155. A constant ratio in a triangle ABC.
by Virgil Nicula, Oct 14, 2010, 10:42 AM
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=371730
Proof. Denote
. Observe that
. Therefore,
![$IE+IF=\frac as\cdot \left[c\cdot\cos\frac B2\cdot\sin\left(y+\frac B2\right)+b\cdot\cos\frac C2\cdot\sin\left(x+\frac C2\right)\right]=$](//latex.artofproblemsolving.com/5/e/4/5e44b76525acfe5f86e2c922d06cbebe62df549e.png)
. Denote
Apply the Ptolemy's relation in the cyclical quadrilateral

. Thus,

. Since
obtain


, i.e.
.
Remarks.
If
, then
.
If
, then
and
.
If
, where
is the orthocenter, then
and
.
.
(N.M.O, Iran - 1998).
For any
for which
separates
,
we have
.
For
and the projections
,
,
of
on the tangent lines to
in
,
,
respectively obtain
,
,
and
. Since
obtain
with equality for
. Is interesting and the identity
.
Otherwise (syntetical), Denote the midpoint
of
, the projections
,
of
,
on
respectively and
. From an well-known property 
obtain that the quadrilateral
is a parallelogram. Since
obtain
. Since
obtain
. Since 
obtain
. Since
obtain
from where obtain
, i.e.
.
Otherwise. Prove easily that
, i.e.
. Thus,


![$IX=-r+R\left[\cos (B-C)+\cos A\right]$](//latex.artofproblemsolving.com/f/5/d/f5d13d8bebe6c22b6cd812e717d9892857398d85.png)
.
Quote:
Proposed problem. Let
be a triangle with the circumcircle
and the incenter
. Consider
for which the line 
separates
,
. Denote the projections
,
of
on the line
,
respectively. Prove that
.
Remark. For
obtain the proposed problem from N.M.O. IRAN, 1998.





separates








Remark. For





![$IE+IF=\frac as\cdot \left[c\cdot\cos\frac B2\cdot\sin\left(y+\frac B2\right)+b\cdot\cos\frac C2\cdot\sin\left(x+\frac C2\right)\right]=$](http://latex.artofproblemsolving.com/5/e/4/5e44b76525acfe5f86e2c922d06cbebe62df549e.png)
![$\frac {a}{2s}\cdot\left\{c\cdot\left[\sin(B+y)+\sin y\right]+b\cdot\left[\sin(C+x)+\sin x\right]\right\}\implies$](http://latex.artofproblemsolving.com/3/b/3/3b376723fe00329e7b8104dfb07f67127594cdc6.png)

Apply the Ptolemy's relation in the cyclical quadrilateral













![$(b+c)\sin(C+x)=\left(\frac {bc}{ar}\cdot\lambda -1\right)\cdot2R\cdot [\sin B\sin x+\sin C\sin (A-x))]$](http://latex.artofproblemsolving.com/e/1/b/e1b6d4fb4cc21cf8590916212ad72825c01e0bdc.png)


![$R(bc\lambda -ar)\cdot [\cos(B-x)+\cos (C-A+x)]=$](http://latex.artofproblemsolving.com/1/b/d/1bd82100ed816cbaeac7b56b7b893fd653fbec38.png)




Remarks.






































Otherwise (syntetical), Denote the midpoint

![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)







obtain that the quadrilateral













Otherwise. Prove easily that










![$IX=R\cdot\left[1+\cos (B-C)-(\cos B+\cos C)\right]$](http://latex.artofproblemsolving.com/8/e/5/8e5bb1d80596f21c76120800b4b7ddbd67bb1484.png)

![$IX=R\left[1+\cos (B-C)+\cos A-1-\frac rR\right]$](http://latex.artofproblemsolving.com/7/a/0/7a0626fe0931f1bc4f506384cc1475a9b7aed7a6.png)

![$IX=-r+R\left[\cos (B-C)+\cos A\right]$](http://latex.artofproblemsolving.com/f/5/d/f5d13d8bebe6c22b6cd812e717d9892857398d85.png)






This post has been edited 55 times. Last edited by Virgil Nicula, Nov 22, 2015, 9:12 PM