write $a=\frac {x^6+3x^5+6x^4+7x^3+6x^2+3x+1}{x^2(x+1)^2}\stackrel{(*)}{=}\frac {\left(x^2+x+1\right)^3}{\left(x^2+x\right)^2}=\frac {y^3}{(y-1)^2}=g(y)$ ,

where denoted $x^2+x+1=y\ge \frac 34$ . Thus, $f(x)=0$ has all real roots iff the equation $g(y)=a$ has all real roots and greater or equally than $\frac 34$ . Define the following

equivalence relation over $\mathbb R\ :\ X\ \sim\ Y\ \iff\ \mathrm{sign} (X)=$ $\mathrm{sign}(Y)$ , i.e. $X=Y=0\ \vee\ XY>0$ . Prove easily that $(\forall\ y\in\left[\frac 34,1\right)\cup\left(1,\infty\right)$ we have $g'(y)\ \sim\ (y-1)(y-3)\ ,\ g\left(\frac 34\right)=g(3)=\frac {27}{4}$ and $\lim_{y\to 1}g(y)=\infty$ . In conclusion, the equation $g(y)=0$ has all real roots and greater or equally

than $\frac 34\iff$ $a\ge\frac {27}{4}$ , i.e. the equation $f(x)=0$ has all real roots iff $\boxed{\ a\ge\frac {27}{4}\ }$ .

==================================================================================================================

$(*)$ Denote $x+\frac 1x=t$ . Thus, $x^6+3x^5+6x^4+7x^3+6x^2+3x+1=$ $x^3\cdot\left[\left(x^3+\frac {1}{x^3}\right)+3\cdot\left(x^2+\frac {1}{x^2}\right)+6\cdot\left(x+\frac 1x\right)+7\right]=$

$x^3\cdot\left[\left(t^3-3t\right)+3\cdot\left(t^2-2\right)+6t+7\right]=$ $x^3\cdot(t^3+3t^2+3t+1)=$ $[x(t+1)]^3=(xt+x)^3=$ $\left[x\left(x+\frac 1x\right)+x\right]^3=\left(x^2+x+1\right)^3$ .

Remark. Observe that $g(y)\ge\frac {27}{4}\iff$ $4y^3\ge 27(y-1)^2$ . Indeed, $4y^3-27(y-1)^2=(y-3)^2(4y-3)\ge 0$ .



PP4. Let $p\in \mathbb R[X]$ be a polynomial so that $(\forall )\ x \in \mathbb{R}\ ,\ p(x)\ge 0$ . Prove that $(\exists )\ \{m,n\}\subset R[X]$ so that $p=m^2+n^2$ .

Proof. Suppose w.l.o.g. that $p$ has the dominant coefficient $1$ and $p(x)>0$ for any $x\in\mathbb R$ , i.e. $p(x)=0\implies x\not\in \mathbb R$ . Is obviously that the degree of $p$ is even,

i.e. $\mathrm{gr}(p)=2s$ and for any $z\not \in\mathbb R$ we have $p(z)=0\iff p\left(\overline z\right)=0$ . Hence $p(x)=\prod_{k=1}^s\left(x-z_k\right)\left(x-\overline z_k\right)=$ $\prod_{k=1}^s\left[\left(x-x_k\right)-i\cdot y_k\right]\cdot\prod_1^s\left[\left(x-x_k\right)+i\cdot y_k\right]=$

$u\cdot\overline u$ , where $z_k=x_k+i\cdot y_k$ for any $k\in\overline{1,s}$ and $u(x)=\prod_{k=1}^s\left[\left(x-x_k\right)-i\cdot y_k\right]\in\mathbb C[X]$ . Since exists two polynomials $\{m,n\}\subset \mathbb R[X]$

so that $u(x)=m(x)+i\cdot n(x)$ obtain that $p=u\cdot\overline u=$ $(m+i\cdot n)(m-i\cdot n)=m^2+n^2$ .


Application. If $p\in\mathbb R[X]$ such that $(\forall )\ x\in\mathbb R$ have $p(x)\ge 0$ , then $(\forall )$ matrix $A\in\mathbb M_n(\mathbb R)$ have $\det p(A)\ge 0$ .

Proof. Indeed, from upper property get that exist $\{m.n\}\subset\mathbb R[X]$ so that $p=m^2+n^2$ . Hence and $p(A)=m^2(A)+n^2(A)$ . Since the matrices $m(A)$ , $n(A)$ are permutably, obtain

that $p(A)=[m(A)+i\cdot n(A)]\cdot [m(A)-i\cdot n(A)]$ . Denote $U=m(A)+i\cdot n(A)$ , where $U\in\mathrm M_n(\mathbb R)$ . Observe that $\overline U=m(A)-i\cdot n(A)$ and $\det\overline U=\overline {\det U}$ .

In conclusion, $p(A)=U\cdot\overline U$ and $\det p(A)=\det \left(U\cdot\overline U\right)=$ $\det U\cdot\det \overline U=$ $\det U\cdot\overline{\det U}=$ $|\det U|^2\ge 0$ , i.e. $\det p(A)\ge 0$ .



PP5. Find real number $p$ so that the equation $||x-5|-3|=px+2$ has only three real distinct zeroes.

Graphical method. Construct easily the graph of the function $f(x)=\left|\left|x-5\right|-3\right|\ ,\ x\in\mathbb R$ . A variable line $d_p$ with the equation $d_p(x)=px+2$ pass through the fixed point $A(0,2)$

which belongs to the graph $\mathrm{G}_f$ of the function $f$ , i.e. $0$ is an independent zero of the equation $\boxed{\ f(x)=d_p(x)\ }\ (*)$ . By moving $d_p$ around $A$ get the points $B(5,3)$ and $C(8,0)$ which

define the required lines $AB$ and $AC$ with the slopes $p\in\left\{-\frac 14,\frac 15\right\}$ . Generally, if denote the solution $S_p$ and the number $n_p$ of the zeroes for the equation $(*)$ , then $:$

$\mathrm{S}_p=\{0\}\cup\left\{\begin{array}{ccc}
\emptyset & \mathrm{if} & p<-1\ \vee\ p\ge 1\\\\
(-\infty , 2]^* & \mathrm{if} & p=-1\\\\
\left\{\frac {4}{1-p}\right\} & \mathrm{if} & -1<p<-\frac 14\\\\
\left\{\frac {16}{5},8\right\} & \mathrm{if}  & p=-\frac 14\\\\
\left\{\frac {4}{1-p},\frac {6}{1+p},\frac {10}{1-p}\right\} & \mathrm{if} & -\frac 14<p<\frac 15\\\\
\left\{5,\frac {25}{2}\right\} &  \mathrm{if} & p=\frac 15\\\\
\left\{\frac {10}{1-p}\right\} & \mathrm{if} & \frac 15<p<1\\\\
\end{array}\right\|$ and $n_p=\left\{\begin{array}{ccc}
1 & \mathrm{if} & p\in (-\infty , -1)\cup [1,\infty )\\\\
\infty & \mathrm{if} & p\in \{-1\}\\\\
2 & \mathrm{if} & p\in \left(-1,-\frac 14\right)\cup\left(\frac 15,1\right)\\\\
3 & \mathrm{if} & p\in\left\{-\frac 14,\frac 15\right\}\\\\
4 & \mathrm{if} & p\in\left(-\frac 14,\frac 15\right)\end{array}\right\|$ .

Remarks.
$\blacktriangleright$ Denote the point $D(2,0)$ and $E(9,1)$ . Observe that $\left\{\begin{array}{ccccc}
d_p\cap [DB]\ : & \iff  & \left|\begin{array}{c}
y=px+2\\\
y=x-2\end{array}\right| & \iff & x=\frac {4}{1-p}\ ,\ p\in \left[-1,\frac 15\right]\\\\
d_p\cap [BC]\ : & \iff & \left|\begin{array}{c}
y=px+2\\\
y=-x+8\end{array}\right| & \iff & x=\frac {6}{1+p}\ ,\ p\in \left[-\frac 14,\frac 15\right]\\\\
d_p\cap [CE\ : & \iff & \left|\begin{array}{c}
y=px+2\\\
y=x-8\end{array}\right| & \iff & x=\frac {10}{1-p}\ ,\ p\in \left[-\frac 14,1\right)\end{array}\right\|$ .

$\blacktriangleright$ The equation $||x-5|-3|=px+2$ , where $x\in\mathbb R$ and$p\in\mathbb R$ has a maximum number of zeroes if and only if $p\in\left(-\frac 14,\frac 15\right)$ .

$\blacktriangleright$ $||x-5|-3|=px+2\ ,\ x\in\mathbb R^*$ and $p\not\in [-1,1)$ hasn't zeroes, i.e. the range of $g:\mathbb R\rightarrow \mathbb R$ , where $g(x)=\left\{\begin{array}{ccc}
\frac {||x-5|-3|-2}{x} & \mathrm{if} & x\ne 0\\\\
-1 & \mathrm{if} & x=0\end{array}\right\|$ is $g(\mathbb R)=\mathrm{Im}(g)=\left[-1,1\right)$ .



PP6. Let $P(x) = x^3 - 2x^2 + 3x - 4=0$ $\begin{array}{cc}
\nearrow & a\\\\
\rightarrow & b\\\\
\searrow & c\end{array}$ . Find $p\equiv \left( a + \frac{1}{a} \right) \left(b + \frac{1}{b} \right) \left( c + \frac{1}{c} \right)$ and a polynomial with integer coefficients with roots ${ \left(a + \frac{1}{a} \right), \left( b + \frac{1}{b} \right), \left( c + \frac{1}{c} \right) }$.

Proof 1 (level IX). I"ll use the Viete's relations $:\ \left\{\begin{array}{ccccc}
s_1 & = & a+b+c & = & 2\\\\
s_2 & = & ab+bc+ca & = & 3\\\\
s_3 & = & abc & = & 4\end{array}\right\|$ and $abc\cdot \prod\left(a+\frac 1a\right)=$ $\prod\left(1+a^2\right)=$ $1+\sum a^2+\sum \left(b^2c^2\right)+(abc)^2=$

$1+s_1^2-2s_2+s_2^2-2s_1s_3+s_3^2=$ $1+4-6+9-16+16=8\implies$ $abc\cdot p=8\implies$ $4p=8\implies \boxed{p=2}$ . Now I"ll find $m=\sum \left(a+\frac 1a\right)=\sum a+\sum\frac 1a=$

$s_1+\frac {s_2}{s_3}=2+\frac 34=\frac {11}4$ $\implies$ $\boxed{m=\frac {11}4}$ . Analogously $n=\sum\left(b+\frac 1b\right)\left(c+\frac 1c\right)=$ $\sum bc+\sum\frac {b^2+c^2}{bc}+\sum\frac 1{bc}=$ $s_2+\frac 1{s_3}\cdot\sum bc(b+c)+\frac {s_1}{s_3}=$

$s_2+\frac {s_1}{s_3}+\frac {s_1s_2-3s_3}{s_3}=2$ $\implies$ $\boxed {n=2}$ . In conclusion, the required equation is $y^3-my^2+ny-p=0$ , i.e. $4y^3-11y^2+8y-8=0$ .

Proof 2 (level XI). $P(x)=\prod (x-a)\implies$ $\prod \left(a^2+1\right)=\prod (a^2-i^2)=\prod (-i-a)(i-a)=\prod (-i-a)\cdot\prod (i-a)=P(-i)P(i)$ . Therefore,

$p=\frac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{abc}=$ $\frac{P\left(-i\right)P\left(i\right)}{abc}.$ Since $\left\{\begin{array}{ccc}
P\left(i\right) & = & -2+2i\\\\
P\left(-i\right) & = & -2-2i\end{array}\right\|$ and $abc=4$ , btain that $p=\frac{\left(-2+2i\right)\left(-2-2i\right)}{4}\implies$ $\boxed{p=2}$.

Let $\boxed{y=x+\frac 1x}$ . Eliminate $x$ between $x^3 - 2x^2 + 3x - 4=0$ and $x^2-yx+1=0$ . Thus, $x^2=yx-1\implies$ $(x-2)(yx-1)+3x-4=0\implies$

$yx^2+(2-2y)x-2=0\implies$ $\left|\begin{array}{ccccccc}
y\cdot x^2 & + & (2-2y)\cdot x & + & (-2) & = & 0\\\\
1\cdot x^2 & + & (-y)\cdot x & + & 1 & = & 0\end{array}\right|$ $\implies$ $\left|\begin{array}{cc}
y & -2\\\\
1 & 1\end{array}\right|^2=\left|\begin{array}{cc}
y & 2-2y\\\\
1 & -y\end{array}\right|\cdot\left|\begin{array}{cc}
2-2y & -2\\\\
-y & 1\end{array}\right|\implies$

$(y+2)^2=(y^2-2y+2)(4y-2)\implies$ $\boxed{4y^3-11y^2+8y-8=0}$ . Observe that we found again $p=-\frac {-8}4$ , i.e. $\boxed{p=2}$ .
This post has been edited 106 times. Last edited by Virgil Nicula, Jan 20, 2016, 2:33 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a