155. A constant ratio in a triangle ABC.

by Virgil Nicula, Oct 14, 2010, 10:42 AM

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=371730
Quote:
Proposed problem. Let $ABC$ be a triangle with the circumcircle $w$ and the incenter $I$ . Consider $D\in w$ for which the line $BC$

separates $A$ , $D$ . Denote the projections $E$ , $F$ of $I$ on the line $BD$ , $CD$ respectively. Prove that $IE+IF=AD\cdot\sin A$ .

Remark. For $A\in\left\{30^{\circ},150^{\circ}\right\}$ obtain the proposed problem from N.M.O. IRAN, 1998.
Proof. Denote $\left\|\begin{array}{c}
m\left(\widehat {BAD}\right)=x\\\
m\left(\widehat {CAD}\right)=y\end{array}\right\|$ . Observe that $x+y=A\ ,\ (B+y)+(C+x)=180^{\circ}$ . Therefore,

$\left\|\begin{array}{ccc}
BD=2R\sin x & \wedge & CD=2R\sin y\\\\
IB=\frac {ac}{s}\cdot\cos\frac B2 & \wedge & IC=\frac {ab}{s}\cdot\cos\frac C2\\\\
IE=IB\cdot\sin\left(y+\frac B2\right) & \wedge & IF=IC\cdot\sin\left(x+\frac C2\right)\end{array}\right\|$ $\implies$ $IE+IF=\frac as\cdot \left[c\cdot\cos\frac B2\cdot\sin\left(y+\frac B2\right)+b\cdot\cos\frac C2\cdot\sin\left(x+\frac C2\right)\right]=$

$\frac {a}{2s}\cdot\left\{c\cdot\left[\sin(B+y)+\sin y\right]+b\cdot\left[\sin(C+x)+\sin x\right]\right\}\implies$ $\boxed{IE+IF=\frac {a}{2s}\cdot \left\{(b+c)\sin (C+x)+(b\sin x+c\sin y)\right\}}$ . Denote

Apply the Ptolemy's relation in the cyclical quadrilateral $ABDC\ :$ $AD=\frac ba\cdot BD+\frac ca\cdot CD=$ $\frac ba\cdot 2R\sin x+\frac ca\cdot 2R\sin y$ $\implies$

$\boxed{AD=\frac {2R}{a}\cdot (b\sin x+c\sin y)}$ . Thus, $IE+IF=\lambda\cdot AD$ $\iff$ $(b+c)\sin (C+x)+(b\sin x+c\sin y)=\frac {2s}{a}\cdot \frac {2R}{a}\cdot (b\sin x+c\sin y)\cdot \lambda$ $\iff$

$(b+c)\sin(C+x)=\left(\frac {4sR}{a^2}\cdot\lambda -1\right)\cdot (b\sin x+c\sin y)$ . Since $\frac {4sR}{a^2}=\frac {bc}{ar}$ obtain $IE+IF=\lambda\cdot AD$ $\iff$

$(b+c)\sin(C+x)=\left(\frac {bc}{ar}\cdot\lambda -1\right)\cdot2R\cdot [\sin B\sin x+\sin C\sin (A-x))]$ $\iff$ $ra(b+c)\sin (C+x)=$

$R(bc\lambda -ar)\cdot [\cos(B-x)+\cos (C-A+x)]=$ $2R(bc\lambda -ra)\sin A\sin (C+x)$ , i.e. $r(b+c)=bc\lambda -ar$ $\iff$ $\lambda =\frac {2sr}{bc}=\sin A$ .

Remarks.

$\blacktriangleright$ If $\left\{A,D\right\} =AO\cap w$ , then $IE+IF=a$ .

$\blacktriangleright$ If $\left\{A,D\right\} =AI\cap w$ , then $IE+IF=a\cdot\cos\frac {B-C}{2}$ and $\boxed{IE+IF=a\ \iff\ b=c}$ .

$\blacktriangleright$ If $\left\{A,D\right\} =AH\cap w$ , where $H$ is the orthocenter, then $IE+IF=a\cdot\cos (B-C)$ and $\boxed{IE+IF=a\ \iff\ b=c}$ .

$\blacktriangleright\ IE+IF=AD\ \iff\ A=90^{\circ}$ .

$\blacktriangleright\ IE+IF=\frac 12\cdot AD\ \iff\ A\in\left\{30^{\circ},150^{\circ}\right\}$ (N.M.O, Iran - 1998).

$\blacktriangleright$ For any $D\in w$ for which $BC$ separates $A$ , $D$ we have $IE+IF\ \le\ AD$ .

$\blacktriangleright$ For $D\in \left\{A,B,C\right\}$ and the projections $X$ , $Y$ , $Z$ of $I$ on the tangent lines to $w$ in $A$ , $B$ , $C$ respectively obtain $IX=h_a-r$ ,

$IY=h_b-r$ , $IZ=h_c-r$ and $IX+IY+IZ=h_a+h_b+h_c-3r$ . Since $h_a+h_b+h_c\ge 9r$ obtain

$IX+IY+IZ\ge 6r$ with equality for $a=b=c$ . Is interesting and the identity $a\cdot IX+b\cdot IY+c\cdot IZ=4S$ .

Otherwise (syntetical), Denote the midpoint $M$ of $[BC]$ , the projections $K$ , $L$ of $I$ , $A$ on $BC$ respectively and $S\in MI\cap AL$ . From an well-known property $AS=r$

obtain that the quadrilateral $ASKI$ is a parallelogram. Since $SK\parallel AI$ obtain $\widehat{LSK}\equiv\widehat{LAI}$ . Since $XI\parallel AO$ obtain $\widehat{XIA}\equiv\widehat{IAO}$ . Since $m(\widehat{LAI})=$

$m(\widehat{IAO})=$ $\frac {|B-C|}{2}$ obtain $\widehat{XIA}\equiv\widehat{LSK}$ . Since $SK=AI$ obtain $\triangle SLK\equiv\triangle IXA$ from where obtain $IX=SL$ , i.e. $\boxed{IX=h_a-r}$ .

Otherwise. Prove easily that $\cos\frac A2\sin\frac B2\sin\frac C2=\frac {s-a}{4R}$ , i.e. $IA=\frac {s-a}{\cos\frac A2}$ $\iff$ $IA=4R\sin\frac B2\sin\frac C2$ . Thus, $IX=IA\cos\frac {B-C}{2}$ $\iff$

$IX=4R\sin\frac B2\sin\frac C2\cdot\cos\frac {B-C}{2}$ $\iff$ $IX=2R\cos\frac {B-C}{2}\cdot\left(\cos\frac {B-C}{2}-\cos\frac {B+C}{2}\right)$ $\iff$

$IX=R\cdot\left[1+\cos (B-C)-(\cos B+\cos C)\right]$ $\iff$ $IX=R\left[1+\cos (B-C)+\cos A-1-\frac rR\right]$ $\iff$ $IX=-r+R\left[\cos (B-C)+\cos A\right]$

$\iff$ $IX=-r+2R\cos \frac {B+A-C}{2}\cos\frac {A+C-B}{2}$ $\iff$ $IX=-r+2R\sin C\sin B$ $\iff$ $\boxed{IX=h_a-r}$ .
This post has been edited 55 times. Last edited by Virgil Nicula, Nov 22, 2015, 9:12 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a