181. Two special inequalities from CRUX (own).

by Virgil Nicula, Dec 1, 2010, 10:27 AM

Proposed problem 1. $\{a,b,c\}\subset\mathbb R\ \implies\ \boxed{\ \ a^2\ +\ b^2\ +\ c^2\ =\ 9\ \Longrightarrow\ 3\ \min\ \{\ a\ ,\ b\ ,\ c\ \}\ \le\  1\ +\ abc\ }$ (CRUX, 3241/4/2007).

Proof. I"ll suppose w.l.o.g. that $a\le b\le c$. Thus, the problem reduces to prove that $3a\le 1+abc$. If $abc=0$ , then $a\le 0$ and $3a< 1+abc$ .

If $a\le b < 0 < c$ , then $abc>0$ and $3a<0<1<1+abc$ , i.e. $3a<1+abc$ . Thus, are remaining only two cases.

$1\blacktriangleright$ If $a\le b\le c<0$ or $a < 0 < b\le c$, then $2bc\le (b^2+c^2)=9-a^2$ and $abc\ge \frac {a(9-a^2)}{2}$ . But $\frac {a(9-a^2)}{2}\ge (3a-1)$ $\iff$ $a^3-3a-2\le 0$ $\iff$

$(a-2)(a+1)^2\le 0$, which is true. Thus, $abc\ge \frac {a(9-a^2)}{2}\ge 3a-1$, i.e. $3a \le 1+abc$. We have equality iff $\boxed{a=-1\ \wedge\ b=c=2}$ .

$2\blacktriangleright$ If $0 < a\le b\le c$, then $9=a^2+b^2+c^2\ge b^2+2a^2$, i.e. $2a^2+b^2-9\le 0$ , $a^2-b^2\le 0$ and $b^2 c^2-a^2\left(9-2a^2\right)=$

$b^2\left(9-a^2-b^2\right)-a^2\left(9-2a^2\right)=$ $\left(a^2-b^2\right)\left(2a^2+b^2-9\right)\ge 0$ , i.e. $b^2 c^2\ge a^2\left(9-2a^2\right)$ . But $a^2\le 3< \frac 92$ $\implies$ $\left\|\begin{array}{c}
9-2a^2> 0\\\\
bc\ge a\sqrt {9-2a^2}\end{array}\right\|$ ,

i.e. $abc\ge a^2\sqrt{9-2a^2}$. Is sufficient to prove $a^2\sqrt{9-2a^2}\ge 3a-1\  (*)$ , i.e. $f(a)=2a^6-9a^4+(3a-1)^2\le 0\ ,\ (\forall )\ a\in \left(0 , \sqrt 3\right]$ .

$2.1\blacktriangleright\ \ :\ \ a\in \left(0, \frac 13 \right]$ $\implies$ $a^2\sqrt{9-2a^2}>0\ge 3a-1$ $\implies$ the relation $(*)$ is truly, i.e. $f(a)\le 0$ .

$2.2\blacktriangleright\ \ :\ \ a\in \left(\frac 13 ,1\right]$ $\implies$ $f(a)=2a^4\left(a^2-1\right)-\left(a^2\sqrt 7 -3a+1\right)\left(a^2\sqrt 7 +3a-1\right)< 0$ .

$2.3\blacktriangleright\ \ :\ \ a\in \left(1, \sqrt{\frac 32}\right]$ $\implies$ $f(a)=\left(a^4+\frac 32\right)\left(2a^2-3\right) - 6a^2\left(a^2-1\right)- 6\left(a-\frac {11}{12}\right)< 0$ .

$2.4\blacktriangleright\ \ :\ \ a\in \left(\sqrt {\frac 32} ,\sqrt 3 \right]$ $\implies$ $f(a)=a^2\left(a^2-3\right)\left(2a^2-3\right)+(1-6a) < 0$ .


Application. Prove that $\boxed{\ \left\{\begin{array}{c}
\{a,b,c\}\subset\mathbb R\\\\
a^2 + b^2 + c^2 =9\end{array}\right|\ \implies\ 2(a+b+c)\le 10+abc\ }$ . Indeed, can suppose w.l.o.g. $a\le b\le c$ . Thus,

$\underline{2(a+b+c)}=\left[2\cdot b+2\cdot c+(-1)\cdot a\right]+3a\stackrel{(C.B.S)}{\le}$ $\sqrt {\left[2^2+2^2+(-1)^2\right]\cdot\left[b^2+c^2+a^2\right]}+3a=9+3a\stackrel{(*)}{\le}\underline{10+abc}$ .



Proposed problem 2. Let $\left\{\begin{array}{c}
a>0\ ,\ b>0\\\
(a-1)(b-1)>0\end{array}\right\|\ \implies\ \boxed{\ a^b + b^a > 1 + ab + (1-a)(1-b)\cdot\min \{1,ab\}\ }$ (CRUX, 3260/4/2007).

Proof. I"ll use the well-known Bernoulli's inequality : $\left\{\begin{array}{cccc}
0<a<1 & \Longrightarrow  & \left( \forall \right) x>-1 \ , & (1+x)^a\le 1+ax\\\\ 
1\le a & \Longrightarrow & \left( \forall \right) x>-1 \ , & (1+x)^a\ge 1+ax\end{array}\right\|$ .

The first case. $0<a,b\le 1\Longrightarrow \min \{ 1,ab\}=ab$ . Thus, $\left(\frac 1a\right)^b=$ $\left[ 1+\left( \frac 1a -1\right)\right]^b\le $ $\frac{a+b-ab}{a}$ $\Longrightarrow $ $a^b\ge \frac{a}{a+b-ab}$ .

Analogously, $b^a\ge \frac{b}{a+b-ab}$. Thus, $a^b+b^a\ge $ $\frac{a+b}{a+b-ab}=$ $1+ab+\frac{ab(1-a)(1-b)}{a+b-ab}$ . Since $a+b-ab=a+b(1-a)>0$ ,

$\frac{ab}{a+b-ab}\ge ab$ $\Longleftrightarrow$ $ (1-a)(1-b)\ge 0$ , what is truly. Thus, $\frac{ab(1-a)(1-b)}{a+b-ab}\ge$ $ ab(1-a)(1-b)$ .

Therefore, $a^b+b^a\ge $ $1+ab+ab(1-a)(1-b)=$ $1+ab+(1-a)(1-b)\cdot \min \{1,ab\}$ .

The second case. $1\le a,\ 1\le b $ $\Longrightarrow $ $\min \{1,ab\}=1$ . Thus, $a^b\ge 1+b(a-1)$ , i.e. $a^b\ge 1+ab-b$ .

Analogously, $b^a\ge 1+ab-a$ . Thus, $a^b+b^a\ge $ $1+ab+(1-a)(1-b)=$ $1+ab+(1-a)(1-b)\cdot \min \{1,ab\}$ . See
here.
This post has been edited 49 times. Last edited by Virgil Nicula, Nov 22, 2015, 6:30 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a