363. Geometry problems with perpendicularities.

by Virgil Nicula, Dec 1, 2012, 12:37 PM

PP11. Let $\triangle ABC$ and for an interior point $P$ denote $\left\{\begin{array}{c}
D\in AP\cap BC\\\
E\in BP\cap CA\\\
F\in CP\cap AB\end{array}\right|$ . Prove that $\frac{1}{PD}=\frac{1}{AD}+\frac{1}{BD}+\frac{1}{CD}\Longrightarrow DE\perp DF$ (2/4/2013).

Proof. Apply the Menelaus' theorem to the transversals: $\left\{\begin{array}{ccccc}
\overline{BPE}/\triangle ADC\ : & \frac {BD}{BC}\cdot \frac {EC}{EA}\cdot \frac {PA}{PD}=1 & \implies & \frac {BD}{BC}\cdot\frac {PA}{PD}= \frac {EA}{EC} & (1)\\\\
\overline{CPF}/\triangle ADB\ : & \frac {CD}{CB}\cdot \frac {FB}{FA}\cdot \frac {PA}{PD}=1 & \implies & \frac {CD}{CB}\cdot\frac {PA}{PD}= \frac {FA}{FB} & (2)\end{array}\right|$ . Therefore, $\frac{1}{PD}=\frac{1}{AD}+\frac{1}{BD}+\frac{1}{CD}$ $\iff$

$\frac{1}{PD}-\frac{1}{AD}=\frac{1}{BD}+\frac{1}{CD}$ $\iff$ $\frac{PA}{PD\cdot AD}=\frac{BC}{BD\cdot CD}$ $\iff$ $\left\{\begin{array}{ccccc}
\frac {BD}{BC}\cdot \frac{PA}{PD}=\frac {DA}{DC} & \stackrel{(1)}{\iff} & \frac {EA}{EC}=\frac {DA}{DC} & \iff & m\left(\widehat {EDA}\right)=m\left(\widehat{EDC}\right)\\\\
\frac {CD}{BC}\cdot \frac{PA}{PD}=\frac {DA}{DB} & \stackrel{(2)}{\iff} & \frac {FA}{FB}=\frac {DA}{DB} & \iff & m\left(\widehat {FDA}\right)=m\left(\widehat{FDB}\right)\end{array}\right|$ $\implies$ $DE\perp DF$ .

Reciproc. Suppose $DE\perp DF$ . Denote $L\in DF\cap AE$ . Observe that $(A,C;E,L)$ is an harmonical division. Thus,$DE\perp DF\iff\widehat{EDC}\equiv\widehat{EDA}$ . Thus, $\left\{\begin{array}{c}
\frac {EA}{EC}=\frac {DA}{DC}\\\\
\frac {FA}{FB}=\frac {DA}{DB}\end{array}\right|\ (1)$

In conclusion, $\frac {AD}{PD}=1+\frac {PA}{PD}\stackrel{\mathrm{(Van\ Aubel)}}{\implies}\ \frac {AD}{PD}=$ $1+\frac {EA}{EC}+\frac {FA}{FB}\stackrel{(1)}{=}$ $1+\frac {DA}{DC}+\frac {DA}{DB}\implies$ $\frac {AD}{PD}=1+\frac {DA}{DC}+\frac {DA}{DB}\implies$ $\frac{1}{PD}=\frac{1}{AD}+\frac{1}{BD}+\frac{1}{CD}$ .



PP12. Let $ABCD$ be a square and $P\in (CD)$ . Denote $\left\{\begin{array}{c}
Q\in BP\ ,\ AQ\perp BP\\\
R\in AP\ ,\ BR\perp AP\\\
S\in CQ\cap DR\end{array}\right|$ . Prove that $SA\perp SB$ .

Proof. Denote $\left\{\begin{array}{c}
E\in AQ\cap BC\\\
F\in BR\cap AD\end{array}\right|$ . Since $\widehat{BAE}\equiv\widehat{CBP}$ and $AB=BC$ then $\triangle ABE $ $\stackrel{(\mathrm{s.a.s})}{\cong}$ $ \triangle BCP$ . Thus, $BE=CP$ $\Longrightarrow$ $CE=DP$ .

Likewise, $\triangle BAF \cong $ $\triangle ADP$ $\implies$ $DF=CP$ $\Longrightarrow$ $\triangle PCE$ $\stackrel{(\mathrm{s.a.s})}{\cong}$ $\triangle FDP$ $\Longrightarrow$ $\widehat{EPC}\equiv\widehat{PFD}$ . Since $EQPC$ and $FRPD$ are both cyclically,

due to their right angles at $C,Q$ and $D,R,$ then $\widehat{PRD}\equiv$ $\widehat{PFD}\equiv$ $\widehat{EPC}\equiv$ $\widehat{EQC}$ $\Longrightarrow$ $ARQS$ is cyclically $\Longrightarrow$ $S$ is on the circle with diameter $[AB]$ . Date : 2/5/2013.



PP13. Let acute $\triangle ABC$ with circumcircle $w$ and altitudes $BE$ , $CF$ , where $\left\{\begin {array}{ccc}
E\in AC & ; & F\in AB\\\\
M\in BC & ; & MB=MC\end{array}\right\|$ . The circumcircle of $\triangle AEF$ cut again $w$ at $P$ . Prove that $PA\perp PM$

Proof. The pentagon $AEHFP$ is inscribed in the circle with diameter $[AH]$ , where $H\in BE\cap CF$ is orthocenter of $\triangle ABC$ . Let $\{A,S\}=\{A,O\}\cap w$ .

Therefore, $PA\perp PH\implies$ $S\in PH$ . Is well-known or prove easily that $S\in HM\cap AO$ . In conclusion, $M\in PH\implies PA\perp PM$ .



PP14. Let an $A$-right $\triangle ABC$ , $D\in (AC)$ so that $m\left(\widehat{ABD}\right)=C$ and the projection $E$ of $D$ on $BC$ . Prove that $AE=c$ .

Proof. $\triangle ADB\sim\triangle ABC\implies$ $\frac {AD}{c}=\frac {DB}{a}=\frac cb$ $\implies \left\|\begin{array}{c}
AD=\frac {c^2}{b}\\\\
BD=\frac {ac}{b}\end{array}\right\|\implies$ $CD=AC-AD=b-\frac {c^2}{b}\implies CD=\frac {b^2-c^2}{b}$ . Also $\triangle CDE\sim\triangle CBA\implies$

$\frac {CD}{a}=\frac {DE}{c}=\frac {CE}{b}\implies$ $\left\|\begin{array}{c}
DE=\frac ca\cdot CD\\\\
CE=\frac ba\cdot CD\end{array}\right\|\implies$ $\left\|\begin{array}{ccc}
DE=\frac ca\cdot \frac {b^2-c^2}{b} & \implies & DE=\frac {c\left(b^2-c^2\right)}{ab}\\\\
CE=\frac ba\cdot \frac {b^2-c^2}{b} & \implies & CE=\frac {b^2-c^2}{a}\end{array}\right\|\implies$ $BE=BC-EC=a-\frac {b^2-c^2}{a}\implies BE=\frac {2c^2}{a}$ .

Apply the Ptolemy's theorem to the cyclical quadrilateral $ABED\ :$

$AB\cdot DE+AD\cdot BE=BD\cdot AE\iff$ $c\cdot \frac {c\left(b^2-c^2\right)}{ab}$ $+\frac {c^2}{b}\cdot\frac {2c^2}{a}=\frac {ac}{b}\cdot AE\iff$ $c^2\left(b^2-c^2\right)+2c^4=a^2c\cdot AE\iff$ $\boxed{AE=c}$ .

Remark. $m(\widehat{ABD})=C\implies\Delta ADB\sim\Delta ABC\iff m(\widehat{ADB})=B\ .$ Also, $ABED$ cyclic $\implies m(\widehat{AEB})=$ $m(\widehat{ADB})=B\implies AE=AB$ .



PP15. Let $\triangle ABC$ with $A > 90^\circ$ , circumcenter $O$ and orthcenter $H$ of the triangle $ABC$ . Define the reflection $K$ of $H$ w.r.t. $A$ . Prove that $K\in OC\iff A=90^{\circ}+B$ .

Proof 1. Let the midpoint $M$ of $[BC]$ and diameter $[CD]$ of circumcircle $(O)$ . Thus, $DB=2\cdot OM=AH\implies$ $\boxed{BD=AK}\ (*)$ and $m\left(\widehat{BCD}\right)=A-90^{\circ}$ and

$A=90^{\circ}+B\iff$ $m\left(\widehat{BAD}\right)=B\iff$ $AB\parallel CD$ , i.e. $ABDC$ is isosceles trapezoid $\stackrel{(*)}{\iff}$ $ABDK$ is parallelogram $\iff K\in CD\iff K\in OC$ .

Proof 2. See $\triangle ACK$ , where $AK=-2R\cos A$ . Thus, $K\in OC\iff$ $m\left(\widehat {ACK}\right)=A+C-90^{\circ}$ and $m\left(\widehat {AKC}\right)=180^{\circ}-A\iff$ $\frac {AK}{\sin\widehat {ACK}}=\frac {AC}{\sin \widehat{AKC}}\iff$

$\frac {-2R\cos A}{\sin \left(A+C-90^{\circ}\right)}=\frac {2R\sin B}{\sin\left(180^{\circ}-A\right)}\iff$ $\frac {\cos A}{\cos (A+C)}=\frac {\sin B}{\sin A}\iff$ $\sin A\cos A=-\sin B\cos B\iff$ $\sin 2A+\sin 2B=0\iff$

$2\sin (A+B)\cos (A-B)=0\iff$ $\sin C\cos (A-B)=0\iff$ $\cos (A-B)=0\iff$ $|A-B|=0\iff$ $A=B+90^{\circ}$ .



PP16. Let $ABC$ be a triangle with the incircle $int=C(I,r)$ and the circumcircle $ext=C(O,R)$ .

Let $D\in BC\cap int$ , i.e. $ID=r$ , $\{A,S\}=AI\cap ext$, $\{S,P\}=\{S,D\}\cap ext$ . Prove that $PI\perp PA$ .


Proof 1. Denote the diameter $[AA']$ of $ext$ , i.e. $AA'=2R$ . Is well-known that $\boxed{\widehat{DIS}\equiv\widehat{IAA'}}\ (1)$ , $SB=SC=SI$ and $\boxed{IA\cdot IS=2Rr}\ (2)$ from the power

of $I$ w.r.t. $ext$ . Therefore, $\left\{\begin{array}{cc}
(1) & \widehat{DIS}\equiv\widehat{IAA'}\\\\
(2) & \frac {DI}{IA}=\frac {IS}{AA'}\end{array}\right\|$ $\stackrel{s.a.s}{\iff}$ $\triangle DIS\sim\triangle IAA' $ . In conclusion, $\widehat{ISD}\equiv\widehat{AA'I}\iff$ $P\in SD\cap A'I\iff$ $PI\perp PA$ .

Proof 2. I"ll use the notations from the previous method. Thus, $\widehat{DBS}\equiv \widehat{BPS}\iff$ $\triangle SBD\sim\triangle SPB\iff$ $SD\cdot SP=SB^2$ $\iff$

$SD\cdot SP=SI^2\iff$ $\triangle SDI\sim\triangle SIP\iff$ $\widehat {SPI}\equiv\widehat{SID}\iff$ $\widehat{SPI}\equiv\widehat{SAA'}\iff$ $A'\in PI\iff$ $PA\perp PI$ .

Proof 3. Denote $E\in BI\cap AC$ and $F\in CI\cap AB$ . Thus, $m\left(\widehat{BPS}\right)=m\left(\widehat{CPS}\right)= \frac A2\implies$ $\frac{{DB}}{{DC}} = \frac{{PB}}{{PC}}$. Since $\frac{{BF}}{{CE}}=\frac{{BD}}{{CD}}$ obtain that $\frac{{PB}}{{PC}}=\frac{{BF}}{{CE}}$ . Since

$\widehat{FBP}\equiv\widehat{ECP}$ obtain that $\triangle FBP\sim\triangle ECP\implies$ $\widehat{AFP}\equiv\widehat{AEP}\implies$ $E,F,P$ belong to the circle with the diameter $[AI]\implies$ $PI\perp PA$ . Thank you, Tsikaloudakis !



PP17 (Bulgarian IMO TST 2005). Let acute $\triangle ABC$ with circumcircle $w=C(O,R)$ , incenter $I$ , orthocenter $H$ and $AB<AC$ . The lines $AH$

and $AI$ meet again $w$ at the points $D$ and $L$ respectively. Prove that $IH\perp IA\iff \cos B+\cos C=1\iff$ $r=R\cos A\iff$ $DI\perp DL$ .


Proof 1 (synthetic). Denote $\{L,N\}=LO\cap w$ , $P\in AD\cap BC$ and $S\in AI\cap BC$ . Therefore:

$\blacktriangleright\ DI\perp DL\iff$ $m\left(\widehat{DIL}\right)=B-C\iff$ $m\left(\widehat{ADI}\right)=\frac {B-C}{2}\iff$ $N\in DI\iff$ $ADLN$ is an isosceles trapezoid $\iff$ $IO\parallel BC\iff$ $r=R\cos A$ .

$\blacktriangleright\ IH\perp IA\iff$ $HPSI$ is cyclically $\iff AI\cdot AS=AH\cdot AP\iff$ $\frac {b+c}{2s}\cdot\frac {4bcs(s-a)}{(b+c)^2}=2Rh_a\cos A\iff$ $\frac {bc(b+c-a)}{b+c}=bc\cos A\iff$

$b+c-a=(b+c)\cos A\iff$ $(b+c)(1-\cos A)=a\iff$ $2\sin^2\frac A2(\sin B+\sin C)=\sin A\iff$ $\cos B+\cos C=1$ .

Proof 2 (trigonometric).

$\blacktriangleright\ IH\perp IA\iff$ $AI=AH\cos \frac {B-C}{2}\iff$ $\frac {s-a}{\cos\frac A2}=2R\cos A\cos\frac {B-C}{2}\iff$ $s-a=R\cos A(\sin B+\sin C)\iff$

$2(s-a)=(b+c)\cos A\iff$ $(b+c)(1-\cos A)=a\iff$ $2\sin^2\frac A2(\sin B+\sin C)=\sin A\iff$ $\cos B+\cos C=1$ .

$\blacktriangleright\ DI\perp DL\iff$ $m\left(\widehat{DIL}\right)=B-C\iff$ $DL=IL\sin(B-C)\iff$ $2R\sin\frac {B-C}{2}=IL\sin (B-C)\iff$ $R=IL\cos\frac {B-C}{2}\iff$

$OI\parallel BC\iff$ $r=R\cos A\iff$ $\iff$ $AD=2\cdot IA\cos \frac A2\iff$ $\cos A=\frac rR\iff$ $\cos A=\cos A+\cos B+\cos C-1\iff$ $\cos B+\cos C=1$ .



PP18. Let a rectangle $ ABCD$ with center $ O$ and $ AB\neq BC$. Let $ E\in AB$ , $ F\in BC$ so that $ O\in EF$

and $ EF\perp BD$ . Let $ M,N$ be the midpoints of $ [CD]$ , $ [AD]$ respectively. Prove that $ FM \perp EN$.


Proof. Denote $ L\in FM\cap EN$ . Observe that the quadrilaterals $ OAED$ , $ OFCD$ are cyclically (diameters $ [DE]$ . $ [DF]$ respectively). Thus, $ \left\|\begin{array}{c} \widehat {DEF}\equiv\widehat {DEO}\equiv\widehat {DAO}\equiv\widehat {DAC} \\
 \\
\widehat {DFE}\equiv\widehat {DFO}\equiv\widehat {DCO}\equiv\widehat {DCA}\end{array}\right\|$

$ \implies$ $ \boxed {\ \triangle DEF\ \sim\triangle DAC\ }$ $ \implies$ $ DE\perp DF\ \implies\ BEDF$ is cyclically (diameter $ [EF]$ ) $ \implies$ $ \widehat {CFD}\equiv\widehat {AED}$ $ \implies$ $ \boxed {\ \triangle CFD\ \sim\ \triangle AED\ }$ $ \implies$ $ \widehat {CMF}\equiv\widehat {ANE}$ $ \implies$

$ \widehat {CML}\equiv\widehat {DNL}$ $ \implies$ the quadrilateral $ DMLN$ is cyclically with the diameter $ [MN]$ .Therefore, $ LM\perp LN$ $ \implies$ $ FM\perp EN$ . Otherwise, if denote the intersection $ P\in AD\cap EF$ ,

then $ BP\parallel FD$ and $ P$ is the orthocenter of the triangle $ BDE$ , i.e. $ BP\perp DE$ . Therefore, $ DE\perp DF$ a.s.o.

Remark II. Generally, for $ N\in (AD)$ , $ M\in (CD)$ so that $ \frac {NA}{ND} = \frac {MC}{MD}$ $ \implies$ $ FM\perp EN$ . $ \triangle DAE$ results from $ \triangle DCF$ by rotation $ \left(D\ ,\ 90^{\circ}\right)$ and homothety $ \left(D\ ,\ \frac {DA}{DC}\right)\ !$



PP19. Let a square $ABCD$ and $\left\{\begin{array}{c}
X\in (AD)\\\\
M\in (AB)\\\\
N\in (BC)\end{array}\right\|$ so that $AX=BM=BN$ . Denote $Y\in MC\cap NX$ , $L\in MC\cap BX$ and $Z\in LN\cap CD$ . Prove that $DY\perp BZ$ .

Proof 1 (analytic). Let $\left\{\begin{array}{ccc}
A(0,0) & B(0,1) & C(1,1)\\\\
D(1,0) & X(m,0) & N(m,1)\\\\
Y(m,y) & M(0,1-m) & Z(1,1+z)\end{array}\right\|$ . From $Y\in MC$ obtain that $\left|\begin{array}{ccc}
0 & 1-m & 1\\\\1 & 1 & 1\\\\
m & y & 1\end{array}\right|=0\iff$ $y=m^2-m+1\implies$ the slope of $DY$

is given by the relation $\boxed{s_{DY}=-\frac {m^2-m+1}{1-m}}$ .Thus, $L\in XB\cap MC \implies$ $\left\{\begin{array}{cc}
XB\ : & y=\frac {-(x-m)}m\\\\
MC\ : & y-1=m(x-1)\end{array}\right\|\implies$ $-\frac xm=m(x-1)\ \wedge\ y=1-\frac xm\implies$

$L\left(\frac {m^2}{m^2+1},\frac {m^2-m+1}{m^2+1}\right)$ . Observe that $\boxed{s_{BZ}=z}$ , where $Z\in LN\cap CD$ , i.e. $\left|\begin{array}{ccc}
1 & 1+z & 1\\\\
m & 1 & 1\\\\
m^2 & m^2-m+1 & m^2+1\end{array}\right|=0$ $\iff$ $\left|\begin{array}{ccc}
1 & z & 0\\\\
m & 1-m & 1-m\\\\
m^2 & 1-m & 1\end{array}\right|=0$ $\iff$

$(1-m)+m^2(1-m)z=(1-m)^2+mz\iff$ $\boxed{z=\frac {1-m}{m^2-m+1}}$ . Therefore, $s_{BZ}\cdot s_{DY}=-1$ , i.e. $DY\perp BZ$ .

Proof 2 (synthetic). Let $T\in CD\cap BL$ . Thus, $\frac {CT}{BM}=\frac {LC}{LM}=\left(\frac {BC}{BM}\right)^2\implies$ $\boxed{BC^2=BM\cdot CT}\ (*)$ . Otherwise, $BCM\sim CTB\iff \frac {BC}{CT}=\frac {BM}{CB}$ , i.e. $(*)$ . So

$\frac {XD}{YX}=\frac {NC}{NY}\cdot\frac {NY}{YX}=$ $\frac {BC}{BM}\cdot \frac {ZC}{CT}\ \stackrel{(*)}{=}\ \frac {BC}{BM}$ $\cdot\frac {ZC}{\frac {BC^2}{BM}}=$ $\frac {ZC}{BC}\implies$ $\frac {XD}{XY}=\frac {ZC}{BC}\implies$ $\triangle DXY\sim\triangle ZCB\implies$ $\widehat {DYX}\equiv\widehat {ZBC}\implies$ $DY\perp ZB$ because $XY\perp CB$ .


PP20. Let $\triangle PAB\ ,\ \triangle QAC$ outside of $\triangle ABC$ such that $\left\{\begin{array}{c}
AP = AB\\\\
AQ = AC\\\\
\widehat{BAP}\equiv\widehat{CAQ}\end{array}\right\|\ .$ Let $R\in BQ\cap CP$ and the circumcenter $O$ of $\triangle BCR\ .$ Prove that $AO \perp PQ\ .$
Proof. I"ll show that $OP^{2}-OQ^{2}=AP^{2}-AQ^{2}$, i.e. $OA\perp PQ\ .$ Let $2x=m(\widehat{BAP})\ ,$ the circumcircle $C(O,\rho )$ of $\triangle BRC$ and $S\in AR\cap BC\ .$ Thus, $\left\{\begin{array}{c}AC=AQ\\\\ AP=AB\\\\ \widehat{CAP}\equiv\widehat{QAB}\end{array}\right\|$
$\implies$ $\triangle ACP\sim\triangle AQB\ .$ Thus, $\left\{\begin{array}{c}CP=QB\\\\ \widehat{APC}\equiv\widehat{ABQ}\\\\ \widehat{ACP}\equiv\widehat{AQB}\end{array}\right\|$ $\implies$ $\left\{\begin{array}{c}\widehat{APR}\equiv\widehat{ABR}\\\\ \widehat{ACR}\equiv\widehat{AQR}\end{array}\right\|$ $\implies$ the quadrilaterals $APBR\ ,$ $AQCR$ are cyclically with the radical axis $AR\ .$ Thus,

$\left\{\begin{array}{c}m(\widehat{BRS})=m(\widehat{BPA})=90^{\circ}-x\\\\ m(\widehat{CRS})=m(\widehat{CQA})=90^{\circ}-x\\\\ m(\widehat{BRP})=m(\widehat{BAP})=2x\end{array}\right\|$ $\implies$ the ray $[RS$ is bisector of $\widehat{BRC}\ .$ Prove easily that $\left\{\begin{array}{c}
m(\widehat{BOC})=4x\\\\ 
a=2\rho\sin 2x\end{array}\right\|\ .$ Thus, $\left\{\begin{array}{c}
PA=c\ ,\ QA=b\\\\ 
PB=2c\cdot\sin x\\\\ 
QC=2b\cdot \sin x\end{array}\right\|$ and

$\left\{\begin{array}{c}
m(\widehat{CBO})=m(\widehat{BCO})=90^{\circ}-2x\\\\ 
m(\widehat{PBO})=180^{\circ}+3x-B\\\\ 
m(\widehat{QCO})=180^{\circ}+3x-C\end{array}\right\|\ .$ Apply generalized Pythagoras' theorem in $\triangle POB\ ,$ $\triangle QOC$ respectively $:\ \left\{\begin{array}{c}
OP^{2}=BP^{2}+\rho^{2}-2\rho\cdot BP\cos \widehat{PBO}\\\\ 
OQ^{2}=CQ^{2}+\rho^{2}-2\rho\cdot CQ\cos \widehat{QCO}\end{array}\right\|$

$\implies$ $OP^{2}-OQ^{2}=4(c^{2}-b^{2})\sin^{2}x+4c\rho\sin x\cos (B-3x)-4b\rho \sin x\cos (C-3x)=$ $4(c^{2}-b^{2})\sin^{2}x+$ $4c\rho \sin x(\cos B\cos 3x+\sin B\sin 3x)$

$-4b\rho \sin x(\cos C\cos 3x+\sin C\sin 3x)=$ $4(c^{2}-b^{2})\sin^{2}x+$ $4\rho\sin x\cos 3x(c\cos B-$ $b\cos C)+$ $4\rho \sin x\sin 3x(c\sin B-b\sin C)=$

$4(c^{2}-b^{2})\sin^{2}x+4\rho\sin x\cos 3x\left(\frac{a^{2}+c^{2}-b^{2}}{2a}-\frac{a^{2}+b^{2}-c^{2}}{2a}\right)=$ $4(c^{2}-b^{2})\sin^{2}x+\frac{4\rho (c^{2}-b^{2})}{a}\sin x\cos 3x=$

$\left(c^{2}-b^{2}\right)\left(4\sin^{2}x+\frac{2\sin x\cos 3x}{\sin 2x}\right)=c^{2}-b^{2}\ .$ I used the simple relations $c\sin B=b\sin C$ and $4\sin^{2}x+\frac{2\sin x\cos 3x}{\sin 2x}=1\ .$



PP21 (F.J.G. Capitan). Let $\triangle ABC$ with incircle $w=C(I,r)$ which touches it at $\left\{\begin{array}{c}
D\in BC\\\\
E\in CA\\\\
F\in AB\end{array}\right\|$ . For a mobile $M\in AI$ denote $\left\{\begin{array}{c}
X\in MB\cap DF\\\\
Y\in MC\cap DE\end{array}\right\|$ . Prove that $XY\perp AI$ .

Proof. Let $\delta_d(P)$ - the distance from $P$ to $d$ . Thus, $\frac {XF}{XD}=\frac {\delta_{AB}(X)}{\delta_{BC}(X)}=$ $\frac {\delta_{AB}(M)}{\delta_{BC}(M)}\ \stackrel{(M\in AI)}{=}\ \frac {\delta_{AC}(M)}{\delta_{BC}(M)}= $ $\frac {\delta_{AC}(Y)}{\delta_{BC}(Y)}=$ $\frac {YE}{YD}\implies$ $\frac {XF}{XD}=\frac {YE}{YD}\implies$ $XY\parallel EF\implies$ $XY\perp AI$ .
This post has been edited 132 times. Last edited by Virgil Nicula, Jul 23, 2016, 10:47 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404400
  • Total comments: 37
Search Blog
a